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Resumo:  

Este artigo parte da seguinte questão: as biotecnologias têm um impacto positivo sobre a 
eficácia da P&D? Para respondê-la, elaboramos duas hipóteses baseadas na literatura: (H1) 
As tecnologias farmacêuticas tiveram um efeito positivo sobre os resultados tecnológicos no 
curto prazo; (H2) As biotecnologias têm um efeito positivo sobre os resultados tecnológicos a 
longo prazo. Desenvolvemos um modelo VEC para medir o impacto das patentes 
farmacêuticas e da biotecnologia a curto e longo prazo. Nossos cálculos nos permitiram 
confirmar H2. No entanto, no curto prazo, identificamos a NCE passada como a única variável 
significativa para a NCE futura. Nosso artigo contribui trazendo uma análise de séries 
temporais para a economia da inovação e respondendo a outro assunto relevante entre a 
economia do conhecimento e da inovação que é o acréscimo de conhecimento útil feito por 
patentes. 
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Abstract: This article departs from the following question: does biotechnologies have a positive 
impact over R&D effectiveness? In order to answer it we elaborate two hypotheses based on 
the literature: (H1) Pharmaceutical technologies had a positive effect on technological outputs 
at the short run; (H2) Biotechnologies have a positive effect on technological outputs at the 
long run. We conducted a VEC model to measure the impact of pharma and biotech patents 
in the short and long run. Our calculations allowed us to confirm H2. Nevertheless, in the 
short run we identify the Past NCE as the only significant variable to future NCE. Our article 
contributes by bringing a time series analyses to the economics of innovation and by 
answering another relevant subject among the economics of knowledge and innovation that 
is the additions in useful knowledge made by patents. 
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Introduction 

The pharmaceutical industry is a recurrent theme among studies on the field of economics. For a while 

some scholars focus their attention at the productivity crises in the industry’ R&D. That fact consists of 

a non-apparent and proportional correlation between the New Molecular Entities (NME) - or New 

Chemical entities (NCE)-, approved by the FDA, and the R&D expenditures and patent applications. In 

other words, the industry is expending more on research activities and producing, relatively, much less, 

innovations.  

Part of the literature that deals with R&D crises is highly focused on cost perspective analyses, 

this approach left important technological aspects aside (Comanor; Scherer, 2013; DiMasi 2000; 

Grabowski; Vernon, 2000; Grabowski; Vernon, 1994). Nevertheless, costs are too simplistic in order 

to understand technological evolution.  

The literature focused on technical change (Hopkins et al. 2007;Martin, Nightingale, and Kraft 

2008, Nightingale 2000; Nightingale and Martin 2004; Nightingale and Madhi, 2006; among others) 

shows that the industry evolves towards a marked division of innovative labor and specialization of 

research activities (Gambardela, 1995; Hopkins, Nightingale and Baden-Fuller 2012; Matos, 2016; 

Schweizer, 2005). As result, there is a risk reduction and a greater ability to acquire new technological 

skills, that, in some cases, can completely replace elements among the innovative process (Cassiman 

and Veuglers, 2006; Hagedoorn et al., 2012 and Hess and Roathermel, 2011).  

Both cost perspective and the technological evolution approach carry with them an interesting 

conclusion: the large pharmaceutical companies have tried to incorporate biotechnology in order to 

increase their R&D effectiveness.  

In this article we made a simple but extremely relevant question: Does biotechnologies have a 

positive impact over R&D effectiveness? If so, this impact is greater over the years. In order to answer 

this question, this article builds a VECM model that will shed light on the impact of biotechnologies on 

NCEs.  

This article is divided into three sections. The first one discusses the evolution of technology in 

the drug discovery activities. Based on that we derived our hypothesis. The second section explains the 

methodology. The third section discuss the model results and, finally, we present the conclusion.   

 

1 Drug discovery main Technologies evolution: before and after the 
biotechnologies. 

This section aims at discussing the technological evolution of drug discovery techniques. Here we show 

two trajectories one based on the core pharmaceutical competences and the other based on 

biotechnology competences. Due to these trajectories’ differences in techniques and period of time, we 

can establish our two hypotheses. 

