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Abstract: Faced  with  several  Deep  Learning  architectures  for  generating
artificial images, there is a need to identify which are the best for each use case.
To compare several networks with the generative architectures Autoencoder,
Variational Autoencoder, and Generative Adversarial Networks in the 3D MNIST
dataset, 12 models with different hyperparameters were created. After training,
the models were compared with loss functions to assess the difference between
the original and artificial data, so that greater complexity did not translate into
better performance, indicating the Autoencoder models as the best cost-benefit.
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COMPARAÇÃO DE ARQUITETURAS DEEP LEARNING PARA A 
GERAÇÃO DE DADOS 3D 

 

Resumo: Diante de diversas arquiteturas de Deep Learning para geração de
imagens artificiais, surge a necessidade de identificar quais destas melhores se
adequam a cada caso de uso. Com o objetivo de comparar diversas redes com
as arquiteturas generativas Autoencoder, Variational Autoencoder e Generative
Adversarial  Networks no dataset 3D MNIST, foram criados 12 modelos com
diferentes  hiperparâmetros.  Após  os  treinamentos,  os  modelos  foram
comparados com funções de Loss para  avaliar  a  diferença entre  os  dados
originais e aqueles artificiais, de modo que maior complexidade não se traduziu
em melhor desempenho, indicando os modelos de Autoencoder como o melhor
custo-benefício.  

Palavras-chave: Redes Generativas; Dados 3D; Comparação; Aprendizado de
Máquina.  



1. INTRODUCTION 

 

Computer  vision  has  been  providing  many  projects  developed  in  the
areas of image generation, with deep learning technologies (DL) showing great
advances for the generation of data in 2D, making use of architectures already
relevant in the area [1]. On the other hand, the 3D segment is often left in the
background,  either  due  to  its  high  complexity  concerning  2D  or  the
computational power needed to process this data [2]. 

The need for automated 3D data generation comes from the difficulty in
creating three-dimensional representations manually, requiring too much time
and research to build the items that will be portrayed [3]. 

The 3D MNIST dataset  was used,  which has 12,000 images in three
dimensions [4]. The data was adapted from MNIST, which has numbers from 0
to 9 handwritten in a 2D representation [5]. 

The article aims to compare the Autoencoder, Variational Autoencoder
(VAE),  and Generative Adversarial  Networks (GANs) architectures regarding
several evaluation metrics to present the performance of each architecture for
representing 3D data [6-8]. 

 

1.1. Autoencoder 

 
The Autoencoder (AU) architecture is composed of two smaller networks

that seek to compress the input into a latent representation, a version where
only  the  essence of  its  structure  remains.  In  the  first  network,  encoder,  the
original data is reduced to a one-dimensional vector h, where its characteristics
are categorized by increasing importance, between 0 and 1, to be discarded or
preserved.  In  the  next  step,  the  decoder  network  receives  the  vectorized
structure and performs the inverse process, returning the data to its original size
and aspect, but with only the essence of its structure [9]. 

Loss = -Log P(x|x’)          (1) 

To check the quality of the representation created by the network, the
loss function observed in equation 1 is used, where -log P compares the original
input x with its latent representation x’. The loss in an autoencoder should be as
small as possible, but it will hardly be zero. Considering that one of the main
characteristics of the AU architecture is to learn the essentials and return data
with reduced dimensionality, a loss of value 0 implies a faithful reproduction of
the  image,  which  in  turn  denotes  low  learning  of  its  main  components,
essentially creating a network that just  returns your input without a concrete
benefit [10]. 
 
1.2. Variational Autoencoder 
 

The Variational Autoencoder (VAE) is an architecture composed of the
union of two networks, an encoder,  which maps the inputs and compresses



them from the input to the latent space, and the decoder, which maps the data
from the latent space to perform its decompression. The difference between
VAE and Autoencoder architectures is the guarantee of good properties in the
latent  space  to  allow  the  generation  of  new  data.  The  latent  space  is  the
representation  of  the  compressed  data:  its  reproduction  with  lower
dimensionality. 

