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ABSTRACT 

A deep knowledge of tire behavior in operating conditions is fundamental to the effective 

modelling of vehicular dynamics on its safety, comfort and performance aspects. Data-based 

models are a common approach despite the associated challenges: the complex interaction 

between tire constructive and operational factors implies the necessity of large datasets, the 

tradeoff between local and global fit is challenging and the handling of a high number of inputs 

with varying relevance to each output is a computationally expensive problem. 

A very promising approach to data-based modelling is the Gaussian Process Regression (GPR), 

a class of supervised learning. Data points are used to train an underlying probability 

distribution with characteristics assumed a priori. The resulting model has relatively small 

requirement of training data, robustness against overfitting, good response to complex behavior 

and computational tractability. 

The aim of this work is to support the elaboration of data-based tire models by creating one of 

a Formula SAE specific 10” slick tire. Procedures are presented for the use of GPR to fit the 

data locally and then predictions are made on lateral and longitudinal forces with respect to 

vertical load, slip-angle, slip-ratio, pressure and camber. In the end, model quality metrics will 

be established for internal cross validation and comparison to test data. 

 

 

 

INTRODUCTION 

 

Tire behavior is governed by complex non-linear interactions between different factors, making 

the process of modelling lateral and longitudinal forces with precision a challenging task. 

Nevertheless, many applications require easy to handle, computationally simple and at the same 

time very accurate models. 

 

Over the years, different approaches of tire modeling have been developed, tuned for the 

specificities and needs of different applications. Salvagni et al (2013) [1] lists models ranging 

from finite elements method to brush models, shell models, and experimental multiparametric 

polynomial interpolations. Pacejka [2] groups this broad variety in four major categories: 
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1. Pure empirical model: experimental data regression whose parameters are obtained 

exclusively from the training data. 

 

2. Semi-empirical: assumptions are made on the expected model response characteristics and 

tendencies. Experimental data is used to determine some key fitting parameters for the 

specific tire analyzed. E.g. Brush model tire mechanics (Svendenius, Gäfvert 2005). 

 

3. Simple physical model: simple model based on physical assumptions, generally limited to 

a simple condition, as pure slip. E.g. Thin walled involucres (Salvagni et al, 2013) [1]. 

 

4. Complex physical models: highly complex physical formulations valid for a broader range 

of conditions. They are usually challenging to build and computationally demanding to 

evaluate. E.g. Finite elements method (Nakashima, Wong, 1993). 

 

General aspects of each one of these categories are presented in figure 1 

 
Figure 1: Comparison of tire model aspects according to different approaches 

 

 
 

Source: Pacejka (2006) - Tire and vehicle dynamics, p. 85, Figure 2.11 

 

In this text, tire behavior is determined by applying Gaussian process regression over a set of 

empirical training data using ETAS Advanced Simulation for Calibration, Modeling and 

Optimization (ASCMO). A review of Bayesian modelling technics using Gaussian process is 

presented in the next section to give an insight on ASCMO internal methods. 

 

This paper presents an approach to determine lateral and longitudinal tire forces in a combined 

slip case accounting for vertical load, camber and inflation pressure. The resulting multivariate 

model is continuous, computationally light and requires only a small amount of training data. 

The predicted forces are compared to measured data and a Friction Ellipse is shown. 



1. MODELING METHODOLOGY 

 

Supervised learning methods may be categorized into two common approaches [3]: 

1. Using a specific class of functions as base for modeling. It has the drawback of resulting in 

poor model prediction capabilities if the chosen function set does not represent well the 

phenomena being analyzed. Expanding the richness of the considered class functions may 

result in overfitting, where the fit to training data is satisfactory but it fails to make reliable 

predictions about generic test cases. 

 

2. Giving a prior probability to every possible function, assigning higher probabilities to 

functions considered more likely. At first glance, this proposal appears to be unfeasible as 

there are infinity sets of possible functions. Nonetheless, there are methods to work out this 

challenge and generate the desired predictions in a reasonable amount of time. 

 

1.1 Bayesian Modelling Overview 

 

The second approach presented is referred as a Bayesian method [3]. It tackles the regression 

problem (mapping a multivariate input vector x to a continuous output predictive function f(x)) 

using the following logic: Firstly, a prior distribution is defined containing characteristics 

expected of the system behavior. It is then combined to a given dataset of n observations of the 

phenomena 𝐷𝑛𝑥1 = {(𝑥𝑖, 𝑓𝑖)|𝑖 =  1, . . . , 𝑛}, resulting in a posterior distribution. From this 

posterior, it is possible to synthesize functions that predict the system response to the inputs. 

