
AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

​Deep Learning in Low Cost Embedded Systems

​Bruno Bueno Furquim
Luiz Antonio Celiberto Junior

Universidade Federal do ABC.

Edson Coaru Kitani
Faculdade de Tecnologia de Santo André.

ABSTRACT

In the topic of autonomous (electro) mobility and
embedded vehicle electronics, object detection becomes
inevitable. Yours importance is significant, because it
covers other sectors such as manufacturing, agriculture and
administrative processes. However, the image processing
procedure suffers from the complexity of the training
process, being necessary to pay attention to the hardware
requirements. Given this, the paper is dedicated to
presenting questions and manipulations of microprocessors,
to make not only able to implement learning methods, but
also effective, reaching higher levels of abstraction in low
cost and high accessibility embedded systems. Thus, will be
shown with the results generated, the best pre-trained deep
learning algorithms available on the internet and effective
processing techniques.

To avoid using a graphics processing unit - GPU, a
Raspberry Pi microprocessor will be used, due to the
processing capacity, cost and other factors. That is, it will
be possible to show the possibility or at least the limits, to
work with elements responsible for vehicle autonomy,
through easily accessible resources and reduced cost.

INTRODUCTION

Object detection has been good enough for a variety
of applications (although image segmentation is a much
more accurate result, it suffers from the complexity of
creating training data. Usually takes a human note 12x
more time to segment an image than to draw bounding
boxes this is more anecdotal and lacks a source) [9].
Furthermore, after detecting objects, it is possible to
segment the bounding box object separately.

Using object detection: Object detection is of
significant importance and has been used in several sectors.
Some of the examples are mentioned below:

-Manufacturing;
-Agriculture;
-Augmented Reality;
-Automation in the Work Environment;
-Autonomous Vehicles; [1]

Figure 1. Benefits of RPA [3]

Object identification can be used to answer a
variety of questions. These are the broad categories:

-Is an object present in my image or not? for example, there
is an intruder in my house;

-Where is an object in the image? For example, when a car
is trying to navigate the world, it is important to know
where an object is.

-How many objects are there in an image? Object detection
is one of the most efficient ways to count objects. For
example, how many boxes in a rack within a warehouse;

(Allowed reproduction with source mention: AEA – Simpósio Internacional de Engenharia Automotiva – SIMEA 2021 – São Paulo, Brasil)

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

-What are the different types of objects in the image? For
example, which animal exists in which part of the zoo?

-How big is an object?

-How are different objects interacting with each other? For
example, how does training on a football field affect the
outcome?

-Where is an object in relation to time (Tracking an Object).
For example, tracking a moving object like a train and
calculating its speed, etc. [1]

Figure 2. Tracking for Autonomous Driving [4]

In view of these reasons, this work is dedicated to
present, through stages, the questioning and improvement
from the point of view of Hardware, in order to enable the
execution of learning methods and thus reaching higher
levels of abstraction in low-level embedded systems. cost
and high accessibility.

It is expected to present, at the end of this work,
with the results generated by offline tests, the best
techniques for processing a deep learning algorithm in our
system. In order to avoid the use of a graphics processing
unit - GPU, a Raspberry Pi microprocessor will be used,
due to the processing capacity, cost and among other
factors. That is, it will be possible to show the possibility,
or at least the limits, to work with elements responsible for
vehicle autonomy, through easily accessible resources and
reduced cost.

Figure 3. Raspberry Pi 4

THEORETICAL REFERENCE

Regarding autonomous technology, Deep Learning
is an essential element, as it allows the system to extract
and process the maximum possible amount of data
generated in ever increasing variety and speed, allowing to
create models and achieve high levels of accuracy, related
to operational dynamics.

A low-cost microprocessor will be used to process
the Deep Learning algorithm and widely disseminated on
the Internet, together with software and libraries available
through Github based on the Open Source initiative, which
makes its licensed source code available with an open
source license in which the copyright provides the right to
study, modify and distribute the software for free for
anyone and for any purpose [5]. This facilitates the study
because it allows to reduce time spent with the development
of intermediate steps. In addition, it indicates paths, such as
the creation of clusters as well as used in automation,
encryption software and others, already existing, favorable
to obtain the expected results only with the use of the
Raspberry Pi 3 and peripherals.

