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Resumo 

Jogos de Guerra são uma ferramenta inestimável para os militares. Eles podem 

apoiar uma gama de atividades, tais como planejamento, treinamento, educação e avaliação de 

cenário. Simuladores têm sido desenvolvidos para uso em Jogos de guerra a fim de prover a 

capacidade de representar a dinâmica do cenário. Atualmente, os paradigmas da guerra têm se 

alterado devido ao crescente número de operações conjuntas envolvendo diferentes atores. 

Para apoiar estes novos paradigmas são necessários Jogos de Guerra conjuntos. Contudo, os 

simuladores utilizados pelos Jogos de Guerra normalmente não possuem a capacidade de 

interoperar. Existem problemas envolvendo os conceitos compartilhados, protocolo de 

comunicação e sobre o avanço do tempo de simulação, por exemplo. O avanço do tempo de 

simulação é um desafio, uma vez que os simuladores são rotineiramente projetados como 

scaled-time com a capacidade de acelerar a simulação a fim de manter a dinâmica do jogo e 

evitar que os jogadores fiquem desocupados. Devido à falta de recursos computacionais, um 

simulador pode não ser capaz de seguir a nova taxa de avanço, mais rápida que a anterior. 

Este trabalho apresenta uma arquitetura projetada para permitir o desenvolvimento de 

simulações de ambientes virtuais compostas por simuladores scaled-time com a habilidade de 

alterar a taxa de avanço da simulação em tempo de execução. A arquitetura adapta a taxa de 

acordo com informação de retorno recebida pelos simuladores agregados. São também 

apresentados uma implementação da arquitetura em uma solução multiagente aplicada a um 

cenário naval. 

Palavras-Chaves: Jogos de Guerra; Simulações de Jogos de Guerra; Interoperabilidade 

de Jogos de Guerra. 

Abstract 

 Wargames are an invaluable tool for military. They can support a range of activities, 

such as planning, training, education and scenario evaluation. Simulators have been 

developed in order to provide wargames with the ability to represent the scenario dynamics. 

Currently, the number of joint operations involving different actors are increasing, changing 

the war paradigms. In order to support these new paradigms, we need joint wargames. 

However, the wargames’ associated simulators are frequently unable to interoperate. There 

are concerns about shared concepts, communication protocol and simulation-time advance, as 

examples. The simulation-time advance is a challenge, since these simulators are frequently 

designed as scaled-time with the ability of speeding-up the simulation, in order to maintain 

wargame dynamics and to avoid players being idle. Moreover, due to the lack of 

computational resources, a simulator may not be able to follow a faster rate. This paper 

presents an architecture designed to allow the development of virtual environment simulations 

composed of scaled-time simulators with the ability to change the simulation-time advancing 

rate. The architecture adapts the simulation rate according to feedback information provided 

by the joint simulators. The paper also presents the architecture implementation in a multi-

agent solution and its usage in a naval scenario. 

Keywords: Wargame; Wargame Simulation; Wargame Interoperability. 
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1. INTRODUCTION 

A wargame is a warfare model or a simulation whose operation does not involve 

actual military forces, and whose sequence of events affects and is affected, in turn, by 

decisions made by players representing opposite sides [12, 28]. In a nutshell, in a wargame, 

we have players who will command simulated units in a mock operation. These games are an 

invaluable tool for the military forces, and are applied in activities such as training, education 

and analysis. Wargames can be classified as serious games [3], and their concepts have been 

applied to areas other than the military, such as politics, logistics and business [12, 14, 28, 

32–34]. 

Warfare paradigms have changed since the last global conflict when wargames were 

widely applied. Nowadays, information flows quickly, and concepts such as network centric 

warfare (NWC) [5], power to the edge [6] and effect-based operations [35] have flourished in 

the past two decades, following not only technological advances, but also new menaces and 

actors in war. Additionally, non-military actors and asymmetric warfare are a new reality on 

the battlefield, which is sometimes referred to as a complex endeavour [4]. As a consequence 

of these moves, military forces need to interoperate in an integrated and live command and 

control (C2) system: for example before and during an air raid, the commander of the air force 

component needs to be informed in time about naval units, non-governmental actors, enemy 

movements, and so on. In the event of a pilot being lost, the support of the special operations 

component on the field could be immediately required. This integration, here exemplified at 

the tactical/operational level, is related to the concept of interoperability. 