 

To illustrate this with a simple example, a single input case is presented. Figure 2 shows four 

possible predictive functions drawn from the priori (left panel) and the resulting posteriori by 

combining it with two datapoints (right panel). The dashed functions represent four possible 

posteriori samples and the continuous line the overall mean, which is the model prediction.  

 
Figure 2: Example of four random samples of a prior distribution (left) and the resulting posterior 

distribution after the conditioning to two training points (right) 

 

 
 

Source: (2006) - Gaussian Processes for Machine Learning, p. 3, Figure 1.1 

It is important to notice that the posteriori here was constructed in a way that all the sample 

functions passes through the training datapoints, which implies the assumption of perfect 

accuracy of the data acquisition process. It is possible as well to construct models that accounts 

for the inaccuracy of data. Finally, the shaded regions represent twice the local standard 

deviation for each input x, which highlights another advantage of Bayesian modelling: the 

prediction is accompanied by an estimate of its “precision”. 



1.2 Bayesian Modelling using Gaussian process 

 

This paper uses ETAS ASCMO platform for modeling, which relies on a specific class of 

Bayesian models denominated Gaussian process models. A Gaussian process is defined as a 

collection of random indexed variables (stochastic process) such that every finite collection of 

those random variables has a multivariate normal distribution. A key property of such process 

is that they can be completely determined by its mean function 𝑚(𝑥) and covariance function 

𝑘(𝑥, 𝑥′) [3] 

 

The random variables represent the value of the function 𝑓(𝑥) at location 𝑥: 

 

(1) 𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥’)), 𝑤ℎ𝑒𝑟𝑒 
 
(2) 𝑚(𝑥)  = 𝔼[𝑓(𝑥)] 
 

(3) 𝑘(𝑥, 𝑥′) =  𝔼[(𝑓(𝑥) −  𝑚(𝑥))(𝑓(𝑥′) −  𝑚(𝑥′))] 
 

1.2.1 – Covariance function properties and definition 

 

The modeling technic presented in this paper uses a Gaussian process distribution as the prior 

probability distribution. Therefore, the choice of the covariance function is crucial in 

synthesizing a suitable Gaussian process as it encodes our assumptions about the expected 

model behavior. ASCMO allows the usage of the traditional Squared Exponential (SE) or, 

alternatively, Matérn covariance functions. The proposed model on this paper employs the first, 

defined by equation (4) for two generic points 𝑝, 𝑞:  

 

(4) 𝑐𝑜𝑣 (𝑓(𝑥𝑝), 𝑓(𝑥𝑞)) = 𝑘(𝑥𝑝, 𝑥𝑞) = exp(−1
2
 |𝑥𝑝 − 𝑥𝑞|2) 

 
The squared exponential class of functions have the desirable properties of being infinitely 

differentiable and also stationery/isotropic as the covariance between two output points 

𝑓(𝑥𝑝), 𝑓(𝑥𝑞) is a function of |𝑥𝑝 − 𝑥𝑞| and therefore invariant to translations or any other “rigid 

motion” on the input space. They are also called radial basis functions since 𝑘(𝑥𝑝, 𝑥𝑞) is only 

a function of  𝑟 =  |𝑥𝑝 − 𝑥𝑞|. Its value is close to the unity for variables whose inputs are very 

close to each other and decreases with the distance. [3] 

 

Some free parameters called hyperparameters are included in the covariance function in order 

to account for different behavior and uncertainty level present in training data. The length-scale 

L divides the |𝑥𝑝 − 𝑥𝑞| term and represents, informally, how far you need to move in input 

space for the function values to become uncorrelated. On its turn, the signal variance 𝜎𝑓
2 is a 

pre-factor that controls the overall variance of the random function. Their combination results 

in: 

 

(5) 𝑐𝑜𝑣 (𝑓(𝑥𝑝), 𝑓(𝑥𝑞)) = 𝑘(𝑥𝑝, 𝑥𝑞) = 𝜎𝑓
2 exp (−1

2

|𝑥𝑝−𝑥𝑞|
2

𝐿2 ) , 𝑤ℎ𝑒𝑟𝑒 

 
L is the characteristic length scale  
𝜎𝑓

2 is the signal variance   



 

Additionally, for “real life” modelling applications, available data usually does not represent 

the exact value of the measured variable, but an approximation limited by the acquisition 

process accuracy. This is taken into account by assuming additive, independent and identically 

distributed Gaussian noise 𝜀 with variance 𝜎𝑛
2 acting over each training output:  

 

(6) 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀,𝑤ℎ𝑒𝑟𝑒 
  

(7) 𝜀 ~ 𝒩(0, 𝜎𝑛
2) 