The project will feature especially the OpenCV
and Deep Learning tutorials, resources and guides provided
by Adrian Rosebrock, which are available through his
personal website called PyImageSearch, which is dedicated
to helping other programmers understand how search
engines work. images. Although many computer vision
concepts are theoretical in nature. Its objective is to bring
your life experiences in the creation of image search
engines in concise and easy to understand and learn
examples, all based on the “learn by example” method [6].

METHODOLOGY

Essentially, experimental research consists of
determining an object of study, selecting the variables that
would be able to influence it, defining the forms of control

2

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

and observation of the effects that the variable produces on
the object [8].

When the objects under study are physical entities,
such as portions of liquids, bacteria or mice, no major
limitations are identified as to the possibility of
experimentation. However, when it comes to experimenting
with social objects, that is, with people, groups or
institutions, the limitations become quite evident. Ethical
and human considerations prevent experimentation from
being carried out efficiently in the humanities, which is
why experimental procedures are only suitable for a small
number of situations. However, experiments in the
humanities are increasingly frequent, especially in
Psychology (for example: learning), in Social Psychology
(for example: measuring attitudes, studying the behavior of
small groups, analyzing the effects of advertising, etc.) and
in Sociology of Work (for example: influence of social
factors on productivity) [8].

The project will also seek a Methodware
methodology, thus distributing the process in: Planning;
Execution; Monitoring; Control; Closing [9].

First, a bibliographic review will be sought and the
study of what has been worked on this theme in a more
recent way, that is, to recognize the State of the Art of Deep
Learning and resources as it can be used in a small
processor like the Raspberry Pi . In this way it is possible to
proceed with the subject in the most updated way possible.

During the execution of Deep Learning algorithms
it is essential to follow a workflow that consists of 6 main
steps, which are divided into 3 parts:

Collecting training data:
- Camera: Image capture;
- Annotation: Annotate the images.

Training the model:
- Pre-processing by Raspberry Pi;
- Train the Algorithm.

New image predictions:
- Random device: Capture the image;
- Random device: Predict the Image [10].

PHASE 1 - Collecting training data

Step 1 - Collect Images (at least 100 per Object):
For this task, we need 100 images per object.

Step 2 - Make a note (draw boxes on these Images
manually):

Draw bounding boxes on the images. It is
necessary to use a tool like labelImg. Usually people are

needed who will work to annotate the images. This is a very
intense and time-consuming task.

However, it is already possible to obtain these
pre-selected images in a database made available via
Github, making it possible to save a lot of time and
complete this phase in a few minutes.

PHASE 2 - Training a model on the Raspberry Pi

Step 1 - Find a pre-trained model for transfer learning: A
pre-trained model is needed to be able to reduce the amount
of data needed to train. Without this, some 100k images
would be needed to train the model. However, it is possible
to find several pre-trained models again on Github.

Step 2 - Training the Raspberry Pi using Open Source
software and approaches, once again all the documentation
and tips are available via Gihub. To train a model, we will
need to select the right “hyper parameters”. The art of
“Deep Learning” involves a little bit of trial and error to
find out which are the best parameters to obtain the highest
precision for our model - This will be one of the first points
on which approaches will be made to improve the
processing of the Raspberry Pi.

Still in Step 2: “Quantize Model”

This model allows to reduce the size to fit in a
small device like the Raspberry Pi due to its low memory
and reduced computing capacity when compared to
NVidia's GPUs and others. Here is one of the main fields of
action of the IC, that is, to look for ways to work and to
overcome the deficiencies of the Raspberry Pi.

Neural network training is done by applying many
tiny stimuli, and these small increments usually need
floating point precision to work. By taking a pre-trained
model and running the inference we hope to have a very
different result.

One of the qualities of Deep Neural Networks is
that they tend to handle very high levels of noise at their
inputs very well. Therefore, when quantifying neural
network models, it is possible to decrease file sizes, storing
the minimum and maximum of each layer, and then each
floating value is compressed into an eight-bit integer.
Consequently, the file size is reduced by 75%, since the
nodes and weights of a neural network are originally stored
as 32-bit floating point numbers.

PHASE 3 - New image predictions using the Raspberry Pi

Step 1 - Capture a new image via the camera

For this step we will have a camera connected to the
Raspberry Pi which both the tutor and the student have

3

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

available, and not being restricted to simple cameras like
Open MV, but also 3D, for example the Kinect.

Figure 4. OpenMV camera

Then the new image will be captured to give
permission and start the last step.