The interoperability of C2 systems is an active field of research, mainly centred on 

technical integration of existing systems. However, the integration of C2 software systems 

does not ensure interoperability, for which new doctrines are needed with associated 

procedures. It is needed to test and polish these doctrines and procedures, and to train officers 

on it. Furthermore, the most suitable tool to perform these activities is a wargame. During the 

game, it is possible to test new ideas, have insights and change decisions at a cost much fewer 

than in a real environment. Once the procedures are defined, the same wargame is useful to 

train and educate military personnel. 

However, this implies performing joint wargames, with each component or actor of 

the operation’s theatre interacting with others. Performing these joint games is not a simple 

task: wargames have been developed over decades and are mainly centred on one specific 

component. The air force, army and navy have different cultures and concepts, and these are 

represented in their C2 systems, and also in the wargames they use. These wargames have 

specificities from a higher level of abstraction, related to procedures, concepts used in the 

games, to a lower technical level, related to the simulator and the solution it uses to generate 

the simulated environment. To create such joint wargames, with the consequent shared 

environment, the following are necessary: a communication protocol, to coordinate the 

information flow between simulators; a data model able to represent the needed shared 

concepts; and a mechanism to handle the advance of the overall simulation or, in other words, 

to advance the simulation-time, which is the logical abstraction of the physical-time in the 

simulation [16]. 

The problem of advancing the simulation-time in joint wargames is a challenge, 

mainly because the involved simulations are frequently scaled-time [29]; that is, the 

simulation-time is advanced following a linear relation to the advance of the physical-time. 

Furthermore, wargames tend to have implemented mechanisms to speed up the simulation 

when possible, in order to optimize the resources employed on it. While there are solutions 

and industry standards to interoperate simulations; these are not able to handle the changing 

of the simulation-rate at execution time, for example. 

Another issue that arises from this situation of joint scaled-time simulations is that all 

the simulators need to advance their representation of the simulated environment (simulation 
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models) according to the current rate. However, some simulators may not be able to follow 

the stated rate due to a lack of computational resources. Thus, inconsistent states could 

appear, with simulators showing elements at different times (i.e past, present and future) as if 

they were on the same temporal snapshot. 

To address this problem, this paper presents an architecture that provides a central 

simulation clock for joint scaled-time simulations and can adapt the simulation-rate to a 

suitable value at execution time, using feedback provided continuously by the joint 

simulators. The work is presented as follows: the next section discusses the problem and its 

underlying technical challenges; Section 3 presents the suggested architecture and an example 

of implementation. Section 4 shows a conceptual example of use and in Section 5 we discuss 

the results. The conclusions are presented in Section 6 . 

2. THE PROBLEM 

We present here some general concepts about wargames and a brief discussion about 

the issues that interfere with interoperability. Afterwards, a short discussion about the 

supporting simulators and the challenges for their interoperation is also presented. 

2.1. WARGAMES 

Wargames, as we understand them, came from the Koenigspiel (1664 AD) and the 

more recent Kriegsspiel (1811 AD), and have been evolving in different ways in military 

forces and countries. The books from Perla [28, 12] and Sabin [33] provide an excellent 

overview of the theme. 

There are wargames played on tables, where opponents play in turns, taking 

decisions and following some set of rules. These games allow a fruitful brainstorm, and are a 

common tool used by military staff for planning and intelligence analysis, and military history 

study. Some games are played on real-time simulations with the men-in-the-loop, such as 

flight simulators for the air force, tank and helicopter simulators to army or ships bridge 

simulators for navy. These simulations are mainly used for training and testing, frequently 

from the tactical to the operational level. Another type of game, which is the focus of our 

research, is played only by the military at the operational/strategic level, i.e by the 

commanders and their staff. All commanded military units are then simulated in a virtual 

environment, and the simulator takes care of evolving these units along the simulation-time, 

according to some plan and the interventions made by players and/or the empire - the game 

judge or director. These games can cover months of military operations and are played over a 

number of days, or even weeks, and their supporting simulation is classified as a constructive 

simulation by [16]. 