 

1.1 R&D techniques within the pharmaceutical related competences. 

This article builds its hypotheses having the research based pharmaceutical industry as study object. At 

its beginning (before 1930) the pharmaceutical enterprises were not research dedicated or they did not 

have a science-based method of research, this process was consolidated in the 1930s. 

At that time, based on chemistry competences the pharmaceutical industry started to employ a 

systematic way to innovate, carried out by the use of random screening methodology (Schwartzman, 

1976; Gambardella, 1995). This technique consists of testing all possible molecules endlessly in the 

search for the desired therapeutic effects (Grabowski; Vernon, 1982; Gambardella, 1995; Schwartzman, 

1976). Random screening combines empiricism to scientific advances, this technique reach its peak 

between the 1940s and 1950s generating excellent results due to the number of NCE (see figure 1 on 

pg. 4)(Achilladelis; Antonakis, 2001). 

The random screening success enabled the development of antibiotics and antihistamines, which 

were the set of chemistry-based innovations that defined the industry in the 1930s (Achilladelis and 
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Antonakis, 2001). Although highly laborious and empirical, the results obtained through random 

screening outweighed any economic cost within this technique (Gambardella, 1995 Schwartzman, 

1976; Vernon and Grabowsky, 1982). The whole process had the principle of a "roulette" with a high 

success rate (Nightingale et al. 2007). But, in the 1960s, this methodology started to show some 

exhaustion, and, therefore, productivity declined (Schwartzman, 1976; Grabowsky and Vernon, 2000; 

Nightingale, 2000; Nightingale et al. 2007; Gambardella, 1995; Vernon; Grabowsky, 1982). To solve 

the drop in random screening’s productivity, companies sought to increase the efficiency of other drug 

discovery methods (Nightingale, 2000), but, still, based on chemistry related competences, following a 

well succeeded trajectory that had already enabled the random screening to be successful. 

By further developing the industry’ pharmaceutical core competencies, the technological 

trajectory followed a path which narrow the potential candidates through the construction of better 

hypothesis on how the new compounds would attack the disease (Gambardella, 1995; Amzel, 1996; 

Bohacek et al., 1996). The technological evolution was focused on reducing the empirical factor of past 

techniques and, as consequence, increase the rationality in the innovative process. This new technique 

could be addressed in several ways as: discovery by design (Gambardella, 1995) or rational drug design. 

In sum, they are a rational approach for drug design. This new set of technologies, in the drug discovery 

activity, is exemplified by the structured base design (SBD) technique (Amzel, 1996, Bohaeck et al. 

1996, Gane and Dean, 2000; Schwardt et al., 2003). 

In this context, the answer sought by pharmaceutical companies was to develop ways to design 

a "perfect" molecule for the desired purposes, instead of randomly test numerous candidates. The SBD 

encompasses several techniques in order to build a component for the needed purposes, for that the 

molecule is designed to bind perfectly to a protein. Therefore, in a rational design approach, the ability 

to build better drugs relates, closely, to the understanding of how chemical receptors bind and the 

structure of target (Amzel, 1998). Therefore, SBD has a simple logic, first the target needs to be 

identified. Second, the target structure defines how a new molecule must be designed. Finally, 

theoretically, the engineered molecule would bind in the desired target.  

In order to design and discover the target structure some techniques are needed, being X-ray 

crystallography and Nuclear Magnetic Resonance (NRM) the most successful ones into discovering the 

target structure (Amzel, 1998; Gane; Dean, 2000; Schwardt et al., 2003). In addition, there are docking 

techniques composed by computer algorithms that allow to test if the molecule can bind to the target, 

being it a in silico technique (Gane; Dean, 2000). The SBD relies on computer models (docking) for 

testing and designing molecule structures, but these models are not capable of dealing with several 

complexities that emerge from biding problems. Therefore, many computer tested molecule could not 

work in reality or could work in reality but not at the computer models (Gane; Dean, 2000). 

All those techniques show an interesting fact, they are all derived from competences related to 

chemistry and physics principles, we may call them pure pharmaceutical technologies. None of these 

techniques are based on the molecular biology knowledge base, in that sense, they are not 

biotechnologies. Therefore, the SBD is a solution within the scope of the pharmaceutical industry 

knowledge base. Based on that, pharmaceutical technologies have impacted the industry innovation 

output at its beginning. Therefore, in a time perspective analyses our hypothesis is:  

H1: Pharmaceutical technologies had a positive effect on technological outputs at the short run.  