Step 2 - Predicting a new image

Download the model through the link mentioned
above.
Install TensorFlow on the Raspberry Pi.
Perform training on the model.

Finally, you can even use methods found on the
internet that allow you to work with the high volume of
processing required through mechanisms such as:
encrypting the signal and reading through software that can
be easily found on the internet, due to the initiative
Open-Source.

As an example, it will be briefly described one of
the methodologies easily found which can be used in CI:

-A Python routine checks whether a new data package
exists in a specific directory (a package consists of a .PRO
file (prologue), several data files and a .EPI file (epilogue).
When the file arrived. I know that a data package has been
downloaded. The new data is moved to a temporary
directory.

-Another routine in Python runs the utility to unzip the
images. This utility has the source code released, so it is
possible to compile for the ARM platform.

-From the uncompressed data, image processing can be
done using MPOP

-Finally, the images are reprojected.

Through these methods, indoor and online
approaches will be carried out without the need to use a
mobile robot, that is, in the laboratory we will only work
with the presentation of objects and images to the system
and obtain results from your response. Depending on the

response time and time available, it will be sought to work,
later, on a mobile system which will be discussed during
the project.

DEVELOPMENT

APPLICATION 1 - OpenMV with Raspberry:

The OpenMV project deals with the creation of
low cost “Machine vision” modules, extensible and
powered by Python, and aims to become the Arduino of
“Machine vision”. Our goal is to bring “Machine vision”
algorithms closer to manufacturers and enthusiasts. We
made the algorithm work difficult and time consuming for
you, leaving more time for your creativity! [11]

OpenMV Cam is like a super powerful Arduino
with an integrated camera that you program in Python. We
make it easy to run “Machine vision” algorithms on what
OpenMV Cam sees, so you can track colors, detect faces
and more in seconds and control I / O pins in the real world.
[11]

To run OpenMV on Raspberry, just access
Raspberry's official website, go to the “Downloads” tab and
click on “DOWNLOAD NOW FOR RASPBERRY PI 1,2,3
OR LATER”. Then just unzip and read the instructions in
“Readme.txt”

There you will find how to download the OpenMV IDE
where you will have access to a vast number of examples

 APPLICATION 2 - Deep Learning with OpenCV:

When OpenCV 3+ was released, it brought with it
an enhanced deep learning (dnn) module. This module
supports a larger number of frameworks like Caffe,
TensorFlow, and Torch / PyTorch. This way, together with
the possibility of making use of languages ​​like Python, it
becomes simple to classify images as much as:

- Load the Deep Learning model.

- Pre-process the image.

- Pass the image through the network and obtain its
classification at the exit [6].

As we have already seen, with OpenCV 4.1, which
was used in this project - and therefore will be shortened
only to OpenCV in the rest of the work -, it is possible to
make use of pre-trained networks with more popular
frameworks. The advantage is that it will not be necessary
to spend a lot of time training the network. OpenCV is not
(and is not intended to be) a tool for training networks -
there are already great frameworks available for this
purpose. As a network (like a CNN) can be used as a

4

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

classifier, it makes logical sense that OpenCV has a Deep
Learning module that we can easily take advantage of
within the OpenCV ecosystem [12].

Installing OpenCV on Raspberry
OBS.: I used the Raspbian non-NOOB version

1st. Step - Install Prerequisites

2nd. Passo - OpenCV4 Download

It is important to use a virtual environment for
Python 3 so that it is possible to maintain different
environments for each step, and thus not generate conflicts
or system overload as it is necessary to deal with hardware
restrictions. For this, virtualenv and virtualenvwrapper will
be used so that it is allowed to use Python 3 in the virtual
environment, as will be seen below:

Now it will be necessary to relocate them inside
the folder (~ / .profile).

To ensure that changes occur, simply enter in
sequence: ​$ source ~ / .profile

Finally, just create the virtual environment so that
you can allocate OpenCV and additional packages: ​$
mkvirtualenv cv -p python3

Note: The procedures above allow you to access
the virtual environment using only with the ​$ workon cv
command only if we do the steps above for ​~ / .bashrc​.

Finally, now that the virtual environment has been
created, we can install the right libraries, prepare OpenCv
for compilation and execute our Deep Learning model.

