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ABSTRACT 

One of the requirements of diesel engines certification 

process is that the engine do not exceed the specific 

particulate emissions limit in cycle (𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒). To 

calculate the 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒, a manual process is required. 

The total amount of mass impregnated in the particulate filter 

is obtained by weighting the filter on a balance after each 

test. Therefore, it is not possible to obtain it without human 

intervention. In order to allow test rigs to operate in 

automatic mode, without an operator conducting the tests, an 

automatic way of calculating 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 is required. 

Thus, the aim of this work is to develop a 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝐶𝑦𝑐𝑙𝑒 

prediction model that does not require human intervention. 

For this, a machine learning approach, based on the random 

forests algorithm, is used. Data collected from 2012 to 2019 

from three test cells of 11 and 13 liters diesel engines of an 

automotive company, summing up 2500 valid test results, 

are used as input. This data are employed to train the 

algorithm and build a prediction model. The prediction 

model is then validated using another 72 validation tests 

results. The accuracy of the final model considering a 

confidence interval of 95% is ±3,00 mg/kWh for the 

European Transient Cycle, and ±1,96 mg/kWh for the 

European Stationary Cycle.  

INTRODUCTION 

Vehicle manufactures must meet several requirements 

to get the permission to sell their products, for example, 

safety, environmental or weight requirements. One of the 

most regulated markets is the diesel vehicles. Today, diesel 

engines are preferred in several industries because of their 

higher fuel economy and better efficiency [1]. However, the 

exhaust emissions of these engines have been adversely 

affecting humanity and habitat for many years [2]. Due to 

this reason, restricted regulations are imposed to diesel 

engine vehicle manufactures. 

During the engine development and certification 

process, a list of parameters is verified and must comply with 

legal requirements. In Brazil, the current  environmental 

legislation that regulates emissions in heavy diesel vehicles 

is CONAMA Resolution n. 403 [3]. According to this 

regulation, emissions limit for heavy duty diesel engines 

must be in accordance with Table 1. Two types of tests must 

be carried out [3]: the European Stationary Cycle (ESC) and 

the European Transient Cycle (ETC). In ESC test, the engine 

is tested on a dynamometer over a sequence of steady-state 

modes [4]. In ETC test, three different driving conditions are 

represented: urban, rural and motorway driving [4]. 

Table 1 – Emission limits for heavy-duty diesel according 

to CONAMA Resolution n. 403 [3]. 

Test 
CO THC NMHC NOx PM Smoke 

g/kWh m-1 

ESC 1.5 0.46 - 2.0 0.02 0.5 

ETC 4.0 - 0.55 2.0 0.03 - 
CO = carbon monoxide (g/kWh) 
THC = total hydrocarbons (g/kWh) 

NMHC = non methane hydrocarbons (g/kWh) 

NOx = nitrogen oxides (g/kWh) 
PM = particulate matter (g/kWh) 

Smoke = Smoke Opacity (m-1) 

In engine test rigs, usually as soon as the test cycle 

(ESC or ETC) is over, the results for CO, THC, NHMC NOx 

and Smoke are calculated automatically. All the automation 

to get these results is already developed and several suppliers 

provide equipment that contributes to this. The only 

parameter that requires human intervention is the particulate 

matter measurement (PM or 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒). Due to this 

reason, usually an operator is required to run the tests, which 

is not a desired condition because it involves additional costs 

and the manual tasks after each test reduces the efficiency of 

the laboratory.  

In order to have the particulate mass after a test cycle, 

a complex system is necessary. It is a particulate sampling 

system based on the partial flow method and variable 

dilution. It satisfies the specifications reported in all main 

regulations for the homologation of diesel engines from light 

up to heavy duty, both on-road and off-road. Figure 1 shows 

a scheme of how it works [5]. 

https://www.linguee.com.br/ingles-portugues/traducao/environment+legislation.html
https://www.linguee.com.br/ingles-portugues/traducao/environment+legislation.html


AEA – Brazilian Society of Automotive Engineering - SIMEA 2021 

2 

Figure 1- PSS-20 working scheme [5]. 

Before starting and after finishing the test, the particle 

filter must be weighted. Figure 2 shows how two particle 

filters at different positions look like after an ETC cycle. One 

of the represented filters is located at the engine out and the 

other after the Diesel Particulate Filter (DPF). 

Figure 2 - Filters with PM samples [5]. 

By definition, “diesel particulates” are measured as any 

material deposited on the filter from the dilute exhaust gases 

sampled. It should be remembered that, because of this 

definition, diesel particulate matter includes not only solids 

but also liquid material which would condense in the form of 

mist or droplets at the above temperature, such as sulphuric 

acid or high-boiling hydrocarbons [6]. 