 

1.2 The use of biotechnologies competences for R&D techniques  

In a recent period, biotechnology has brought a new impetus to R&D through various ways of searching 

for new drugs and further expanding the research scope of pharmaceutical companies. 

Biotechnologies dedicated to the pharmaceutical industry are a series of techniques that span 

out from the molecular biology scientific base. The discovery of the double helix by Watson and Crick 

in 1953 was "the triumph of molecular biology and the signal that it had arrived as a discipline". 

(Kenney, 1987, pg. 19). The first step into the establishing of a biotechnology-based industry was given 
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in 1974 by the possibility of transferring organism’s genetic material through plasmids1- the Cohen-

Boyer patents-, rather than using special types of virus. This technique was considered “(…) the simple 

pivotal event in the transformation of the ‘basic’ science of molecular biology into an industry” 

(Kenney, 1987, pg. 23). Thus, techniques based on molecular biology enable the genetic alteration, 

introduction of genes into organisms and ability to divide and to construct DNA sequences in vitro 

(Martin, 1999).  

One of the promising advances in the field of research with extraordinary outcomes to 

biotechnology was the Human Genome Project (HGP), a significant research effort, undertaken from 

1991 to 2003. The HGP aimed to decode the human genetic sequence. This research effort was a 

milestone in how biotechnology could be useful for the pharmaceutical industry (Macarron, 2011; 

McKelvy; Orsenigo, 2001; Quéré, 2004). As an outcome, the HGP enable the opportunity of exploiting, 

economically, compounds that directly affect the interactions between genes expressions and the 

manifestation of diseases and, therefore, change the way diseases were diagnosed and treated 

(McKelvey; Orsenigo, 2001; Quéré, 2004). 

As a research effort that allows the creation of a new set of technologies, the HGP has 

established the infrastructure in which molecular biology dedicated to genetic was linked into solving 

important aspects of pharmaceutical industry problems (Martin et al., 2011).  

There is still doubts about the role of biotechnology as a new paradigm or as a set of technologies 

dedicated to discover drugs on a small molecule paradigm. We assume, based on: Henderson et al. 

(1999), Drews (2003), Gisling; Noteboon (2006); Hopkins et al. (2007, 2013), Kong; Li; Zhang (2009); 

Nightingale; Madhi (2007), Pereira; Williams (2007) , Nightingale(2000), that biotechnology is 

nowadays a tool – or methodology – for new molecules discovery with, a possible, high rate chance of 

creating active components.  

Biotechnology enables the use of new research technologies in addition to those already in use 

by the pharmaceutical industry. Thus, biotechnology as a new methodology can increase the 

pharmaceutical industry ability to generate possible candidates for new components (Gisling; 

Noteboon, 2006; Nightingale, 2000; Nightingale; Madhi, 2007; Powell et al., 1996; Santos, 2003). 

The use of biotechnology means that the drug discovery activities are relying even more on 

biotechnology competences as this search activity evolves. “So the drug discovery underwent a change 

towards molecular biology computing and genomic science in recent years." (Schimid et al., 2001, pg 

42).  

Through biotechnology the discovery activities have acquired a larger scale into screening 

molecules. The High Throughput Screening (HTS) is one of the most prominent biotechnology and it 

has increased, significantly, the capacity of enterprises to screen new compounds through standardizing 

and automatizing certain features, like sample size (Nigtingale, 2000; Pereira; Williams, 2007). 

The HTS is, basically, the automation of random screening through biotechnologies enabling 

companies to test more components in a very short time (Nightingale, 2000; Hopkins et al 2007, Pereira 

and Williams, 2007). According to Houston and Banks (1997) before HTS an enterprise could possibly 

check 75000 components of the same class for 20 targets. The HTS allowed testing a million 

components, within a class, for 100 targets. The HTS was a breakthrough among techniques to test 

components. It is a technology that increased the scale in the drug discovery process, as it enhances the 

number of candidates for new medicines. From 66 published clinical candidates (molecules) at the 

Journal of Medicinal Chemistry, 29% of them were discovered through HTS, making it one of the most 

effective form of discovering new compounds (Brown; Boström, 2018).  