 

The resulting covariation function for the output affected by Gaussian noise is: 

 

(8) 𝑐𝑜𝑣 (𝑦(𝑥𝑝), 𝑦(𝑥𝑞)) = 𝑘𝑦(𝑥𝑝, 𝑥𝑞) + 𝜎𝑛
2𝛿𝑝𝑞 = 𝜎𝑓

2 exp (−1
2

|𝑥𝑝−𝑥𝑞|
2

𝐿2 ) + 𝜎𝑛
2𝛿𝑝𝑞 , 𝑤ℎ𝑒𝑟𝑒   

 
𝜎𝑛

2 is the noise variance 

𝛿𝑝𝑞 is the Kronecker delta: {
1 𝑖𝑓 𝑝 = 𝑞
0 𝑖𝑓 𝑝 ≠ 𝑞

 

 
In order to illustrate the impact of varying the hyperparameters on model results and quality an 

example is presented: 
Figure 3 – Influence of hyperparameters on a GP Model 

 

           (𝐿, 𝜎𝑓 , 𝜎𝑛) = (1. ,1,0.1);                     (𝐿, 𝜎𝑓 , 𝜎𝑛) = (0.3, 1.08, 10−5)              (𝐿, 𝜎𝑓 , 𝜎𝑛) = (3.0, 1.16, 0.89)      

 
Source: (2006) - Gaussian Processes for Machine Learning, p. 20, Figure 2.5 

 

The leftmost panel presents an optimal model (blue line) with (𝐿, 𝜎𝑓 , 𝜎𝑛) = (1. ,1,0.1) and a 

95% confidence zone shaded in gray. In the middle panel, length-scale was reduced to 0.3 and 

the other parameters set by optimizing marginal likelihood. The model now has a lot more 

flexibility for “explaining” de data locally as it gives much less importance to the influence of 

distant points. This results in 𝜎𝑛 = 0.00005 , an extremely low value, as the model fits data by 

a quickly varying signal with low noise. On the other hand, the rightmost panel model has a 

higher length-scale of 3, and interprets data as a slowly varying signal with very high noise 

level 𝜎𝑛 = 0.89. The balance between these two descriptions is achieved by optimizing 

marginal likelihood while setting the covariance function parameters. 

 

1.2.2 – Posterior determination and model generation 

 

It is possible to construct a covariance matrix for a set of n training points applying equation 

(8) element-wise:  

 



(9) 𝑐𝑜𝑣(𝑦) = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼, 𝑤ℎ𝑒𝑟𝑒 

 
X = {(𝑥𝑖)|𝑖 =  1, . . . , 𝑛} 
y = {(𝑦𝑖)|𝑖 =  1, . . . , 𝑛} 

 
We define now a function 𝑓∗ = 𝑓(𝑥𝑖∗) which predicts outputs for a given 𝑛∗-dimensional test 

dataset{(𝑥𝑖∗)|𝑖 =  1, . . . , 𝑛∗}. The joint distribution of the training outputs 𝑦 and test outputs 𝑓∗, 

according to the previously defined prior and assuming mean 𝑚(𝑥) = 0 is: 

 

(10) [
𝑦
𝑓∗

] ~ 𝒩 (0, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]) 

 

At this point, creating the model corresponds to conditioning the joint Gaussian prior 

distribution on the observations: 𝑓∗|𝑋∗, 𝑋, 𝑦, a simple operation [3].This corresponds, in other 

words, to adding the “knowledge” provided by the data observed to the expected model 

characteristics defined by the covariance function. The result is a joint posterior distribution 

containing all the information needed for value prediction and also the associated model 

variance. It is convenient to define 𝑓∗̅ as the mean of the posteriori distribution, which is them 

assumed to correspond to the “most likely behavior” for the outputs giving the training inputs 

and the prior. 

 

(11) 𝑓∗|𝑋∗, 𝑋, 𝑦 ~ 𝒩 (𝑓∗̅, 𝑐𝑜𝑣( 𝑓∗)) , 𝑤ℎ𝑒𝑟𝑒 

 

(12) 𝑓∗̅ ≜ 𝐸[𝑓∗|𝑋∗, 𝑋, 𝑦] =  𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑦, 

 

(13) 𝑐𝑜𝑣( 𝑓∗) =  𝐾(𝑋∗, 𝑋∗) −  𝐾(𝑋∗, 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1 𝐾(𝑋, 𝑋∗) 

 

The next step is predicting an output 𝑓(̅𝑥∗)  at one specific test point 𝑥∗. The n dimensional 

vector of covariance between a test point and n training points is defined: 

