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ABSTRACT 
 
The existing tire models are basically of three kinds: essentially empirical (“magic formulas”), 
or mixed empirical/analytical, or extremely complex theoretical models almost useless in 
practical situations. The model here proposed does not require any empirical data, and 
presents a simple theoretical approach very suitable to use in project and analysis of real 
suspension systems. This paper suggests a physical and mathematical model for the 
mechanical behavior of pneumatic car tires, based on the relationship between the relative 
displacement of the wheel to the tire-ground contact region. 
This formulation, assuming small displacements, is the first step to a more comprehensive 
model of the tire dynamic behavior, which will be published later.  
 
 
 
INTRODUCTION 
 
The tire is the structural vehicle component that exchange forces and moments with road 
surface to support and control vehicle attitude. Ways to deal with the rolling contact 
phenomena are relevant tools for vehicle dynamics engineer and the tire designer. It is usual 
to formulate empirical expression based on experimental data to describe tire behavior. This 
approach does not have any physical or mechanical fundamental relationship with the tire 
structure itself. Several models with different approach, purpose, level of complexity and 
accuracy have been proposed by various authors during last half century, accessing only 
partial aspects of this complex system. Finite element method (NAKASHIMA, et al., 1993), 
multi radial spoke model or brush model (SHARP, et al., 1986),  (Duggof, Fancher, Segel, 
1970, Pacejka, 1972), flexible ring model (Miège, 2004), membrane model (ZACHOW, 
1997), shell model (LECOMTE, et al., 2010), modal synthesis method (Guan, 1999, Shang 
2002), experimental data multiparametric polynomial interpolation (Bakker,(Delft) 1987, 
Segel et el (UMTRI Michigan) 1977, Pacejka (Delft), 1993) are some examples. 
 
In this text, the mechanical behavior of an inflated tire will be represented by a structural 
model called “membrane”, or “thin walled involucres” (TIMOSHENKO, et al., 1970), 
(PISSARENKO, et al., 1985), which physical and mathematical models will be presented in 
the next item. The interface region between the tire and the road will be focused, with the goal 
of obtaining a detailed distribution of the forces systems acting in this region. The appropriate 
integration of these forces systems will give the values of the forces and moments acting at 
the vehicle suspension system. 
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This model is essentially different from those presented by several authors (for instance, 
(BÖHM, 1966), (VIL’KE, et al., 1998), (VIL’KE, et al., 2001), (VIL’KE, et al., 2004), 
(PACEJKA, 2006)). 
 
This paper presents the general linearized relationship between displacements and forces on 
tires. The formulation of the referred coefficients will be published soon. 
 
1. PHYSICAL MODEL 
 

1.1 Some facts about tires 
 
An actual wheel for passenger cars is shown in Figure 1-1, including a cross section 
with its elements nomenclature. 
 

 

Figure 1-1 – Actual passengers car wheel, dimensions and contact region 
 
From the engineering viewpoint, if we consider the interaction with the ground, the 
wheel is not a rigid body – its rim may be considered so, but not the inflated tire: its 
deformations and corresponding forces must be considered. The iteration between the 
ground and the tire occurs in the respective contact region. With a vertical load on the 
wheel, the contact patch is really a squashed oval rather than a rectangle. For the 
vehicle’s usual conditions of ride and cornering, at urban streets or highways in good 
conditions, we can observe that: 

- Under usual wheel’s loadings, the contact patch will change in shape and 
size, but it will continue to be similar to a rectangle or, in more general cases, 
to a trapezoid. 

- As the tire is elastic, the contact region, considered as a plane figure, also will 
change its relative position to the rim according to the wheel’s loading. 
However, these relative displacements will be small, because all (except the 
vertical one) are restricted by the friction slide limit (friction coefficient) in 
the contact: for higher loads, the whole wheel will slide, without increasing 



those relative displacements. Here, “small displacements” mean 
displacements much smaller than the typical wheel dimensions. Of course, at 
roads with large holes or very irregular, the contact region will not be even 
plane anymore, and the relative displacements may be large. 

- From a technical viewpoint, these friction coefficients, between rubber and 
concrete, rubber and asphalt or so, measured under laboratory conditions with 
clean surfaces, are just reference values. In actual roads, with dust, oil, sand, 
etc. on them, the real sliding limit may be very different. 