These strategic/operational wargames are highly expensive; however, the outputs 

that come from their execution are very important. The game infrastructure comprises 

technical people with a background in computer science, system modelling, military 

operations, logistics, communications, and so on. The examples we have verified during our 

research suggest that these games are conducted in a permanent building with dedicated 

rooms and hardware. The supporting simulator is dedicated software, developed to the 

specific problem. Some of these games have been evolving for more than 50 years. 

The players’ cost also influences the execution of wargames: these players are senior 

officers and advisers, and it is difficult to have such a group spared from their daily activities 

to run the game. Matching their agendas is a challenge and, because of this, except in 

exceptional situations, wargames are scheduled months in advance. The game agenda needs 

to be strictly respected, since the players will leave the game facility on the scheduled date. 

Thus, in order to improve the cost/benefit relationship, a common procedure is to 

speed-up the game when no intervention is required from players. As an example, if an air 

raid has just been launched, and no action will be carried out before it bombs its target, the 
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game judge could increase the game advancement rate, avoiding the players being idle. 

Wargames aim to insert the players in a situation that is possible in the real world, 

and military commanders are required to handle imprecise information, or even the lack of 

needed information, and to decide against the time in a dynamic environment. Thus, some 

level of imprecision is acceptable for wargames, such as delays in providing information to 

players. These delays are limited by the need in maintaining the feeling of reality. 

2.2.  SIMULATIONS FOR WARGAMES 

To support this variation on the simulation-rate used for advancing the game, the 

associated simulator needs to be implemented as a scaled-time simulator with support for the 

changing of this rate at execution time. However, looking to the wargame interoperability 

problem, this approach prevents the use of industry standards for interoperating the 

underlying simulators. The most-used standards and solutions for simulation interoperability 

are HLA and DIS [36], and both of them were developed to interoperate real-time or scaled-

time simulations at a fixed rate. Furthermore, DIS [1] is UDP based, using broadcast 

information over a local network, but wargame facilities are frequently placed at military 

training centres or at academies for command staff, rarely being close to one another. 

Additionally, the simulation interoperability is affected by delays that can occur in 

the shared virtual environment. A possible consequence of these delays is having elements 

represented in the same virtual space but with different simulation times and being part of the 

context for each other [13]. For example, an entity representing a frigate could start engaging 

a fighter that flew past it minutes earlier and should now have faded from its sensors. 

A number of factors can lead one simulator to be delayed in relation to others, such 

as: network delays; lack of computational power to face the established simulation-rate; and 

exogenous events (e.g interruptions to the simulator thread commanded by the operational 

system to answer an I/O call). A solution for interoperating in such a simulator needs to 

consider these delays. HLA [2], besides not supporting simulation rate variation, takes the 

approach of excluding from the simulation environment simulators that do not comply with 

the simulation-time advancing constraints. This approach is not acceptable in our problem 

domain, since the exclusion of one of the simulators implies in removing one military 

component from the joint game, such as the navy or the political component. This exclusion is 

likely to invalidate the wargame outputs. On the other hand, wargames can admit a relative 

level of delay, which adheres to the concept of virtual environment simulation (VES) 

presented in [16], that describes the precision to matching times when executing simulated 

events (or updates in time-directed simulations) as having flexibility. Furthermore, this 

flexibility in accepting delays is consistent with human perception of reality or to some 

constraint from the VES components. The VES concept is initially defined for real-time 

simulations, but we extend it to scaled-time simulations. In the cited work, Fujimoto also 

presents the concept of distributed virtual environment simulation (DVES) which comprises 

the creation of a shared virtual environment using a number of simulators that communicate 

with each other through a network. Thus, the problem could be re-stated as how to establish 

joint wargames as DVES. 