 

(14) 𝑘(𝑥∗, 𝑋) = {𝑘(𝑥∗, 𝑥𝑖)|𝑖 =  1, . . . , 𝑛} = 𝑘∗  
 
 Applying equations (x) and (y) to test point 𝑥∗ using 𝑘∗notation results in: 

 

(15) 𝑓(̅𝑥∗) = 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼 )−1𝑦 

 

(16) 𝕍[𝑓(̅𝑥∗)] = 𝑘(𝑥∗, 𝑥∗) − 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼 )−1𝑘∗ 

 

Expanding equation (x) for in a matrix notation for more clarity results in: 

𝑓̅(𝑥∗)  =

(

 
 

𝑘(𝑥1, 𝑥∗)
⋮

𝑘(𝑥𝑖 , 𝑥∗)
⋮

𝑘(𝑥𝑛 , 𝑥∗))

 
 

×

[
 
 
 
 

(

 
 

1 ⋯
⋮ ⋱

𝑘(𝑥𝑖 , 𝑥1)
⋮

⋯ 𝑘(𝑥𝑛, 𝑥1)

⋱ ⋮
𝑘(𝑥1, 𝑥𝑖) ⋯ 1 ⋯ 𝑘(𝑥𝑛, 𝑥𝑖)

⋮ ⋱
𝑘(𝑥1, 𝑥𝑛) ⋯

⋮
𝑘(𝑥𝑖 , 𝑥𝑛)

⋱ ⋮
⋯ 1 )

 
 

+

(

 
 

𝜎𝑛
2 ⋯
⋮ ⋱

0
⋮

⋯ 0
⋱ ⋮

0 ⋯ 𝜎𝑛
2 ⋯ 0

⋮ ⋱
0 ⋯

0
⋱ ⋮

⋯ 𝜎𝑛
2)

 
 

]
 
 
 
 
−1

×

(

 
 

𝑦1

⋮
𝑦𝑖

⋮
𝑦𝑛)

 
 

 

 

ASCMO formulation rewrites equation (15) to present it as a linear combination of n kernel 

functions, each one centered on training point: 



 

(17) 𝑓(̅𝑥∗) =  ∑ 𝛼. 𝑘(𝑛
𝑖=1 𝑥𝑖 , 𝑥∗) 𝑤ℎ𝑒𝑟𝑒, 

 

  𝛼 = (𝐾 + 𝜎𝑛
2𝐼 )−1𝑦 

 

2. DATA GENERATION AND PRE-PROCESSING 

 

2.1 Tire force generation mechanisms overview 

 

Some of the most important components in vehicle design are the tires. Firstly, tires have to 

support the vehicle weight, aerodynamic forces, and road banking. Furthermore, they are the 

primary source of force and moment generation, which affects vehicle behavior in many 

different ways. A complete understanding of tire behavior and all the factors that affect it are 

fundamental to effectively provide comfort, control, and stability to the vehicle being designed. 

 

“Print” or “footprint” are the names given to the area of the tread of a tire that is in direct contact 

with the ground. The rubber patch contained in the print is either stuck to the ground or sliding 

across the road. Tire forces normally are generated by a combination of two factors: 

friction/sliding between the print and the road and elastic deformations on the tread and the 

structures of the tire due to rubber adhesion to the ground.  

 

A variety of mechanisms, including mechanical grip to the texture of the pavement and 

molecular adhesion to the surface, is responsible for sticking the rubber to the road. When the 

sliding condition is reached, the force generated continues to depend on vertical load, rubber 

and pavement characteristics and begins to be influenced by relative sliding velocity [4]. 

 

Due to the complexity of tire behavior, it is usual to analyze each one of its characteristics 

separately, keeping most factors fixed while varying only a few parameters. Lateral and 

longitudinal forces are commonly studied individually as the combined case is highly non-

linear and complex and, therefore, difficult to be understood and modeled. 

 

According to SAE J670, figure 4 - left, the lateral force originates at the center of the tire contact 

to the ground and it is perpendicular to the plane of the wheel. The standard also defines the 

slip angle, α, which has a fundamental connection to lateral force generation. Figure 4 - right 

shows a typical plot for lateral force versus slip angle for a racing tire. The curve was divided 

into three sections: elastic or linear, in which the print is stuck on the road and the lateral force 

is produced by elastic deformations; frictional, where the print is predominantly sliding across 

the pavement; transitional, where we have a combination of frictional and elastic effects. 