OpenCV makes use of vectors (Arrays) to
represent the images and therefore it will be necessary to
have the NumPy library installed in the virtual
environment:

5

$ sudo apt-get update # Faz Update de qualquer pacote já
instalado

$ sudo apt-get upgrade # Faz Upgrade de qualquer pacote já
instalado

Instalar a ferramenta para ajustes no Build, assim como a
Cmake

$ sudo apt-get install build-essential cmake git pkg-config

Instala bibliotecas e pacotes que permitem ler vários tipos de
imagens

$ sudo apt-get install libjpeg8-dev libtiff5-dev libjasper-dev
libpng12-dev

Instala algumas bibliotecas que permitem ler vários tipos de
vídeos

$ sudo apt-get install libavcodec-dev libavformat-dev
libswscale-dev libv4l-dev

$ sudo apt-get install libxvidcore-dev libx264-dev

Instala o GTK para que possamos usar os recursos da GUI do
OpenCV
$ sudo apt-get install libgtk2.0-dev

Instala os pacotes que otimizam algumas funções do
OpenCV, como as matrizes
$ sudo apt-get install libatlas-base-dev gfortran

//Instala o python e seus “development headers” e bibliotecas
$ sudo apt-get install python3-dev

$ cd ~
$ wget -O opencv.zip
https://github.com/opencv/opencv/archive/4.0.0.zip
$ wget -O opencv_contrib.zip
https://github.com/opencv/opencv_contrib/archive/4.0.0.zip

Agora será necessário fazer o unzip dos downloads
$ unzip opencv.zip

$ unzip opencv_contrib.zip

Por fim, para fins de facilidade faremos a troca dos nomes
$ mv opencv-4.0.0 opencv
$ mv opencv_contrib-4.0.0 opencv_contrib

$ sudo pip install virtualenv virtualenvwrapper
$ sudo rm -rf ~/get-pip.py ~/.cache/pip

Ao invés de acessar o ~/.profile via “nano”, basta usar os
comandos abaixo para fazer o ajuste via “bash” mesmo.
$ echo -e "\n# virtualenv and virtualenvwrapper" >> ~/.profile
$ echo "export WORKON_HOME=$HOME/.virtualenvs" >>
~/.profile
$ echo "export
VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3" >>
~/.profile
$ echo "source /usr/local/bin/virtualenvwrapper.sh" >>
~/.profile

$ pip install numpy // Instala o Numpy
$ pip install imutils // Instala o Imutils

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

It will be necessary to download the
“opencv_contrib” repository Without this repository, we
will not have access to the “keypoint detectors” and “local
invariant descriptors” (such as SIFT, SURF etc.) that were
available in the OpenCV 2.4.X version. We will also be
missing out on some of the latest features of OpenCV, such
as text detection in natural images.

3rd Step - Configuring and compiling OpenCv within the
virtual environment.

At the end of the cmake run, the configuration
should be in the following format:

Figure 5 - End of Cmake run

Before you begin the compile I would suggest
increasing your swap space. This will enable you to
compile OpenCV with all four cores of the Raspberry Pi
without the compile hanging due to memory exhausting.

Open up your /etc/dphys-swapfile file:
Install OpenCV 4 on your Raspberry PiShell
$ sudo nano /etc/dphys-swapfile
…and then edit the CONF_SWAPSIZE variable:

Install OpenCV 4 on your Raspberry PiShell

set size to absolute value, leaving empty (default) then
uses computed value
you most likely don't want this, unless you have an
special disk situation
CONF_SWAPSIZE=100
CONF_SWAPSIZE=1024

Notice that I’m increasing the swap from 100MB
to 2048MB.
If you do not perform this step it’s very likely that your Pi
will hang.

From there, restart the swap service:
Install OpenCV 4 on your Raspberry PiShell
$ sudo /etc/init.d/dphys-swapfile stop
$ sudo /etc/init.d/dphys-swapfile start

Note: Increasing swap size is a great way to burn
out your Raspberry Pi microSD card. Flash-based storage
has a limited number of writes you can perform until the
card is essentially unable to hold the 1’s and 0’s anymore.
We’ll only be enabling large swaps for a short period of
time, so it’s not a big deal. Regardless, be sure to backup
your .img file after installing OpenCV + Python just in
case your card dies unexpectedly early. You can read more
about large swap sizes corrupting memory cards on this
page. [13]

4th Step - Compiling the OpencCV
If this step is a problem, run it again but without the “-j4”

5th Step - Installing OpenCV
Once executed DO NOT EXECUTE again

6th Step - Sym-link between OpenCV and the virtual
environment with Python

7th - OpenCV works test.