Broadly, the VAE requires the standard Gaussian distribution anterior to
the latent space. Thus, the VAE tends to maximize equation 2 [11]. 

P(z) = N (z|0, I)                                      (2) 

To solve it, the VAE needs to deal with defining the information that will
be represented by the latent variable z and how to deal with the integral over z.
The  latent  variable  can  be  understood  as  the  choice  of  a  character  to  be
generated by the model before assigning a value to any specific pixel, that is,
the model will produce configurations for the generation of the character. The z
settings tend to produce a character that resembles the initial die. Furthermore,
the  interpretation  of  dimensional  samples  can  be  extracted  from  a  simple
distribution, being it N (0, I), where I is an identity matrix [11]. That said, the
model parameters are trained to minimize the reconstruction error between the
reconstructed  and  the  initial  data,  making  use  of  the  Loss  function  KL
divergence, acting as a regularization term, to calculate this divergence. 
 
1.3. Generative Adversarial Networks 
 

Generative  Adversarial  Networks  (GAN),  are  generative  architectures
based on Deep Learning, in which an adversarial training process takes place
between two networks:  A Generative model  G that  is  based on the original
distribution of data to generate a new sample, and a Discriminative model D that
estimates the probability a data sample coming either from the original  data
distribution  or  from the  sample  generated by  the  Generative  model  G.  This
training occurs until the Discriminator becomes unable to discern between the
original and generated data [8]. 

 GANs are often used in the Computer Vision field to perform various
tasks  involving  images.  They  can  be  used  to  generate  higher  resolution
versions of images, create sketches, paintings, and others. 

During the training stage of this architecture, with the data generated by
the  Generator  model,  the  Discriminator  model  has  the  role  of  correctly
classifying between real and generated data. In consideration of the above, the
final  function of  value V (G,  D)  is  based on Equation 3,  which involves the
minimization  of  the  Discriminator’s  error  and  the  maximum precision  of  the
Generator when creating the images [8]: 

min max V (D, G) = Ex ~ Pdata(x) [Log D(x)] + Ez ~ Pz(z) [Log (1 - D(G(Z)))]. 
 G   D (3) 

 

1.4. Recurrent Neural Networks     

 



The  Recurrent  Neural  Network  (RNN)  is  a  type  of  artificial  neural
network, used for sequential data or time series. The RNN, unlike traditional
neural  networks,  can  remember  previous  information  from  the  feedback,
allowing the information to persist  [12].  To decide, the network considers its
current input and what it learned from the previous input. 

It  has  a  “memory”,  which  stores  the  information  of  the  calculations
performed, enriching the expressive power of the model  by capturing causal
and  contextual  information  [13].  That  said,  RNN  manages  to  reduce  the
complexity  of  parameters,  in  addition to  adjusting the weights through back-
propagation  and  descending  gradient  processes,  facilitating  the  learning
process. 

As there were advances in the development of RNNs, other architectures
were created from it, such as Long-Short Term Memory (LSTM) [13] and Gated
Recurrent Unit (GRU) [14]. 

 

1.5. Convolutional Neural Network 

 

The Convolutional Neural Network (CNN) is a neural network widely used
in problems dealing with image data, such as pixels. Important applicability of
CNN is the extraction or detection of image contents when the input propagates
through deeper layers [15]. During the convolution process applied to images,
weights are assigned to certain sets of pixels that can indicate lines, curves, and
eventually, complex patterns, where higher weights denote greater importance
of that set of pixels for the current task. 

In  addition,  there  are  other  types  of  convolutional  neural  network
architectures,  such  as  the  Fully  Convolutional  Network  (FCN),  a  type  of
convolutional  neural  network,  which  contains  only  convolutional  layers,  not
having “Dense” layers. 