Figure 3 shows the composition of diesel particulate 

matter for a heavy-duty diesel engine submitted to a US FTP 

transient cycle, 500 ppm of maximum sulphur in fuel. 

Figure 3 - Composition of diesel particulate matter [6]. 

The total mass impregnated on the filter of particulate 

measurement system must be weighted after a test cycle, 

which value is used to calculate the 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒, 

according to: 

𝑆𝑝𝑒𝑐𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 =
𝐹𝑙𝑤𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 × 3600

𝑃𝑤𝑟_𝐶𝑦𝑐𝑙𝑒𝑁𝑒𝑡 
(1) 

where 𝑃𝑤𝑟_𝐶𝑦𝑐𝑙𝑒𝑁𝑒𝑡 (kWh) is the measured cycle net 

power and 𝐹𝑙𝑤_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 (mg/s) is the cycle mass flow of 

particulates from microtunnel which is obtained by: 

𝐹𝑙𝑤𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒

=  
𝑀𝑎𝑃𝑎𝑟𝑡𝑓𝑇𝑜𝑡 × ∑ 𝐹𝑙𝑤_𝐸𝑞𝑣𝐶𝑉𝑆 × 𝑊𝐹 × 1000 

∑ 𝑀𝑎𝑃𝑎𝑟𝑡𝐹𝑖𝑙𝑡𝑒𝑟

(2) 

where 𝑀𝑎_𝑃𝑎𝑟𝑡𝑓_𝑇𝑜𝑡 (mg) is the amount of particulate 

mass on the particulate filter, 𝑀𝑎𝑃𝑎𝑟𝑡𝐹𝑖𝑙𝑡𝑒𝑟 (g) is the 

particulate filter gas mass, 𝑊𝐹 is the regulation weighting 

factor (which depends on the legislation and test cycle) and 

𝐹𝑙𝑤_𝐸𝑞𝑣𝐶𝑉𝑆 (kg/s) is the microtunnel diluted flow and can 

be calculated by: 

𝐹𝑙𝑤_𝐸𝑞𝑣𝐶𝑉𝑆 =
𝐹𝑙𝑤_𝐸𝑥ℎ𝑎𝑢𝑠𝑡 × 𝑀𝑎𝑃𝑎𝑟𝑡𝐹𝑖𝑙𝑡𝑒𝑟

𝑀𝑎𝑃𝑎𝑟𝑡𝐹𝑖𝑙𝑡𝑒𝑟 − 𝑀𝑎𝐷𝑖𝑙𝐴𝑖𝑟
(3) 

where 𝑀𝑎𝐷𝑖𝑙𝐴𝑖𝑟 (g) is the dilution air mass and 

𝐹𝑙𝑤_𝐸𝑥ℎ𝑎𝑢𝑠𝑡 is the exhaust flow. 

As shown, even if the 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑙𝑒 calculation 

process is automated, human intervention is still required to 

weigh the filter.  

In such context, machine learning algorithms have 

been the subject of several analyzes to reduce manual labor 

and predict parameters. In reference [7], the authors build an 

artificial neural networks (ANN) based on data of tests of the 

parameters NOx, HC, CO and smoke. The R2 value between 

test and train data are 0.9771, 0.8663, 0.8917 and 0.9858 

respectively. In [8], the authors generate a model to predict 
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NOx using Support Vector Machines. NOx emissions were 

predicted with a reasonably good accuracy for both training 

and testing datasets. Furthermore, the squared correlation 

coefficient of the model was 0.9905 for the training dataset 

and 0.9768 for the testing dataset. Besides, it was also found 

that the relative errors of more than 95% for the training data 

samples and 90% of the test data samples lied within 10%. 

In reference [9], the authors build an ANN model to predict 

NOx and reach an estimation error of all test between the 

error band within ±10% range. 

Although there are several works presenting examples 

of models for predicting engine emissions, most of them do 

not include PM prediction and, when it is considered, usually 

is for a specific application and in  repeated controlled 

condition [10, 11]. 

In a less controlled scenario, results of tests show a 

high variation of PM measurement. This parameter is 

affected by several variables, which can make tough to build 

a robust forecasting model when different variables are 

considered, for example, different laboratories, engine and 

fuel. This is what is generally found in industry [12]. 

In this case, an option would be to build a predict model 

using random forests algorithm, it is a machine learning 

technique that builds an ensemble of classification (or 

regression) trees. With this technique, no precise information 

is required about the form of the relationship between 

response and input variables [13].  