6

//Tenha certeza que os processos abaixo serão executados
dentro do cv
$ cd ~/opencv // Retornando ao repositório opencv
$ mkdir build // criando a pasta “build”
$ cd build // Acessando o “build”

$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D

OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/mo
dules \

-D ENABLE_NEON=ON \
-D ENABLE_VFPV3=ON \
-D BUILD_TESTS=OFF \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D BUILD_EXAMPLES=OFF ..

$ make -j4 // o comando j4 especifica que existe 4 núcleos de
processamento

$ sudo make install
$ sudo ldconfig

$ cd ~/.virtualenvs/cv/lib/python3.7/site-packages/
$ ln -s
/usr/local/python/cv2/python-3.7/cv2.cpython-35m-arm-linux-
gnueabihf.so cv2.so
$ cd ~

$ workon cv // executa o ambiente virtual
$ python
>>> ​import ​ cv2
>>> ​cv2.__version__
'4.0.0'

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

When using Raspberry Pi for Deep Learning there
are two problems that we need to address:
-Restricted Memory;
- Limited processing speed.

Thus, one of the first paths to follow is the use of
more efficient neural networks from a computational point
of view, bringing less need for memory and processing. It is
possible to find some options on the internet, but for the
Raspberry Pi there are two which Adrian, on his personal
website PyImageSearch, recommends, such as MobileNet
and SqueezeNet. For practical reasons, SqueezeNet will be
used in a first approach.

SqueezeNet is a convolutional neural network
trained in more than one million images from the ImageNet
database [1]. The network has 18 layers and can classify
images in 1000 categories of objects, such as keyboard,
mouse, pencil and many animals. As a result, the network
learned resource-rich representations for a wide variety of
images. The network has an image input size of 227 by 227.
[15]

Figure 6. SqueezeNet diagram [1]

The most important thing is to highlight the work
of Iandola et al. which stands out by its name:
“SqueezeNet: AlexNet-level accuracy with 50x few
parameters and <0.5MB model size”. According to his
article, it is possible to reduce the size of the model by
applying a new use of 1 × 1 and 3 × 3 convolutions, without
fully connected layers. The end result is a model weighing
4.9 MB, which can be further reduced to <0.5 MB by the
processing method (also called "weight pruning" and
"sparsifying a model") [14].

To start this process we will first create a
document with the suggestive name “pi_deep_learning.py”
where it will have the following code:

Attention:
--image : The path to the input image;
--prototxt: The path to a Caffe prototxt file which is
essentially a plaintext configuration file following a
JSON-like structure.
--model : The path to a pre-trained Caffe model. As stated
above, you’ll want to train your model on hardware which
packs much more punch than the Raspberry Pi — we can,
however, leverage a small, pre-existing model on the Pi;
--labels : The path to class labels, in this case ImageNet
“syn-sets” labels.

7

>>> ​exit()

Inserindo as bibliotecas necessárias
import ​ numpy ​as ​ np
import ​ argparse
import ​ time
import ​ cv2

Construindo o “argument parse” e “parse the arguments”
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,

help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,

help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,

help="path to Caffe pre-trained model")
ap.add_argument("-l", "--labels", required=True,

help="path to ImageNet labels (i.e., syn-sets)")
args = vars(ap.parse_args())

load the class labels from disk
rows = open(args[​"labels"​]).read().strip().split(​"\n"​)
classes = [r[r.find(​" "​) + 1:].split(​","​)[0] ​for ​ r ​in ​ rows]

load the input image from disk
image = cv2.imread(args[​"image"​])

our CNN requires fixed spatial dimensions for our input
image(s)
so we need to ensure it is resized to 227x227 pixels while
performing mean subtraction (104, 117, 123) to normalize
the input;
after executing this command our "blob" now has the shape:
(1, 3, 227, 227)
blob = cv2.dnn.blobFromImage(image, 1, (227, 227), (104,
117, 123))

load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"],
args["model"])

set the blob as input to the network and perform a
forward-pass to
obtain our output classification
net.setInput(blob)
start = time.time()
preds = net.forward()
end = time.time()
print("[INFO] classification took {:.5} seconds".format(end -
start))

sort the indexes of the probabilities in descending order
(higher
probabilitiy first) and grab the top-5 predictions
preds = preds.reshape((1, len(classes)))

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

In general, you should: Never use your Raspberry
Pi to train a neural network. Only use your Raspberry Pi to
deploy a pre-trained deep learning network.
The Raspberry Pi does not have enough memory or CPU
power to train these types of deep, complex neural
networks from scratch.