- Under usual 4000 N to 8000 N vertical load on each wheel, sliding between 
tire and ground would results in severe tread’s wearing. With usual life of 50 
000 km, we may conclude that, with a proper car maintenance, this sliding 
does not occurs in those usual tire’s service conditions. We will show later 
that the assumption of the occurrence of “micro-sliding”, in some points of 
the contact region, is not necessary to explain longitudinal and lateral “slips” 
phenomena in the wheels behavior, at least at the usual conditions considered 
here. Of course, for extreme accelerations or breaking, or for close curves at 
high speed, the sliding may (or must) occurs. 

 
Concerning to the tire behavior, from the physical viewpoint, the first observation is 
that the forces generated from the iteration ground-tire are transmitted to the rim 
unique and exclusively through the tire’s sidewall.  
 
The second observation refers to the sidewall inclination angles in the region in 
contact with the ground. 
 

 

Figure 1-2 – Sidewall angles 
 
As may be seen in Figure 1-2, even if the intensity (modulus) of the force that the 
sidewall applies to the contact region is constant, its vertical and transversal 
components may changes significantly with the angle , which is function of the 
wheel load, or the relative position between the rim and the contact region. It is 
possible to foresee that the geometric effect of the change of angle  is the main 
parameter that rules the mechanical behavior of the tire. 
 



 
Figure 1-3 – Tire construction 

Considering the tire itself, it is made of rubber and a set of fibers and metallic textiles 
as shown in Figure 1-3, resulting in a anisotropic composite material with different 
properties in the tread and in the sidewall. The equivalent Young’s modulus E’ of this 
composite is very different in compression and tension – the textiles are virtually 
inextensible in tension and have no effect in compression, in which case the rubber 
works alone. Many authors considers the composite inextensible in tension, and uses 
the rubber’s E’ - about 50 MPa, (EngineeringToolbox, 2013), (PerkinElmer Inc., 
2007) - in compression. It is relevant to note that the inflated tire works with a high 
level of tensile stresses, much higher than the stresses caused by the bending of the 
tread or of the sidewalls. 
 

1.2 Tire physical model 
 
Considering the prior facts, the tire physical model will be built adopting the following 
hypothesis and simplifications: 
 
1 – The entire tire is considered as a perfectly flexible membrane. It means that 

bending moments and bending rigidity are neglected. Also, this surface will be 
considered inextensible in tension, and the rubber mechanical properties will be 
used in compression and shearing. 

 
2 – The tire is represented by three geometrical surfaces which are defined, as shown 

in Figure 1-4, by: 

a) Two equal and symmetrical sidewalls, (right and left sides), constituted by the 
partial section of a toroid surface defined by the following dimensions: the 
external tire radius (Re), its internal radius or the rim radius (Ri) and the 
“curvature parameter” or “bulging parameter” (co) shown at the Figure 1-5, for 
the inflated tire without loading. It is also supposed that the rim and the tread 
have the same width. 

b) The tread, also in Figure 1-5, represented by the orthogonal section of a cylinder, 
is defined by the “equivalent” external radius of the tire (Reb) and the tread’s 
breadth (L). Note: Reb may be a little different from Re but we will consider that 
Re and Reb coincide. 

 



 

Figure 1-4 – Membrane model 
 
3 – For the sidewalls, the membrane stresses intensity (modulus) is a function of the 

internal air pressure p and will remain constant under the several loads - just their 
direction will change. The directions changes will occur according the respective 
changes of the surfaces geometry, under the corresponding loading cases. 

 

 

Figure 1-5 – Membrane model surfaces 
 
 
4 – The small changes of the internal gas pressure, due to different loadings, is 

neglected. 
 
5 – The contact region between the tire and the ground is a plane trapezoid.  
 
6 – There is no sliding (i.e., no relative movement) between tread and ground at the 

contact points in the contact region. 
 



7 – Also as a consequence of the previous hypothesis, the condition of “small 
displacements” will be adopted in several equations development, and indicated in 
these cases. This approach is analogous to that used in structural engineering, 
related to beams, plates, shells, etc.. It is usually called “theory of small 
displacements”, and it supposes that the displacements are much smaller than the 
typical dimensions of the corresponding structural element. 