An important information when designing a DVES is the characteristics of each of 

the joint simulators, since there are different approaches to represent dynamics of the 

simulated system, such as time-directed simulation (TDS) and discrete event simulation 

(DES). The same occurs when discussing the way in which the simulation-time is advanced: 

the most-used approaches are real-time, paced-time and as fast as possible [17, 21, 48]. It is 

impossible to ensure, before-hand, which approach is used by wargame simulators to be 

integrated.  

The distribution of the current simulation-time to all DVES components is not a big 

challenge, since it could be achieved using existing techniques. On the other hand, ensuring 

that delays will remain at acceptable levels is an open problem from the real-time systems 
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field - see [20, 11] for more information about delays when executing scheduled actions. 

Furthermore, these delays are not caused at the application level, considering well-developed 

software, but by the inability to match the scheduled time for execution due to lack of 

resources. 

Thus, consider the relation Ts = K.Tr, where Ts is the simulation-time, K is a linear 

constant, i.e the simulation-time advancing rate, and Tr is the physical or real-time. A limited 

value for K will cause the physical-time available to perform the computation not to be 

sufficient, inducing tardiness due to the discussed lack of computational resources. 

Additionally, due to the dynamic nature of the computational environment, this limit-value for 

K changes over time. For example, I/O routines can interrupt the simulation process, using 

CPU time, and generating unexpected delays in this component of our DVES. In this way, it 

is not feasible to foresee an adequate maximum value for K before executing the simulation in 

a production environment. 

The need to changing K’s value at execution time to speed-up the wargame inserts 

more complexity into the possible solution. This is because the available time to execute some 

scheduled action will be shortened, which increases the likelihood of excessive delays. In 

contrast, when the value of K is reduced, the physical-time available to execute an action is 

dilated, decreasing the probability of delays. 

In order to handle the problem of the simulation-time advancing in DVES applied to 

joint wargames, we have undertaken research in the works presented in [38–45], and that has 

led to the development of an architecture for implementing DVES with scaled-time and a 

variable simulation-rate. 

3.  THE PROPOSED ARCHITECTURE 

In order to address the problem, we have specialized it to one instance, and then 

developed a solution which could be further applied to a more general case. The instance 

chosen was DVES developed with Multi-Agent Based Simulations (MABS). The decision 

was supported by the following factors. 

Initially, agent technology facilitates an easy mapping between the concepts of real-

system actors to software agents [15], and from the software engineering point of view, it has 

advantages in maintainability and evolution of the simulation model, since interventions can 

be executed directly in the agents, which are inherently loosely-coupled [25]. 

MABS also offers the possibility of modelling and instantiating the system at the 

micro-level, and observing the overall system behaviour afterwards, which is interesting when 

simulating complex systems [23, 30]. Additionally, DVES developed with MABS in which 

agents have control of their own execution thread presents extra complexity, since each 

simulator behaves internally as a parallel simulation, causing delays between its threads. 

Finally, a number of mature MABS platforms are Java-based or provide support for 

the language [7, 22, 24, 37, 46], and Java is one of the most-used programming languages in 

industry. However, standard Java technology provides no guarantees about achieving 

schedule times by construction. Java programs run on virtual machines (VMs) and have no 

direct access to main memory. Furthermore, Java threads have no standard to define how they 

are matched to the operational system threads [26]. The mechanism that controls the memory 

used by each VM, called a garbage collector (GC), can suspend the Java program during the 

collection. 

The proposed solution is composed by a multi-agent based architecture that is 

presented in Figure 1. The heart of the solution is a distributed simulation clock: each 

simulation that joins the DVES needs to comply with the simulation clock’s interface. All 

joint simulations receive the current simulation-time and rate from this clock. Additionally, 

these joint simulations also need to provide feedback on their delays at an established 

frequency. 
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The simulation clock is formed by the central clock and the slaves. The slaves are 

responsible for receiving the current simulation-time and rate from the central clock and for 

making this information available to the joint simulations, or simulation agents in a MABS. In 

the same way, these slave clocks collect information about delays and summarize it to the 

central clock. 