In fact, the Raspberry Pi barely has enough
processing power to run them — as we’ll find out in next
week’s blog post you’ll struggle to get a reasonable frame
per second for video processing applications.

If you’re interested in embedded deep learning on
low cost hardware, I’d consider looking at optimized
devices such as NVIDIA’s Jetson TX1 and TX2. These
boards are designed to execute neural networks on the GPU
and provide real-time (or as close to real-time as possible)
classification speed.

We’ll be benchmarking our Raspberry Pi for deep
learning against two pre-trained deep neural networks:
- GoogLeNet
- SqueezeNet

RESULTS

GoogLeNet took about 1.7304 seconds and SqeezeNet just
0.92073 seconds​.

The results from the experiments show that running object
detection on low end CPU devices is very slow. The
purpose of this paper was to find out if a Raspberry Pi is
suitable to use as hardware in a real time object detection
system. But different applications have different
requirements in speed and accuracy. In one instance you
might need fast detection but don't care about small or
distant objects. In another situation, speed might be less
important but better detection is. When implementing an
object detector on a low end device, this speed and
accuracy trade-off most likely must be done and the results
shown [16].

As our results demonstrated we were able to get up to 0.9
frames per second, which is not fast enough to constitute
real-time detection. That said, given the limited processing
power of the Pi, 0.9 frames per second is still reasonable for
some applications [14].

If your use case involves low traffic object detection where
the objects are slow moving through the frame, then you
can certainly consider using the Raspberry Pi for deep
learning object detection. However, if you are developing
an application that involves many objects that are fast
moving, you should instead consider faster hardware.

It is important to note that the Raspberry Pi may not
perform in the same way as a high-cost device, however it
is a valid tool to embark on pre-trained deep learning and
provide satisfactory results for people who are willing to
delve into the area of ​​artificial intelligence.

8

idxs = np.argsort(preds[0])[::-1][:5]

loop over the top-5 predictions and display them
for (i, idx) in enumerate(idxs):

draw the top prediction on the input image
if i == 0:

text = "Label: {},
{:.2f}%".format(classes[idx],

preds[0][idx] * 100)
cv2.putText(image, text, (5, 25),

cv2.FONT_HERSHEY_SIMPLEX,
0.7, (0, 0, 255), 2)

display the predicted label + associated probability
to the

console
print("[INFO] {}. label: {}, probability:

{:.5}".format(i + 1,
classes[idx], preds[0][idx]))

display the output image
cv2.imshow("Image", image)
cv2.waitKey(0)

$ python pi_deep_learning.py --prototxt
models/bvlc_googlenet.prototxt \

--model models/bvlc_googlenet.caffemodel
--labels synset_words.txt \

--image images/barbershop.png

[INFO] loading model...
[INFO] classification took 1.7304 seconds
[INFO] 1. label: barbershop, probability: 0.70508
[INFO] 2. label: barber chair, probability: 0.29491
[INFO] 3. label: restaurant, probability: 2.9732e-06
[INFO] 4. label: desk, probability: 2.06e-06
[INFO] 5. label: rocking chair, probability: 1.7565e-06

$ python pi_deep_learning.py --prototxt
models/squeezenet_v1.0.prototxt \

--model models/squeezenet_v1.0.caffemodel
--labels synset_words.txt \

--image images/barbershop.png
[INFO] loading model...
[INFO] classification took 0.92073 seconds
[INFO] 1. label: barbershop, probability: 0.80578
[INFO] 2. label: barber chair, probability: 0.15124
[INFO] 3. label: half track, probability: 0.0052873
[INFO] 4. label: restaurant, probability: 0.0040124
[INFO] 5. label: desktop computer, probability:
0.0033352

AEA – Brazilian Society of Automotive Engineering - SIMEA 2021

REFERENCES

1. Marcello Santos da Fonseca. URL:
http://www.ic.uff.br/~aconci/limiarizacao.htm​.

2. GAEA. URL:
https://gaea.com.br/afinal-o-que-e-deep-learning/​ .

3. Nuno Ferreira and Philip Costa-Hibberd. URL:
https://zanders.eu/en/latest-insights/rpa-cutting-through-the-
noise/​ .

4. Peiliang Li, Tong Qin, and Shaojie Shen. URL:
https://arxiv.org/abs/1807.02062​.

5. OPENSOURCE. URL: ​https://opensource.org/​.

6. Adrian Rosebrock. URL:
https://www.pyimagesearch.com/about/​.

7. Sarthak Jain.
URL:​https://medium.com/nanonets/how-to-easily-detect-ob
jects-with-deep-learning-on-raspberrypi-225f29635c74​.