The extensive use of HTS, generating good results, and the dedicated teams specialized on 

running this technology (Macarron, 2011; Pereira; Williams, 2007) has created a new R&D path based 

on biotech competences. Those technologies follow a distinct logic in comparison to rational drug 

design approach (Amzel, 1996; Macarron et al., 2011; Willians; Pereira, 2007). Whereas, the structure 

base design looks to construct a specific molecule for a desired target; the HTS enables the 

pharmaceutical industry to screen several known compounds in order to find some therapeutic effect. 

One technique follows a rationalization path, while the other increases the experimentation scale 

                                                           
1Plasmids are DNA molecules capable of reproducing chromosomal DNA independently.  
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allowing the pharmaceutical industry to test more molecules in less time (Gane; Dean, 2000). Therefore, 

our second Hypothesis, considering a time perspective, is: 

H2: Biotechnologies have a positive effect on technological outputs at the long run.  

Both biotechnologies and pharmaceutical technologies were impacted by the information 

technology revolution. For us, this impact spreads all over the industry. On one hand computer 

simulations (docking techniques) are used for rational drug design; on the other hand, the database 

management techniques are used for controlling enormous molecule libraries acquired through HTS. 

Therefore, we will not create a hypothesis on the Information technology, but in this study, we use it as 

an exogenous variable (see methodology).  

In sum, all the main technologies and the NCE approved by year are presented in the graphic 

bellow.  

 

Figure 1: New molecular entities approved by the FDA over the years and the main 
technologies used for drug discovery 

 

Source: Matos, 2016, pg 39  

This graph combines technology and its outputs over the years, but the correlations will be evidence in 

the following sections.  

 

2 Methods 

This article relies on time series models for evidencing our hypothesis. For that we begin presenting the 

time series used. Then, we build a Vector Autoregressive Model (VAR) in an attempt to look for 

stationary processes and short run analyses. Finally, in the presence of a cointegration we conduct a 

Vector Error Correction (VEC) model enabling short and long run analyses. 

 

2.1 Data 

This article comprises four half-yearly time series, ranging from 1980 to the first semester of 2014, 

totalizing 70 observations. The number of observations surpass the minimum necessary for conducting 

any type of time series analyses (Enders, 2014). The series used are the: (i) natural log of New Chemical 

Entities; (ii) natural log of pharmaceutical patents, (iii) natural log of biotech patents and (iv) natural 

log of information technology patents. Bellow we present the series in more detail. 

New Chemical Entities (NCE) are the pharmaceutical industries’ innovative output. Broadly all 

NCE are compounds that goes through animal and human population tests (clinical trials)2 and are 

                                                           
2 For more details about the steps and the typical clinical trial characteristics, please see: Gambardella, 1995, 
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approved by the FDA to become new drugs. We conduct a log transformation on number of NCE 

approved by the FDA on a half-yearly base. The number of NCE was retrieved at the FDA3. There we 

obtained all approvals of New Drug Applications (NDA) and Biological License Application by month. 

The NDA encompass, majorly, small molecules being a chemistry based pharmaceutical output and 

BLA are large molecules, essentially biotech outputs. After retrieving all approvals, we compile only 

the New Chemical Entities submission4.  

Pharmaceutical patents (Pharm) are the patents that comprise chemistry related input in the 

innovative process. For that we conducted the log transformation on the number of patents issued at the 

United Sates Paten Class system (USPC) 514 and 424. The patent class definition follows Hall, Jaffe, 

Trajtenberg (2001) patent-based sector classification sector. The data was retrieved from the PatFT 

(Patent Full-Text and image database), a free access database from USPTO where we could search 

patents according to their classes. 

Biotechology patents (Bio) are the patents linked to molecular biology related input in the 

innovative process. We conducted a log transformation on the number of patents issued at classes 535 

and 800 from USPC. The patent class definition follows Hall, Jaffe, Trajtenberg (2001) patent-based 

sector classification sector. The patent data retrieved from the PatFT. 