Besides that, it is a powerful machine learning 

algorithm. For a better understanding, it is necessary to know 

how decision tree algorithm works. Decision tree is an 

approach of a set of predefined conditional rules, which 

actions and decisions to be made are based on the path (tree) 

that is being constructed as binary conditions are faced [14]. 

The decision tree algorithm first splits the training set 

in two subsets using a single feature 𝑘 and a threshold 𝑡𝑘, for

example, in one subset all flowers that petal length ≤ 2.45 cm 

(Figure 4). How does it choose 𝑘 and 𝑡𝑘? It searches for the

pair (𝑘, 𝑡𝑘) that produces the purest subsets (weighted by

their size). The cost function to be minimized is given by 

[14]: 

(𝑘, 𝑡𝑘) =  
𝑚𝑙𝑒𝑓𝑡

𝑚
× 𝐺𝑙𝑒𝑓𝑡 +

𝑚𝑟𝑖𝑔ℎ𝑡

𝑚
× 𝐺𝑟𝑖𝑔ℎ𝑡 (4) 

It is named cost function for classification. The 𝐺 

measures the impurity of the left/right subset, the 𝑚 is the 

number of instances in the left/right subset. 

Once the training set has successfully split in two, the 

subsets are split using the same logic, then the sub subsets 

and so on, recursively. It stops recursing once it reaches the 

maximum depth (defined by the max_depth 

hyperparameter), or if it cannot find a split that will reduce 

impurity [14]. Figure 4 shows an example of a small decision 

tree. 

Figure 4 - Decision tree example [14]. 

A simple way to define the random forests algorithm is 

a lot of decision trees considered in order to predict a value. 

For example, a group of decision tree classifiers can be 

trained, each one in a different random subset of the training 

set. To make predictions, it is necessary  just obtain the 

predictions of all individual trees, then predict the class that 

gets the most votes in case of categorical answers, or the 

mean value of all trees in case of numerical values. Such an 

ensemble of decision trees is called a random forests [14]. 

As the majority of machine learning algorithms, 

random forests have some parameter, called 

hyperparameters, which should be properly set up to better 

perform the optimization. Some examples are: the number of 

trees, maximum tree depth, maximum features and others. 

The use of incorrect hyperparameter values can generate 

overfitting or underfitting. In order to find the best 

hyperparameter combination, the user can run a grid search 

function to obtain the optimum values for it, therefore the 

optimum values for the model [14]. 

PURPOSE – This research aims to develop an 

automatic way to obtain the parameter 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 after 

tests on diesel engines. To that end, random forests algorithm 

is employed. 

MATERIALS AND METHODOLOGY 

The research object took place in a truck manufacturer 

located in Brazil. This company has three engine laboratories 

with dynamometers and all equipment necessary to carry out 

tests in accordance with the requirements of EUVI 
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legislation established in the European Regulation 595/2009 

[15]. 

Several engines of 11, 13 and 16 litters from this truck 

manufacturer company were included in the analysis. All of 

them comply with CONAMA Resolution n. 403 [3]. 

Two tools were developed to perform the analysis: (i) 

a Visual Basic script to collect data from the files and read 

the test parameters and (ii) another script, developed in 

Python, which the main task is to create and run the random 

forests algorithm. In order to achieve the proposed objective, 

the methodology followed the steps: 

1. Data compiled from all tests performed in test rigs

from 2012 to 2019 were collected. Database

included results from the three laboratories and 84

parameters were initially considered. Average

engine torque, average exhaust flow, air humidity

are some examples. The total number of tests in the

database was 24000.

2. The following filters were applied to select the

database to be used: (i) only engines that comply the

CONAMA Resolution n. 403 [3]; (ii) only 11 and

13 litter engine sizes; (iii) only ESC and ETC tests.

3. All testes that 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 was close to zero,

blank or negative value were removed from

database.

4. Parameters that had more than 25% blanks data or

bad results were eliminated. The remaining

parameters were 46 and around 2500 tests results

remained as useful data.

5. Parameters that were not representative for the

analysis were excluded. Initially, non-numeric

parameters were removed. Next, dot plot graphs of

“𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 X Variables” were generated to

perform a visual check of the quality of data. The

aim of this step was avoiding to input bad data to

train the model.

6. Outliers from the remaining variables were

excluded.

7. Database was formatted for the reading pattern of

Python language. After that, a Python script was

executed using all variables left from item 5. The

algorithm performs the following tasks:

a. Scale features to optimize the algorithm.