8. Antonio Carlos Gil.
URL:​http://www.urca.br/itec/images/pdfs/modulo%20v%2
0-%20como_elaborar_projeto_de_pesquisa_-_antonio_carl
os_gil.pdf​.

9. Carlos Magno da Silva Xavier.
URL:​https://pmkb.com.br/artigos/as-metodologias-de-geren
ciamento-de-projetos/​.

10. Mariana González . URL:
https://blog.idwall.co/o-que-e-machine-learning/​.

11. OPENMV. URL: ​https://openmv.io/​.

12. Adrian Rosebrock. URL:
https://www.pyimagesearch.com/2017/08/21/deep-learning
-with-opencv/​.

13. Adrian Rosebrock. URL:
https://www.pyimagesearch.com/2018/09/26/install-opencv
-4-on-your-raspberry-pi/

14. Adrian Rosebrock. URL:
https://www.pyimagesearch.com/2017/10/02/deep-learning
-on-the-raspberry-pi-with-opencv/

15. MATHWORKS. URL:
https://www.mathworks.com/help/deeplearning/ref/squeeze
net.html

16. Adam Gunnarsson. URL:
https://www.diva-portal.org/smash/get/diva2:1361039/FUL
LTEXT01.pdf

ABOUT ME

Complete name of Author: Bruno Bueno Furquim
E-mail: brunoquim@hotmail.com
Institutional e-mail: ​bruno.furquim@aluno.ufabc.edu.br

ACKNOWLEDGMENTS

I would like to thank the support and attention given by the
co-authors and the Federal University of ABC. To my
brother Felipe, my father Eduardo and my mother Marcia
for the inspiration.

9

http://www.ic.uff.br/~aconci/limiarizacao.htm
https://gaea.com.br/afinal-o-que-e-deep-learning/
https://zanders.eu/en/latest-insights/rpa-cutting-through-the-noise/
https://zanders.eu/en/latest-insights/rpa-cutting-through-the-noise/
https://arxiv.org/abs/1807.02062
https://opensource.org/
https://www.pyimagesearch.com/about/
https://medium.com/nanonets/how-to-easily-detect-objects-with-deep-learning-on-raspberrypi-225f29635c74
https://medium.com/nanonets/how-to-easily-detect-objects-with-deep-learning-on-raspberrypi-225f29635c74
http://www.urca.br/itec/images/pdfs/modulo%20v%20-%20como_elaborar_projeto_de_pesquisa_-_antonio_carlos_gil.pdf
http://www.urca.br/itec/images/pdfs/modulo%20v%20-%20como_elaborar_projeto_de_pesquisa_-_antonio_carlos_gil.pdf
http://www.urca.br/itec/images/pdfs/modulo%20v%20-%20como_elaborar_projeto_de_pesquisa_-_antonio_carlos_gil.pdf
https://pmkb.com.br/artigos/as-metodologias-de-gerenciamento-de-projetos/
https://pmkb.com.br/artigos/as-metodologias-de-gerenciamento-de-projetos/
https://blog.idwall.co/o-que-e-machine-learning/
https://openmv.io/
https://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/
https://www.pyimagesearch.com/2017/08/21/deep-learning-with-opencv/
https://www.pyimagesearch.com/2018/09/26/install-opencv-4-on-your-raspberry-pi/
https://www.pyimagesearch.com/2018/09/26/install-opencv-4-on-your-raspberry-pi/
https://www.pyimagesearch.com/2017/10/02/deep-learning-on-the-raspberry-pi-with-opencv/
https://www.pyimagesearch.com/2017/10/02/deep-learning-on-the-raspberry-pi-with-opencv/
https://www.mathworks.com/help/deeplearning/ref/squeezenet.html
https://www.mathworks.com/help/deeplearning/ref/squeezenet.html
https://www.diva-portal.org/smash/get/diva2:1361039/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1361039/FULLTEXT01.pdf
mailto:bruno.furquim@aluno.ufabc.edu.br