Information technology patents (info) are an attempt to encompass all patents related to group 

of information technologies that impact the pharmaceutical industry technologies. We use the series as 

an exogenous variable due to these technologies’ pervasiveness. For that we conducted the log 

transformation on the number of patents issued at classes 41, 380, 382, 395, 700, 701, 702, 704, 705, 

706, 707, 708, 709, 710, 712, 713, 714, 360, 365, 369, 711. The patent class definition follows Hall, 

Jaffe, Trajtenberg (2001) patent-based sector classification sector, but in order to encompass the main 

information technologies we combine computer&hardware patents to information storage patents. l 

Bellow we summarize the data in a table and present the series graphically and the data 

descriptive statistics. 

  

                                                           
Schwartzman, 1976, FDA 1990; 1999. The clinical trial are also describes at: www.clinicaltrials.gov and 

www.fda.gov 
3 https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm  
4 We needed this separation because the FDA classifies both NDA and BLA submissions in 10 types, for a better 

comprehension on the FDA classification types see: https://www.fda.gov/media/94381/download. 

 

https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm
https://www.fda.gov/media/94381/download
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Table 1: Variables 

Series Description Period Source 

NCE 
Natural log of New chemical entities approved by 

the FDA 

Half-yearly serie from 

1980 to the first half of 

2014 

FDA 

Pharm 
Natural log of issued patents from class 514 and 

424 at USPTO 

Half-yearly serie from 

1980 to the first half of 

2014 

PatFT 

(USPTO) 

Bio 
Natural log of issued patents from class 535 and 

800 at USPTO 

Half-yearly serie from 

1980 to the first half of 

2014 

PatFT 

(USPTO) 

Info 

Natural log of issued patents from classes 

41,380,382,395,700,701,702,704,705,706,707,7

08,709,710,712,713,714, 360, 365, 369, 711  

at USPTO 

Half-yearly serie from 

1980 to the first half of 

2014 

PatFT 

(USPTO) 

Source: own elaboration 

 

 

Figure 2 – Series transformed in natural logarithm (LN)  
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Table 2- Descriptive Statistics 

 

By looking at the graphics we suspect that all series all non-stationary. Nevertheless, this conclusion 

must be achieved through unit roots test. 

 

2.2 The VAR Model 

In order to evidence the contribution of biotechnologies to the production of NCE we depart from a 

Vector Autoregressive Model (VAR)5 composed by a set of K endogenous variables, given by the vector 

𝑦𝑡: {𝑦1𝑡, 𝑦2𝑡 , … , 𝑦𝐾𝑡 , }, and a set of M exogenous variables given by 𝑥𝑡: {𝑥1, 𝑥2, … , 𝑥𝑆}. Therefore 

VAR(p) is represented by following equation:  

𝑦𝑡 = 𝐴0 + 𝐴1𝑦𝑡−1 + 𝐴2𝑦𝑡−2 +⋯+ 𝐴𝑝𝑦𝑡−𝑝 + 𝐵𝑠𝑥𝑡  + 𝜀𝑡 (1) 

Where, 𝐴0 is the intercept vector; 𝐴𝑖  is a matrix of K x K  parameter for i = 0, ... , p;  𝐵𝑗 is a 

matrix of  K x M  coefficients where 𝑗 = 0,… , 𝑠  and 𝑥𝑡 is a vector of M x 1 exogenous variables; 𝜀𝑡 is 

a non-correlated white noise K x 1vector, therefore 𝜀𝑡  ~ 𝑖. 𝑖. 𝑑. (0; 𝐼𝑘).  
The VAR (equation 1) is conditioned to the series stationarity in time. Therefore, the first step 

into modeling is to confirm the series stationarity through unity root test.  

 

2.2.1 Unit Root Test  

In macroeconomic studies the non-stationarity of most common series, like: GDP, wages, nominal 

exchange rates, among others, is well-known. Nevertheless, within economics of innovation, stochastics 

processes leading to innovation aren’t a relevant premise, many cornerstone studies in special Nelson; 

Winter (1982) consider any process of technical change as a non-stochastics process. For that, this 

article adds one contribution, within innovation studies, by using time series and, therefore, indicating 

innovation, at least in the pharmaceutical industry, as a stochastic process.   