 
 

 

 

 

 

 

 

 

 

 

 

 



Figure 4 - SAE J670 standard; Typical lateral force versus slip angle plot 

 
Source: Milliken and Milliken, 1994 

 

SAE J670 also defines the slip ratio as SR=(Ω − Ω0)/Ω0, where Ω is the angular velocity of 

the driven wheel and Ω0 is the angular velocity of the free-rolling situation. Just like the lateral 

forces, longitudinal forces originate at the center of the tire contact to the pavement. The force 

direction, however, is indicated by the vector Fx on figure 4.  Typical plots for longitudinal 

forces are shown in figures 5. Traction and braking behavior are noticeably different due to 

subtle changes in the force generation mechanism. As in the lateral case, we have regions where 

each of the presented mechanisms – friction, elastic and transitional – predominates. 
 

Figure 5 - Traction and braking forces versus slip ratio 

 
Source: Milliken and Milliken, 1994 

 

In a combined operation case, when the tire is producing both lateral and longitudinal forces, 

the mechanisms involved end up competing against each other, especially when the 

friction/sliding factor becomes dominant. In other words, for high values of slip angle, the tire's 

longitudinal force generation capability is reduced, as the sliding condition induced by high slip 

angles hinders the generation of longitudinal force by the elastic mechanism. An analogous 

situation occurs for high values of slip ratio and lateral force. 

 

The main variables responsible for force generation on tires – slip angle and slip ratio -were 

briefly described above. However, there are many other factors that significantly affect tire 

behavior, altering both shape and size of the curves shown above. Temperature, inflation 



pressure, vertical load, camber, road characteristics, tire compound are some examples of which 

variables should be considered in the elaboration of models that aim to describe these 

phenomena. This large number of relevant parameters, associated with the complex interactions 

that occur between them, makes tire modeling a very difficult and challenging task. 
 

2.2 Tire Test Consortium installations and test procedure 
 

In order to feed the mathematical model described previously (section 1) with reliable data, tire 

test results from Formula SAE Tire Test Consortium (FSAE TTC) were used. FSAE TTC is a 

consortium designed to pool resources from Formula SAE teams and employ them in testing 

some of the most commonly used tires in the category. Testing facilities are provided by 

Calspan, a renowned company in the area. Accurate data on tire behavior is essential for the 

teams to develop their projects correctly, which makes the activity exerted by FSAE TTC 

fundamental to the development of the category and its participants. 

 

The machine used for FSAE TTC tire tests is shown in figure 6. When initially built, it was the 

world's first high speed, high load, six-component flat-belt tire testing machine and remains the 

most capable tire testing machine in the world. The capability at Calspan Tire Research Facility 

(TIRF) is recognized worldwide, as customers include all forms of professional auto racing 

(Formula 1, NASCAR, Champ Car/IRL, etc.) [5] 

 
Figure 6 - TIRF tire test machine, Calspan 

 
Source: www.ttcfsae.org 

 

Each test run measures over time a set of relevant variables to tire behavior, amongst which we 

can mention, slip angle, slip ratio, "road" speed, wheel rotational speed, temperature in different 

parts of the tire, etc. The test parameters were adjusted to FSAE conditions. Vertical load, 

camber, and inflation pressure are some examples.  

 

The test runs are divided into three main parts: cornering, drive/brake/combined and transient. 

In the cornering testing, the slip ratio is kept at zero, while the other parameters, including the 

http://www.ttcfsae.org/


slip angle, are varied in the stipulated range. In the drive/brake/combined test, the slip angle is 

held constant while the other parameters are swept. The term "combined" is used to describe 

simultaneous non-zero slip angles and slip ratios. Transient test includes simultaneous 

variations in parameters such as road speed and slip angle, aiming to observe the tire's transient 

response. 

 

2.3 Model inputs range and definition 

 

With the measured data in hand, some preliminary models were generated using different 

combinations of input and output variables. The most relevant parameters in tire performance 

analysis were chosen as inputs to build these models: inflation pressure, tire temperature, 

camber, vertical load, slip angle and slip ratio. The main objective was to predict lateral and 

longitudinal forces, which were chosen as output variables. 

 

Tire temperature, a very useful and important parameter in tire performance, was not considered 

in the final model. In the test data, it behaves more like an output variable - being a result of 

variations in the other input variables - than as an input and so was not included. 

 

Another important parameter is road speed. In the tests, some values of road speed (15, 25, 45 

mph) were used at specific moments, e.g. at transient and drive/brake conditions. However, 

most of the test data was acquired at 25 mph – chiefly the desired combined slip cases –, which 

made natural for us to choose only that velocity. 