 
2. MATHEMATICAL MODEL - GENERAL 
 

2.1 Kinematics and coordinates systems 
 

Consider a fixed horizontal plane and let us define a moving control volume that 
embraces the contact region between the tire and the ground, as shown in Figure 2-1. 
For a free wheel rolling on this plane, under vertical only loads, the shape of this 
region is a rectangle, and let us define the point C of the control volume as the one 
which coincides with the geometric center of this rectangle in this situation. Let us 
also define a moving point O, which maintains constant distance a from the plane, and 
for which C is its orthogonal projection on the plane. Let us use the Frenet frame 
ሺݐԦ, ሬ݊Ԧ, ሬܾԦ	ሻ of O’s trajectory to define the orthogonal Cartesian coordinates (O, x, y, z), 
and the corresponding unit vector basis ሺଓԦ, ଔԦ, ሬ݇Ԧሻ by: 
 

ଓԦ ൌ  Ԧݐ
ଔԦ // ሬܾԦ, positive for the increasing distance from the plane, and 

ሬ݇Ԧ ൌ ଓԦ ൈ ଔԦ 
(2-1) 

 
Let us also define a referential A fixed to this coordinates system, which is also fixed 
to the contact region’s control volume. 
 

 
Figure 2-1 Coordinates systems 

 
Also consider the rigid wheel’s rim with center O’, width L and radius Ri, and another 
orthogonal Cartesian coordinates (O’, X, Y, Z) with corresponding unit vector basis 
ሺ Ԧ݁ଵ, Ԧ݁ଶ, Ԧ݁ଷሻ. The plane ሺܱ′, Ԧ݁ଵ, Ԧ݁ଶሻ always coincides with the rim’s middle plane, and 
this coordinates system (O’, X, Y, Z) defines a referential B, as shown in Figure 2-2. 
The rim’s rotation vector, relative to referential B, is given by: 
 

ΩሬሬԦ ൌ Ω Ԧ݁ଷ (2-2) 
 



 
Figure 2-2 – Referential B and rim’s coordinates 

 
For the rotation of the referential B, from the initial position where the referential B 
coincides with referential A, let us define a vector {} with the Euler angles, in its 
usual form: 
 

ሼߠሽ ൌ ሼ߶, ,ߠ ߰ሽ (2-3) 
 
Then, the rotation matrix [Rot] is given by: 
 

ሾܴݐ݋ሿ ൌ ൥
cos߰ cos߶ െ cosߠ sin߶ sin߰ cos߰ sin߶ ൅ cos ߠ cos߶ sin߰ sin߰ sin ߠ
െ sin߰ cos߶ െ cos ߠ sin߶ cos߰ െsin߰ sin߶ ൅ cosߠ cos߶ cos߰ cos߰ sin ߠ

sin ߠ sin߶ െsin ߠ cos߶ cos ߠ
൩  (2-4) 

 
and the transformation of coordinates of any vector (position, velocity or acceleration) 
at the referential B, from the coordinates system B to A, is given by: 
 

ሼݔሽ஻ ൌ ሾܴݐ݋ሿ௧ሼܺሽ஻ (2-5) 
 

2.2 Forces and displacements 
 

Suppose an initial situation, where the wheel is rolling on that horizontal plane, free from 
external forces, except for a vertical load Ws from the vehicle’s weight, and with the 

coordinates systems A and B coinciding. This initial forces system is equivalent to a 
resultant force ሬܴԦௌ, applied to point O’, and a binary ܯሬሬԦௌைᇱ. The contact region is a 
rectangle and its control volume does a straight translation in the plane. The rotation 
vector of the wheel, relative to the referential B, is given by: 
 

ΩሬሬԦ ൌ െΩሬ݇Ԧ (2-6) 

 
From this initial situation, let us move the wheel’s rim (or the referential B) to a new 
position, relatively to A, displacing its center O’ from the point O and rotating the rim 
from the frame (O, x, y, z). All are small displacements, as they are limited by the 
hypothesis of no sliding at the contact region. As consequence, the tire will deform, the 
contact region may change its shape and size, and the control volume’s movement on the 
plane may be not a straight translation anymore. The control volume’s point C will not 
necessarily coincide with the contact region’s geometric center anymore.  



 
It is necessary to apply a force ሬܴԦ஺ and a binary ܯሬሬԦ஺ைᇱ to the point O’ of the wheel to 
achieve this displacement. Neglecting small dynamic effects, these applied forces will be 
equilibrated by the ground reaction, transmitted by the deformed tire.  
 