We use the Augmented Dickey-Fuller (ADF), the Phillips-Perron (PP) the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) as unit roots tests. Both ADF and PP have the same hypothesis but the 

KPSS has different ones, as showed next: 

 

                                                           
5 For further details see: ENDERS (2014). 

BIO INFO PHARM NME

 Mean 13.033 16.099 14.277 3.041

 Median 13.699 16.128 14.400 3.111

 Maximum 15.250 19.437 16.367 5.652

 Minimum 9.764 12.591 12.143 0.693

 Std. Dev. 1.747 2.032 1.069 1.061

 Skewness -0.410 -0.077 -0.095 -0.194

 Kurtosis 1.646 1.792 1.982 2.890

 Jarque-Bera 7.308 4.324 3.125 0.472

 Probability 0.026 0.115 0.210 0.790

 Sum 912.332 1126.935 999.400 212.864

 Sum Sq. Dev. 210.497 284.841 78.784 77.605

 Observations 70 70 70 70

Source: own elaboration 



8 
 

 

Table 3: Unit roots test’s hypothesis 

Test 𝐻0 𝐻1 

ADF and PP ∃ 𝑈𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ∄ 𝑈𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 

KPSS ∄ 𝑈𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ∃ 𝑈𝑛𝑖𝑡 𝑟𝑜𝑜𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑒𝑟𝑖𝑒 𝑖𝑠 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

Source: own elaboration 

First we conduct the tests for the series at level. As expected all series were non-stationary at 

1% significance, except the NME series.  

In order to advance the series analyses we conducted the unit roots test for all series in first 

difference. We expect that the first difference will eliminate the tendency making them stationary. In 

addition, if stationary at first difference we can identify the series order. 

 

 

Table 4: Unit root test (ADF, PP, KPSS) for the series in first difference  

 
Source:  Own Elaboration. 

 

As expected all series are stationary. The critical values at the ADF and PP are lower that the 

calculated t-statistics. In the case of KPSS the critical values are greater than the t-statisics. The only 

exception is the info, considering trend and intercept, in the KPSS test. Nevertheless, we can sustain 

the stationarity, in first difference, based on the ADF and PP.  

We conclude that all series are non-stationary integrated of order 1 –I(1). Therefore, we 

transform the data in order to conduct a VAR model (eq. 1). Unfortunately, VAR estimations allow 

only short run analyses (Enders, 2014). As discussed in in the literature the impact of biotechnologies 

is presumed to be a long run process. This makes VAR estimations an inadequate choice based on our 

hypothesis.  

NME Pharm Bio Info

1% -3.53

5% -2.90

10% -2.59

1% -4.10

5% -3.48

10% -3.17

1% -2.60

5% -1.95

10% -1.61

1% -3.53

5% -2.90

10% -2.59

1% -4.10

5% -3.48

10% -3.17

1% -2.60

5% -1.95

10% -1.61

1% 0.739

5% 0.463

10% 0.347

1% 0.216

5% 0.146

10% 0.119

Phillips-Perron (PP)

Augmented  Dickey-

Fuller  (ADF)

Test Type

NONE -29.98

INTERC -29.91

Significance Level Critical value

INTERC

TREND AND INTERC

NONE

t-Statisitics

-7.82 -11.64

-11.03 -10.49 -10.38

TREND AND INTERC -29.68 -11.59 -11.55 -32.29

-11.64 -11.61 -31.13

-7.72

-7.88 -11.23

-11.59

-11.74

-11.68

-5.54

-7.40

-7.37

-2.12

Kwiatkowski-Phillips-

Schmidt-Shin (KPSS)

0.395

TREND AND INTERC 0.100 0.080 0.058 0.419

INTERC 0.118 0.082 0.153
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One possible way to conduct a long run analyses is to search for, at least one, cointegration 

among the series, enabling us to conduct the adequate estimation and, therefore, conduction a long run 

analyses (ENGLE; GRANGER, 1987). The cointegration will allow us to conduct a Vector Error 

Correction (VEC) model. 

 

2.2.2 Cointegration analyses  

The search for cointegration among the information system in our innovative indicators is not an end in 

itself (JOHANSEN, 1988). This is a “modern” and few explored application in innovation studies that 

intends to identify long run effects at the NCE determinants. 