 

The other five parameters are described below: 

 

 Inflation pressure (P): Air pressure inside the tire. In the tests, its value is kept constant at 

8 psi (55 kPa), 10 psi (69 kPa), 12 psi (83 kPa) or 14 psi (97 kPa). 

 

 Camber or Inclination Angle (IA): Inclination angle of wheel plane relative to road plane. 

The values used in the test were 0, 1, 2, 3 and 4 degrees. These are the most common camber 

angles used in Formula SAE cars. 

 

 Vertical Load (FZ): Vertical force applied to the tire. Most FSAE cars weigh between 170 

kg to 300 kg. Considering these range of weigh and the load transfer, the vertical load used 

in the test ranges from 200 N to 1100 N. 

 

 Slip Angle (SA): Defined by SAE J670, slip angles values ranged from -12 degree to 12 

degree, selected to ensure that the peak of lateral force was surpassed.  

 

 Slip Ratio (SR): The slip ratio measured in the test follows the Calspan definition. SR = 0 

does not imply FX = 0. Similar to what was done for the slip angle, slip ratio range was 

selected to surpass the longitudinal force peak, - 0.20 to 0.15. 

 

The raw data containing all these variables as a function of time has several parts that are not 

useful for the proposed combined slip model. Measurement errors and transient instabilities 

found in some more sensible variables, such as slip ratio, might spoil the mathematical model. 

Spring rate and transient tests contain information that will not be analyzed in this model. 

Additionally, warm up section presents undesired temperature variations. All of these unwanted 

points were excluded from both training and test dataset. 



2.4 Data reduction and training points definition 

 

In total 567.077 measure points were available in the complete dataset provided by FSAE TTC, 

which must initially be divided into two independent subsets: training data (used to train the 

model) or test data (used as validation). Based on previous experiences with complex models, 

ETAS suggests the usage of 200 to 2000 points as training data size for a 5-input model. To 

reduce data size from over 500.000 points to less than 2.000, ASCMO uses a random selection 

algorithm, ensuring there is no bias. 

 

In order to assess the balance between model quality and complexity, a sensitivity analysis was 

conducted over training data size. The model size was increased by 50 from an initial value of 

100 points up to 1200. The evaluation metric chosen was the root mean square of “test error”. 

It corresponds to the difference between model prediction and measured value (for all test data 

~500.000 points) for both lateral and longitudinal forces. Figure (7) shows the root mean square 

error versus training data size plot for lateral and longitudinal forces. 

 
Figure 7 - Root mean square error versus training data size 

 
Source: The authors – ETAS ASCMO Environment 

 

It is natural that more training points implies in a higher point density in the n-dimensional 

input space resulting in better models and smaller errors. On the other hand, every additional 

training point generates a new kernel function as described in equation (17) adding 

computational cost to model evaluation. Based on the results presented in figure 7, a set of 800 

training points was elected to guarantee the balance between model versatility and precision. 

The scatter plots in the figures (8) to (12) illustrate, for each variable, a comparison between 

the original distribution (test data plus training data) and the 800 points training data: 

 
Figure 8 - Longitudinal force vs slip ratio original and reduced scatter plots 

 
Data: “Formula SAE Tire Test Consortium (FSAE TTC)” and the “Calspan Tire Research Facility (TIRF)” 



Figure 9 – Camber vs pressure original and reduced scatter plots 

 
Data: “Formula SAE Tire Test Consortium (FSAE TTC)” and the “Calspan Tire Research Facility (TIRF)” 

 

Figure 10 - Lateral force vs vertical load original and reduced scatter plots 

 
Data: “Formula SAE Tire Test Consortium (FSAE TTC)” and the “Calspan Tire Research Facility (TIRF)” 

 
Figure 11 - Lateral force vs slip angle original and reduced scatter plots 

 
Data: “Formula SAE Tire Test Consortium (FSAE TTC)” and the “Calspan Tire Research Facility (TIRF)” 

 
Figure 12 - Lateral force vs slip ratio original and reduced scatter plots 

 
Data: “Formula SAE Tire Test Consortium (FSAE TTC)” and the “Calspan Tire Research Facility (TIRF)” 

 



3. MODEL RESULTS AND ANALYSIS 

 

3.1 Preliminary model quality analysis 

 

A multivariate Gaussian process regression model was created in ETAS ASCMO platform 

using the 800 training points selected. Figure 13 shows its user interface for illustrational 

purposes. The inputs are present in the lower bar and the outputs with its respective standard 

deviation values on the left bar. Black lines represent model predictions while the dashed lines 

show the size of a standard deviation. Finally, the gray dots are all the training points used to 

generate the model projected over the hyperplane defined by the current set of inputs. 