Let us consider a steady state situation, where referential B is fixed to A in its new 
position (and both will move as a single rigid body, in a trajectory to be determined). The 
tire deformation will remain constant, and the applied forces  ሬܴԦ஺ and ܯሬሬԦ஺ைᇱ, in referential 
A, will be also constants. 
 
Concerning to the loads at the interaction tire-ground, the region of the tread in contact 
with the ground is isolated, and the corresponding force systems are applied to this region, 
building the so called “free body diagram” of the contact region. It is considered six 
distributed force systems acting in this region. The whole set of forces, in the absence of 
inertia forces, constitutes a null system, which implies the static equilibrium of this region. 
Five of these systems are shown in Figure 2-3 corresponding to the tire forces acting in 
the contact region. The sixtieth system is the ground reaction on the contact region. From 
membrane hypothesis, this reaction system is equal and directly opposite to the combined 
other five ones. 
 

 
Figure 2-3 – Force systems from the tire, at contact region 

From basic mechanics, the system of all distributed forces applied to the contact region by 
the remaining of the tire, and its internal pressure, is equivalent to a system of one force 
and one moment ( ሬܴԦܯ ,ݐሬሬԦݐ஼), where  ሬܴԦݐ is the resultant of those forces, applied to a point C 
in the contact region, and ܯሬሬԦݐ஼ is the binary equal to the moment of the same forces to 
pole C, as shown in Figure 2-4. Analogously, ( ሬܴԦ݃, ܯሬሬԦ݃஼) are the system equivalent to all 
the forces from the ground acting in this region. If we neglect dynamic effects, the force 
systems ( ሬܴԦܯ ,ݐሬሬԦݐ஼) and ( ሬܴԦ݃, ܯሬሬԦ݃஼) are directly opposite and we have: 
 

ሬܴԦݐ ൅ ሬܴԦ݃ ൌ 0ሬԦ  and  ܯሬሬԦݐ஼ ൅ ሬሬԦ݃஼ܯ ൌ 0ሬԦ (2-7) 
 
 



 
Figure 2-4 – Equivalent forces at contact region 

 
Note that, for the steady state situation, we have also the relationship between the ground 
forces and the forces applied to the rim: 
 

ሬܴԦ݃ ൅ ሬܴԦௌ ൅ ሬܴԦ஺ ൌ 0ሬԦ  and  ܯሬሬԦ݃஼ ൅ ሬሬԦௌைᇱܯ ൅ ሬሬԦ஺ைᇱܯ ൅ ሺܥ െ ܱ′ሻ ൈ ൫ ሬܴԦௌ ൅ ሬܴԦ஺൯ ൌ 0ሬԦ (2-8) 

 
We have five force systems at the contact region, as shown in Figure 2-3. If we use k to 
designate each of them: 

k = 1 : Right Left sidewall force system; 
k = 2 : Left sidewall force system; 
k = 3 : Fore tread force system; 
k = 4 : Aft tread force system; 
k = 5 : Direct pressure force system, 

 
Let us also represent the force system ( ሬܴԦܯ ,ݐሬሬԦݐை), where ܯሬሬԦ௧ை ൌ ஼ݐሬሬԦܯ ൅ ሺܥ െ ܱሻ ൈ ሬܴԦ௧, by a 
single vector {R}, with this five force systems: 

 

ሼܴሽ ൌ

ە
ۖ
۔

ۖ
ۓ
௫ݐܴ
௬ݐܴ
௭ݐܴ
ை௫ݐܯ
ை௬ݐܯ
ை௭ۙݐܯ

ۖ
ۘ

ۖ
ۗ

ൌ

ە
ۖ
۔

ۖ
ۓ
ଵܨ
ଶܨ
ଷܨ
ସܨ
ହܨ
଺ۙܨ
ۖ
ۘ

ۖ
ۗ

ൌ ሼܴଵሽ ൅ ሼܴଶሽ ൅ ሼܴଷሽ ൅ ሼܴସሽ ൅ ሼܴହሽ ൌ ෍ ቄܴ݇ቅ
௞ୀହ

௞ୀଵ

 (2-9) 

 
where ܨ௜ for i = 1, 2 and 3 are the resultant force components in respectively x, y and z 
directions. Also, ܨ௜ for i = 4, 5 and 6 are the resultant moment components relative to the 
center of the wheel, about axis x, y and z, respectively, and ሼܴ௞ሽ stands for the force 
system k. 
 