According to JOHANSEN (1988) the presence of just one cointegration is a sufficient condition 

for the existence of linear stochastic tendencies between the series used. This condition forces a 

correction in the VAR equation (1) making it a Vector f Error-Correction Model (VECM). Basically, 

this correction is to put the whole model in a first difference and create an Error Correction Vector, as 

shown bellow:  

Δ𝑦𝑡 = Γ1Δ𝑦𝑡−1 +⋯+ Γ𝑝−1Δ𝑦𝑡−𝑝 + Π𝑦𝑡−𝑝 + 𝛷𝐷𝑡 + 𝜀𝑡     (2) 

Where, Γ𝑖 = −(𝐴𝑖+1 +⋯+ 𝐴𝑝) for i=1, 2,...,p-1 and Π = α𝛽´ = −(𝐼 − 𝐴1 +⋯+ 𝐴𝑝).  

The α parameter is a matrix that represents the speed of adjustment of parameters at the short 

run. 𝛽 is a cointegration coefficient matrix between the variables at long run. Being both the parameters 

and matrix of length n x r in which n is the number of variables and r is the number of vectors in the 

cointegration matrix Π. 

In order to test for cointegration, first we have to choose the lags based on a Irrestricted VAR. 

The lags were chosen based on the following information criteria: 

 

Table 5: Lag selection according to information Criteria 

 

                                                                     Source: own elaboration 

Base on the results we adopt 2 lags. 

After selecting the lags we conduct the Johansen test for cointegration. There are five possible 

models of cointegration to be used (JOHANSEN, 1995), the chosen one is given by rank tests. Based 

on the Akaike Information Criteria by Rank and the Schwarz criteria we chose the model that contains 

the intercept at the cointegration vector and linear tendency at the cointegration vector and level. 

The Johansen test is presented in the table bellow:  

  

Criterion Order

AIC 2

HQ 2

SC 1

LR 2

FPE 2
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Table 6: Johansen methodology for cointegration test  

 
Source: Own elaboration 

*Null Hypothesis at 5% of significance. 

 

The p-value for the Maximum Eigenvalue and the trace test indicate the presence of at least one 

cointegration allowing the use of VECM. Therefore, we conducted the VECM in order to look for short 

and long run analyses. The results are discussed in the next section. 

 

3 Results and Discussion  

The VECM equation containing the coefficient estimations follows: 

 

 Π𝑡−1 = 1.000𝑁𝑀𝐸𝑡−1 − 0.815𝑃ℎ𝑎𝑟𝑚𝑎𝑡−1   −   1.434𝐵𝑖𝑜𝑡−1 − 0.372𝑖𝑛𝑓𝑜𝑡−1 + 40.490     (3) 
                                                               (0.75965)                     (0.58093)          (0.0803) 

                                                              [-1.07248]                    [-2.46859]        [-4.63274] 

standart deviation ( ) and t value [ ] 

 

The estimations for the long run equations in the VEC model allow us to identify a positive (+ 

1.434)6 and significant at 1% (t = -2.469) relation between NCE and Bio. Therefore, biotechnologies 

have a positive effect, in the long run, at the NCE, proving H2. We stressed that all signals were 

expected. 

Our results corroborate the qualitative studies in the literature review. The recent development 

of biotechnologies and their systematic use for discovering new medicines only began after the Cohen-

Boyer patents. So, their impact could only be observed in the long run, more interesting, we saw the 

lack of impact from Pharma patents. Therefore, our results are in line with Brown; Boström, 2018. 

The VECM also allows to observe short run impacts. Table 6 shows the main short run impacts 

at 5% significance level. 

  

                                                           
6 In VECM models the signals are changed. Therefore, positive sign means negative effects and negative signs 

means positive effects. 

Test Hypothesis Eigenvalue
 Statistic 

(λ)
Critical Value Prob.*

r = 0 0.44 53.14 42.92 0.00

r≤1 0.16 14.10 25.87 0.65

r≤2 0.04 2.61 12.52 0.92

r = 0 0.44 39.03 25.82 0.00

r≤1 0.16 11.49 19.39 0.46

r≤2 0.04 2.61 12.52 0.92

Maximum Eigenvalue

Trace
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Table 7: Short Run Estimations  

 
Source: Own elaboration 

***sig. a 1%. 

**sig. a 5%. 

*sig. a 10%. 