 
Figure 13 – Leave-One-Out plot for modeled lateral and longitudinal forces 

 
Source: The authors – ETAS ASCMO Environment 

 

Before explicitly comparing the results to measurement data, global model quality was 

evaluated using the coefficient of determination 𝑅2 and the root mean square error 𝑅𝑀𝑆𝐸 as 

metrics: 

 

(18) 𝑅𝑀𝑆𝐸 = √
𝑆𝑆𝑅

𝑛
 

 

(19) 𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
, 𝑤ℎ𝑒𝑟𝑒 

 

 𝑆𝑆𝑅 =  ∑ (𝑥𝑖,𝑝𝑟𝑒𝑑 − 𝑥𝑖,𝑚𝑒𝑎𝑠)
2𝑛

𝑖=1   - sum of squared residuals 

 𝑆𝑆𝑇 =  ∑ (𝑥𝑖,𝑚𝑒𝑎𝑠 − 𝑥𝑚𝑒𝑎𝑠̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1   - total sum of squares 

 𝑛 = number of data points (training or test) under analysis 

 



The RMSE describes the variance to be expected (standard deviation) about the model: A 

second measurement falls less than 1 RMSE from the model prediction with a probability of 

68% (with 95.5% < 2 RMSE, 99.7% < 3 RMSE, etc.). The coefficient of determination, 𝑅2, is 

derived from the comparison of the variance that remains after the model training (SSR) with 

the variance concerning the mean value of all measuring data (SST) [6]. 

 

ETAS [6] suggests the following value ranges for evaluating 𝑅2: 

 

 0.0 < 𝑅2 < 0.5 – The model is not suitable for reliable predictions. 

 

 0.6 < 𝑅2 < 0.8 – The model is suited for qualitative predictions. 

 

 0.9 < 𝑅2 < 1.0 – The model is very good and suitable for quantitative predictions. 
 

ETAS [6] also comments on RMSE: 

 

 At best, the RMSE can be as good as the experimental repeatability. 

 

 Despite a good 𝑅2, the RMSE can be too low, e.g. in case of a very large variation range of 

the modeled variable. 

 

 Despite a low 𝑅2, the RMSE can be good enough, e.g. if the modeled variable features only 

a minor variance over the input parameters of the model. 

 

Gaussian process regression is particularly suited for leave-one-out cross validation techniques. 

In the leave-one-out method (LOO), n models, each with n-1 training data, are formed. 

Afterwards, the model error of the one data point that was not involved in the model training is 

determined [6]. ASCMO implements this algorithm automatically. The results are presented in 

figure 14: 
Figure 14 – Leave-One-Out plot for modelled lateral and longitudinal forces 

 
Source: The authors – ETAS ASCMO Environment 

 



The 𝑅2 coefficient was found to be extremely close to the unity, indicating a possibly high-

quality model. The calculated RMSE, lower than 100, was judged adequate in face of 

longitudinal and lateral forces expected magnitude. 

 

The same plot was generated comparing the model predictions with test data issuing good 

results: 𝑅2 ≅ 1 and a low RMSE value: 

 
Figure 15 –Model prediction versus measured data plot for lateral and longitudinal forces 

 
Source: The authors – ETAS ASCMO Environment 

 

3.2 Comparison with measured data 

 

In order to evaluate the validity and accuracy of the obtained model, some specific situations 

were chosen for the comparison between the prediction and the empirically measured data. Two 

classical and widely used plots for tire behavior analysis were used: Lateral Force versus Slip 

Angle and Longitudinal Force versus Slip Ratio, for multiple load values. 

 

The first to be analyzed was the Lateral Force vs Slip Angle plot. The following procedure was 

adopted for the selection of the measured comparison points: 

 

 The Slip Angle interval (-12° to 12°) was uniformly divided into thirteen points; 

 

 Pressure and Camber were kept in 12 psi and 0°, respectively; 

 

 For each of the five Vertical Load regions used by FSAE TTC, shown in figure 16, an 

average value was extracted. 

 

 Lateral Force values were obtained by averages made for all measure data points that met 

the combinations of parameters mentioned above. 

 



Thus, a total of 65 measured operating points was obtained. Using the same exact conditions, 

the five curves shown in the figure 16, below, were generated by the predictive model. 

Comparing the predicted values with those measured, the accuracy of the model is evident. 

 
Figure 16 – Lateral Force versus Slip Angle for multiple loads – IA = 0 deg, P = 12lbs 

 
A similar analysis to the previous case was made using practically the same conditions, 

changing only the camber value from 0° to 4°.  This is an aggressive and unusual value for the 

tire used, which could cause difficulties to the mathematical model. The figure 17 shows a 

comparison between the measured and predicted data. It is possible to see that the model 

remains faithful to the test data, although it presents a slightly bigger error due to an unusual 

condition being analyzed. 