With few exceptions, machine learning

algorithms underperform when the input

numerical attributes have different scales

[14].

b. Split data in two clusters, ESC and ETC.

ESC and ETC are very different in many

aspects, due to that, the analysis was

performed  separately for each test type.

c. Some tests have parameters that do not

have any value associated, the script fill

the values with the mean value of the

parameter to avoid it´s interference in

result.

d. Split the ESC and ETC clusters in training

data (80%) and test data (20%).

e. Run the training of the random forests and

plot the mean square error and the mean

error.

f. Plot the learning curve of the algorithm.

g. Run grid search function to find the best

hyperparameter combination.

8. Parameter importance matrix is then plotted to

define the parameters that would be used in the final

analysis. Which are: Specific fuel consumption in a

cycle (g/kWh), Average CO concentration before

aftertreatment system (ppm), Average CO flow

before aftertreatment (mg/s), specific CO emissions

before aftertreatment system in the cycle

(mg/kWh), Average CO2 flow after the

aftertreatment system (mg/s), specific CO2

emissions after aftertreatment system in the cycle

(mg/kWh), Average NOx concentration before

aftertreatment system (ppm), specific NOx

emissions before aftertreatment system in the cycle

(mg/kWh), smoke opacity (%).

The parameter importance matrix does not present 

the variables that have the highest correlation 

coefficient, but, if one looks at a single decision 

tree, important features are likely to appear closer 

to the root of the tree. In other words, these 

parameters are the ones that most affect the final 

answer of the algorithm.  

9. Python script was executed again using the nine

most important parameters and mean error and root

mean square error were compared.

10. Hyperparameter grid search was performed to find

the optimal parameter combination.

11. Python script was executed again using the optimal

parameter combination and mean error and mean

square error were again verified.

https://www.linguee.com/english-portuguese/translation/separately.html
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12. After the random forest model was well trained,

new data were collected from new tests that were

not part of the initial training set, this new set is

named validation set and is composed by 72 new

tests (ESC or ETC) performed in engines that

follow CONAMA 403 resolution [3], 11, 13 and 16

litter. The 16 litter engines were included in the

analysis to increase the range of application of the

model and verify the applicability of the model to

this engine family too.

Thereafter, the results obtained by the random 

forest predict model were compared with those 

observed from the validation set to check model 

accuracy. 

RESULTS 

Before starting the analysis, it was necessary to 

understand what an acceptable error for the model would be. 

In this regard, a previous research was performed to 

understand the reproducibility of 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 between 

the three different test cells. Several tests were carried on 

with the same reference engine, same fuel, same fuel specs 

but not necessary the same fuel source, and the boundary 

conditions were slightly different between test cells. The 

results are shown in Table 2. 

Table 2 – PM reproducibility in truck manufacturer 

laboratories. 

Test Type Number of tests 

performed 

PM reproducibility 

ESC 56 14.47% 

ETC 57 12.65% 

This means that considering only test rigs deviations, 

the 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 presented a deviation of ±14.47% for 

ESC tests and ±12.65% for ETC tests when compared to the 

mean value. 

After the final training of the random forests model, the 

learning curves of the algorithm were plotted in order to 

understand if the number of inputs available was enough. 

Thus, the mean square error (MSE) between random forests 

model versus test data and random forests model versus 

training data was plotted, this was done for ESC and ETC 

models. 

Figure 5 - Learning curves for random forests model - ESC. 

Figure 6 - Learning curves for random forests - ETC. 

As represented in Figures 5 and 6, MSE curve is almost 

flat after 500 samples for ESC and ETC, even though the 

amount of data available for each test type was around 1250 

samples the algorithm was already well trained with 500 

samples. 

Furthermore, it is possible to notice that MSE is under 

one for both clusters (ESC and ETC) and, as expected, the 

MSE for the training data is lower than that for the test data. 

ESC RESULTS – Among the tests belonging to the 

validation set, 42 of them are ESC tests. In Figure 7 is 

possible to see a comparison between the results of random 

forests model and the observed results of validation set. The 

continuous line with dots represents the observed value and 

the dashed line with triangles is the estimated value by the 

model. Thus, it is possible to have an idea of the model 

accuracy. The mean of the observed values is 7.51 mg/kWh. 
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Figure 7 - Predicted and observed 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 for 

ESC. 

Figure 8 shows the distribution of the error, it is 

possible to notice the most of errors are between -1.293 

mg/kWh and 1.142 mg/kWh. The mean error between 

predicted and observed is 0.8 mg/kWh, the error standard 

deviation is 0.57 mg/kWh. Therefore, if we consider that 

error follows a normal distribution, 95% of the errors is 

between ±1.96. This means that for 95% of accuracy the 

tolerance range will be ±1.96.  