 

In the short run, only the past year NCE have a significant effect at the actual NCE. This fact 

shows cumulativeness effect on new NCE. The other variables: Pharmt-1, Biot-1 and Infot were not 

significant, therefore we do not confirm H1. Even though being not significant (at least at 5%), infot  

had positive impact, as we expected.  

The impact of previous NCE on future NCE is a very similar result to the one of Brown; Böstrom 

(2018). These authors have analyzed 66 published clinical candidates and the methods used to 

“discover” them. As result, Brown; Böstrom (2018) show that the 43% were based on already known 

compounds. Our results are much broader, because they encompass all NCE issued at the US, in 

addition, we are evidencing an industry strategy of utilizing past compounds to generate new ones. 

Nevertheless, the short run findings prove a relevant neo-shumpeterian hypothesis regarding 

cumulativeness in the innovation process. In essence our model proves, in short run, the impact of past 

knowledge.   

This article analyses have long been the subject of cornerstone studies (such as: Pakes; 

Griliches, 1980; Hausman; Hall; Griliches, 1984; Griliches, 1998). In fact, we analyze the role of 

knowledge, more precisely, we, as Griliches, were looking for the additions on useful knowledge made 

by patents (Griliches, 1998). This subject was not forgiven, much less, solved. Recent studies are 

looking at this same question in various ways, for example: Mokyr, 2002; Cowan; David; Foray, 2000; 

Nelson, 1999; Foray; Hargreaves, 2003. In sum, we could shed light on the subject of useful knowledge. 

In the pharmaceutical industry, this can be better observed and calculated due to the industry 

dynamics. We can assure that NCE are useful knowledge, they represent candidates that surely will 

become new drugs and patents measure more than useful knowledge. 

Our article indicates a relevant process that can be understood in a time perspective. In the long 

run Biotech patents have impact over NCE. Therefore, these patents impact are observed in the future, 

after they go through several selection environments, for then being able of impact NCEs. So, patents 

take time to be “part” of NCEs. In the short run, the already selected knowledge (the NCE) are much 

more useful than patents. Therefore, we were able to answer an extremely relevant question: the impact 

of patents in useful knowledge.  

 

Conclusions 

 

In this article we try to prove two hypothesis: H1- Pharmaceutical technologies had a positive 

effect on technological outputs at the short run and H2- Biotechnologies have a positive effect on 

technological outputs at the long run.  

Variable Coef. Standard errors

-0.1254*  0.092

-0.735***  0.087

 0.604  0.696

-0.757  0.706

      const  11.056*  7.828

-0.678*  0.482

0.651

       Observations (n) 68

 𝐵𝑖𝑜𝑡−1

 𝑃ℎ𝑎𝑟𝑚𝑡−1

 𝑁𝑀𝐸𝑡−1

𝐼𝑛𝑓𝑜𝑡

 2

 Π
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We consider biotechnology as new set of technologies highly used in the pharmaceutical 

industry in order to improve their innovative process. The systematic use of biotechnologies is relatively 

new when compared to the industry’ age.  

In order to prove our hypothesis, we conduct a VECM model. Our data was fully suited for that 

analyses, we had 70 observations from 1980 to 2014. The model has allowed us to prove H2. Although 

the pharmaceutical variable was positive, it was not significant in the long run. Perhaps, on the one 

hand, it can be explained by the period of our sample because it favors the increase in biotechnological 

applications. On the other hand, the decline use of random screening process could be caused by the 

rise of biotechnology, thus affecting the impact of pharmaceutical patents on NCE. For this reason, we 

have had no conclusive results in this regard, and will be referred for another investigation. 

One interesting result that goes beyond our hypothesis was the impact of past NCE in new ones. 

The short run effects have consistently show past NCE as the only significant variable on explaining 

future NCE. This fact is an interesting conclusion among the studies of Innovation because it proves 

and show cumulativess in the innovation process. 

Despite the conclusion about the industry as a whole. This article allowed us to explore an 

interesting element among the innovation studies. Due to the industry dynamics the impact of patens in 

NCEs are also the impact of patents at the useful knowledge. This subject was long posed by studies 

conducted by Griliches, but it is still an extremely relevant subject due to several problems that a Neo-

Schumpeterian knowledge theory have in explaining and measuring the real impact of knowledge over 

innovation. 
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