 
Figure 17 – Lateral Force versus Slip Angle for multiple loads – IA = 4 deg, P = 12lbs 
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The Longitudinal Force versus Slip Ratio plot analysis adopted the same procedure used for 

Lateral Force. However, in this case, the Slip Ratio was discretized at 13 points, in a range of 

0,12 to -0,20. Camber, Pressure and Slip Angle were kept constant at 0°, 12 psi and 0°, 

respectively. Even though the Vertical Loads were chosen following the same procedures, the 

values found for the averages were slightly different from the first case.  

 

Figure 18 shows a comparison between the measured and predicted data. In spite of presenting 

a slightly larger error, the model still closely resembles the real data. It is worth to mention that, 

as explained in section 2.3, the definition of Calspan for Slip Ratio is being used, which causes 

the asymmetry in relation to the vertical axis. 

 
Figure 18 – Longitudinal Force versus Slip Ratio for multiple loads – IA = 0 deg, P = 12lbs 

 
All curves shown above represent predicted results for tire behavior in the determined 

conditions. It is important to highlight the independence between test data and training data: no 

points used to train the model were present in the data used for validation.  

 

Considering the enormous amount of measurement points available in test dataset and the 

reduced model evaluation time, the authors believe many other techniques could be devised and 

employed to validate de model systemically. 

 

3.3 Friction Ellipse  

 

Finally, a tire friction ellipse was constructed with model predictions. The external line on 

figure 19 is the limit line, which represents the maximum combined pair of forces possible to 

be generated by the tire. It was determined using ASCMO optimization algorithms, varying all 

input parameters within the model and them generating a Pareto frontier of optimal 

combinations for Lateral Force and Longitudinal Force. The remaining lines belong to an 

arbitrarily chosen operating condition that is common for FSAE vehicles: Vertical Load = 1150 

N; Pressure = 12 psi; Camber = 0º; V = 25 mph. With the remaining input parameters fixed, 

Slip Angle is kept constant while Slip Ratio varies and vice versa. The procedure can be easily 

repeated for any other operating condition.  
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Figure 19 – Friction Ellipse – Limit & Fz = 1150N, IA = 0 deg, P = 12 lbs, V = 25mph 
 

 
 



CONCLUSION 

 

A Gaussian process model for tires in combined slip case was successfully elaborated using 

ETAS ASCMO platform combined with data from Formula SAE Tire Test Consortium 

generated at Calspan testing facility.  

 

The mathematical framework used by ASCMO was presented in details and some of its aspects 

were highlighted: the model is continuous, it has an internal quality metric (simple local 

standard deviation estimation) and, although computationally consuming to train, is fast while 

making predictions as the outputs are described as a finite sum of kernel functions. Furthermore, 

once the model has been trained, any arbitrary combination of the available inputs can be 

analyzed without the need of a new training process. 

 

The model was generated using 800 from an available universe 567.077 points. Its quality was 

initially evaluated via cross-validation using leave-one-out methods with good results for the 

root mean square error (RMSE) and the coefficient of determination 𝑅2. These parameters were 

as well determined for test dataset (all data minus training data) with same satisfactory results. 

 

Finally, the model was compared to measured points in three specific cases comprising 

combined slip angle and slip ratio interactions at different loads. Two different camber angles 

were tested in order to evaluate the model capabilities to cope with an arbitrary change in one 

of its input parameters. The results were found to be satisfactory. 

 

 Lateral Force versus Slip Angle for multiple loads – IA = 0 deg, P = 12lbs 

 Lateral Force versus Slip Angle for multiple loads – IA = 4 deg, P = 12lbs 

 Longitudinal Force versus Slip Ratio for multiple loads – IA = 0 deg, P = 12lbs 

 

To sum up, the method employed has shown itself to be efficient. From a simple analysis, such 

as Lateral Force vs Slip Angle plots, to complex evaluations, such as creating a friction ellipse 

for a specific set of input parameters, the model has worked well.  

 

Amongst other modeling methods, both empirical and analytical, the method presented here 

gathers excellent adherence to the measured data, relative ease to obtaining the model and 

simplicity of use. Even analysis involving simultaneous variations on the various input 

parameters of the tires, which might be very complex to do have been successfully executed. 

Additional investigations for predictions on more complex parameters as tire moments and 

spring rate should be carried in the future in order to verify Gaussian process regression 

suitability for modelling a broader range of tire behavior. 
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