Figure 8 - ESC error distribution. 

ETC RESULTS – Among the tests belonging to the 

validation set, 30 of them are ETC tests. In Figure 9 is 

possible to see a comparison between the results of random 

forests model and the results obtained in tests is made. The 

continuous line with dots represents the observed value and 

the dashed line with triangles is the estimated value by the 

model. Also, upper and lower limits considering an interval 

of confidence is represented. This way is possible to have an 

idea of the model accuracy. The mean value of the observed 

results is 15.93 mg/kWh 

Figure 9 - Predicted and observed 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑐𝑙𝑒 for 

ETC. 

Figure 10 shows the distribution of the error. It is 

possible to notice the most of errors are between -1.143 

mg/kWh and 1.599 mg/kWh. The mean error between 

predicted and observed is 1.25 mg/kWh and the standard 

deviation error is 0.9 mg/kWh. Therefore, if we consider that 

the error follows a normal distribution, 95% of the error is 

between ±3. This means that for 95% of accuracy, the 

tolerance range will be ±3.  

Figure 10 - ETC error distribution. 

DISCUSSION 

The errors observed in the random forests model are 

higher than the emissions prediction models built in [7-11]. 

Several reasons may have contributed to this:  the references 

analyses were carried out in a controlled environment, the 

same laboratory, the same engine, tests running in sequence, 

while this research was performed in a wide field, three 

laboratories were considered, different engines, tests took 

place on different days. 

A fairer comparison to the random forests models 

generated in this research would be the analysis of 
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reproducibility that has results represented in Table 2. In this 

analysis, the boundary conditions are more similar to those 

used to build the database of this research. 

It is also possible to notice that the results in Table 2 

has a greater deviation than the reference works [7-11], the 

reason for this is probably because several items can impact 

the result of 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑐𝑦𝑙𝑒: Exhaust gas flow rate to 

equipment; engine production of PM (surely not perfectly 

repeatable); engine service equipment (dyno, cooling water 

and fuel temperature, combustion air conditioning); power 

measurement (speed and torque); exhaust gas flow rate 

measurement (or combustion air flow rate and fuel flow 

rate); sampling filters conditioning chamber (temperature 

and humidity stability and cleanliness); micro-balance 

accuracy and stability, and when adding up more items like: 

different laboratories, different days, different measuring 

equipment, for sure a larger deviation will occur. 

Considering this scenario, it was considered a more 

realist target for the model to achieve the same errors shown 

in Table 2. This means that, if the random forest model is 

perfect, the minimum error for the ESC tests would be given 

by: 

error =  ±mean observed value in ESC validation data 
× 0.1447 

(5) 

Where the mean observed value in ESC validation data 

is 7.51. This way, the minimal error is ±1.08 mg/kWh. 

Same analysis can be performed for ETC tests, target error is 

given by: 

error = ±mean observed value in ETC validation data 
× 0.1265 

(6) 

Where the mean observed value in ESC validation data 

is 15.93. This way, the minimal expected error is ±2.02 

mg/kWh. 

Errors presented by the random forests model when 

compared to the observed values in validation data are ±1.96 

mg/kWh for ESC and ±3 mg/kWh for ETC tests. Therefore, 

the difference between the minimal expected error and the 

error reached is less than 1mg/kWh for ESC and ETC 

models. 

As already mentioned, random forests algorithm is 

recommended when no precise information about the form 

of the relationship between response and input variables is 

available. This is exactly the situation faced in the analyses, 

and the difference between the minimal expected error and 

the observed error (less than 1mg/kWh) support this 

statement. 

CONCLUSION 

The amount of particulate mass of a test cycle is 

impacted by different variables. Predicting the 

𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝐶𝑦𝑐𝑙𝑒 value requires a robust method for 

correlating the best variables. Considering the results 

obtained and the corresponding errors, the random forests 

algorithm seems to be an appropriate method for this 

analysis. 

The 𝑆𝑝𝑒𝑐_𝑃𝑎𝑟𝑡𝑦𝐶𝑦𝑐𝑙𝑒 prediction model does not 

replace the traditional way of working. It is still be necessary 

to weigh the filter to obtain the amount of impregnated mass. 

However, it can be used in cases where no operator can 

conduct the test or when measuring equipment is 

unavailable. Another application would be when it is 

necessary to investigate whether the particulate 

measurement equipment is working well, comparing the 

observer results with the prediction of the model. 
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