For small displacements, the new rim’s position, in the coordinates system A, may be 
defined by a unique vector {} with six components: 
 

ሼߜሽ ൌ

ە
ۖ
۔

ۖ
ۓ
ଵߜ
ଶߜ
ଷߜ
ସߜ
ହߜ
଺ۙߜ
ۖ
ۘ

ۖ
ۗ

 (2-10)

 



where i, i = 1, 2, 3, correspond to the linear displacements of point O’ along the axis Ox, 

Oy and Oz, respectively, and i, i = 4, 5, 6, correspond to the rotations (small angular 

displacements) of the rim, about the same axis. 
 
These relative displacements between the reference systems A and B, and the 
corresponding tire deformation, are shown in Figure 2-5. 
 

 
Figure 2-5 – Relative small displacements i and tire deformation 

Each ሼܴሽ௞ is a function of the rim’s displacement, i.e.: 
 

ቄܴ݇ቅ ൌ ሼܴ௞ሺߜଵ, ,ଶߜ ,ଷߜ ,ସߜ ,ହߜ  ଺ሻሽ (2-11)ߜ

 
These forces arise from the relative displacement of the rim to the contact region. From 
the assumption of small displacements, we may neglect coupling effects and write: 
 

ሼܴ௞ሽ ൌ ൛ܴ଴
௞ൟ ൅ ൛ܴଵ

௞ሺߜଵሻൟ ൅ ൛ܴଶ
௞ሺߜଶሻൟ ൅ ൛ܴଷ

௞ሺߜଷሻൟ ൅ ൛ܴସ
௞ሺߜସሻൟ ൅ ൛ܴହ

௞ሺߜହሻൟ ൅
൛ܴ଺

௞ሺߜ଺ሻൟ ൌ ൛ܴ଴
௞ൟ ൅ ∑ ൛ ௝ܴ

௞൫ߜ௝൯ൟ
଺
௝ୀଵ    

(2-12) 

 
where ሼܴ଴

௞ሽ is the force vector for null relatives displacement, and ൛ ௝ܴ
௞൫ߜ௝൯ൟ is the change 

in the force vector due to relative displacement ߜ௝. 
 
Also, for small displacements, we may use the Taylor’s expansion, neglecting higher 
order terms, and obtain a linear approximation for the relationship between forces and 
displacements: 
 



൛ ௝ܴ
௞൫ߜ௝൯ൟ ≅

݀
௝ߜ݀

൛ ௝ܴ
௞൫ߜ௝൯ൟቤ

ఋೕୀ଴

∙ ௝ߜ ൌ ൛ ௝ܴ
௞ᇱ൫ߜ௝൯ൟ ∙  ௝ߜ

where 

൛ ௝ܴ
௞ᇱ൫ߜ௝൯ൟ ൌ

݀
௝ߜ݀

൛ ௝ܴ
௞൫ߜ௝൯ൟቤ

ఋೕୀ଴

 

and, then: 
ሼܴ௞ሽ ൌ ൛ܴ଴

௞ൟ ൅ ∑ ൛ ௝ܴ
௞ᇱ൫ߜ௝൯ൟ ∙ ௝ߜ

଺
௝ୀଵ   

(2-13) 

 
Now we may write the relationship between forces and displacements as: 
 

ሼܴ௞ሽ ൌ ൛ܴ଴
௞ൟ ൅ ቂ൛ ௝ܴ

௞ᇱሺ0ሻൟ
௧
ቃ ሼߜሽ ൌ ൛ܴ଴

௞ൟ ൅ ሾܨ௞ሿ௧ሼߜሽ 
where 

௜௝ܨ
௞ ൌ ܴ௜௝

௞ᇱሺ0ሻ 

(2-14) 

 
 
 
CONCLUSION 
 
This text presented an initial approach to  physical and mathematical model of a automotive 
tire. Next, we will present the expressions of ܨ௜௝

௞ for each  ߜ௝, assuming that all other ߜ௡ ൌ 0, 
for ݊ ് ݆, in a text that will be published soon. 
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