 

1.6. Multilayer Perceptron  

 
The Multilayer Perceptron, or MLP, is a simple artificial neural network

with several interconnected neurons that present a non-linear mapping between
an input vector and an output vector [16]. 

Efficiently, MLPs backpropagate the network’s error, based on that error,
the weights of previous layers are recalculated starting from the last layer up to
the first.  

  

2. METHODOLOGY 

 

The  approach  chosen  for  this  work  was  the  comparison  between
practical  experiments  of  several  generative networks with  different  activation
functions, number of layers, and number of neurons per layer. This exploratory,
empirical, quantitative, and qualitative research seeks to identify the advantages



of each architecture, ranging from the network training time to the quality of the
data generated at the end of the process. The work was divided into 3 stages:
(1) search, (2) generation, (3) evaluation and synthesis. 

In stage (1), a literature review was carried out where relevant works on
the AU, VAE, and GAN architectures were identified, to verify the validity of the
proposed comparison. During (2) a single base model  was created for each
architecture, subsequently, the bases were adapted into 4 models, divided into
FCN, CNN with MLP, LSTM, and GRU, amounting to 12 models. In stage (3),
the  results  of  the  models  were  grouped  in  tabular  form,  comparing  the
differences between the original  image and that  generated through the  loss
metrics  Binary  Cross-Entropy and Mean Squared Error  (MSE),  described in
Equations 4 and 5, generating a Table per metric, with both divided between
architectures and their respective networks [17].

H (X) = −[θ log2 θ + (1 − θ) log2(1 − θ)]                           (4)

1
N

 ∑  j=1 
 D

(θ j −θj )
2                                                                       (5)

3. RESULTS AND DISCUSSION 
 

 As can be seen in Table 1, the Autoencoder FCN model presented the
best results for Binary Cross-Entropy, with a total loss of 0.1304 concerning the
original data, followed by the Autoencoder models GRU, LSTM, and CNN with
MLP, respectively, with the latter having the same loss value as the VAE model
with the same architecture. 

  For the MSE metric,  Table 2 demonstrates a similar hierarchy, with
FCN,  GRU,  and  LSTM  Autoencoder  models  having  the  smallest  difference
between the original and generated data, followed by the VAE CNN with MLP. 

  Comparing the two Tables, it becomes noticeable that GANs obtained
the worst performance for both metrics in all proposed architectures. To match
the performance of GANs to that of competing models, it would be necessary to
increase  the  time  and  computational  power  expressively,  leading  to  the
conclusion that this model should be preferentially used when there is a high
processing capacity. 

Table 1.  Loss Binary Cross-Entropy 

 CNN+MLP  FCN  LSTM GRU

AU 0.2249 0.1304 0.1626 0.1495

VAE 0.2249 0.2946 0.2283 0.2272

GAN 5.5372 6.3513 12.9795 5.9794

 

Source: The Autor 



Table 2.  Metric MSE 

 CNN+MLP  FCN  LSTM GRU

AU 0.0760 0.0110 0.0535 0.0156

VAE 0.0749 0.0888 0.0765 0.0733

GAN 0.9264 0.9139 0.8890 0.8449

 

Source: The Autor 

                                       

4. CONCLUSION 

 

This study aimed to evaluate the AU, VAE, and GAN architectures in
their ability to reproduce three-dimensional data using the MNIST 3D dataset as
a basis. 

Using the Mean Squared Error and Binary Cross-Entropy metrics, it was
possible to observe that the AU-based models obtained representations closer
to  the  original  data,  furthermore,  these  models  required  a  lower  tuning  of
hyperparameters  and  training  time,  obtaining  high  cost-effectiveness  in
comparison to other architectures. 

In parallel,  the VAE architectures obtained results close to the original
data, with the LSTM and CNN models being comparable to the quality of the
AUs. As for the GAN constructions, in addition to having a longer training, the
resulting images and the metrics evaluated had poor quality. 
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