The central simulation clock has similar features as the slaves, and, additionally, it 

runs the algorithm that adapts the simulation-rate to a suitable value for all simulation 

components. This routine is performed in frequent cycles, where the interval is a parameter 

established according to the simulation model, by the user/developer. 

3.1. TAMING DELAYS 

The reasoning behind the approach is to substitute K by F( ) in the relation Ts = K.Tr. 

The parameters of F() use the concept of tardiness as a measure for delays. To calculate 

tardiness, we use a non-dimensional value which indicates how much the execution duration 

is greater than the programmed, considering the physical-time. The reference to calculate the 

delay is the instant T0 , which is the time when the action was scheduled. The used tardiness 

formula is: 

𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠 =  
𝑇0−𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑇0−𝑇𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑒𝑑
 -1 

 

Given the tardiness concept and measure, the F() used to substitute K is: 

 

𝑇𝑆 = 𝐹(𝑏, 𝑚𝑡, 𝑛𝑡, ℎ). 𝑇𝑟 

 

In the proposed relation, the variables have their values updated before running the 

algorithm to calculate the new F(b, mt, nt, h), whose value will be used to update the 

simulation-time in the next cycle. In the same period, the main clock will receive data to 

update the variables values for the next cycle. The variables are as follows: 

 b - current bias of the tardiness; 

 mt - maximum value of tardiness received during the last update cycle; 

 nt - the number of tardiness measures that were above the established limit; and 

 h - the number of cycles the DVES has been performing without exceeds the tardiness 

Figure 1: Architecture 
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limit. 

The simulation-rate control algorithm implements a heuristic that has a non-linear 

behaviour. This heuristic was developed and refined during the research, and it responds 

differently according to the input. It is not a function, since it has some points of discontinuity 

that can be triggered by high values of tardiness. Additionally, the architecture is modularized 

in a way that the substitution of this algorithm can be done without affecting the other 

components. 

Considering the control algorithm, it is likely that, for specific cases, a better solution 

could be achieved by substituting it by a neural network or even a support vector machine 

(SVM) [47]. However, these tools need to be trained for a particular DEVS in its production 

environment. Thus, they are inappropriate for the general case. 

The architecture considers that each simulator will be wrapped by a simulation agent. 

These simulation agents are responsible for interfacing with the simulation clock and for 

collecting the tardiness information. The tardiness information is generated inside this agent, 

through a parallel thread that runs a cyclic behaviour and collects its tardiness at each 

execution. 

These agents are active objects in the architecture, or, in other words, they must be 

implemented as a thread in order not to interfere with the clock and the legacy systems. 

Additionally, these simulation agents can also be extended as new simulators, as presented in 

our example of instantiation. 

3.2. THE ARCHITECTURE INSTANTIATION 

The proposed architecture was instantiated as a platform to develop DVES in which 

the joint simulations use the DES formalism [49, 48] and was coded using Java technology, 

libraries and platforms to develop multi-agent systems and multi-agent based simulations 

(MABS). 

In order to choose the underlining platforms, we conducted our own review, 

supported by other works presented in [9, 31], and the final option fell on MASON [22]. 

MASON is a mature and well-known platform to develop MABS. It allows the execution of 

DES and provides a comprehensive set of libraries. However, it does not have a native 

support for being used in DVES. 

Since MASON does not support scaled-time simulations, a new behaviour was 

included in the simulation agents from the architecture to control the advancing of the 

simulation-time in MASON. In a nutshell, the simulation agents advance the MASON 

simulation state to the current simulation-time at each cycle, following the timestamp of the 

events in the discrete-event queue of each MASON instance. 

Since a communication mechanism and also a shared representation of the 

environment is needed to conduct the wargames, we have implemented the following 

solutions, in addition to the architecture: 

 A communication component, inspired by the LINDA [10] architecture: agents can 

send information through this component to a list of destinations, and also recover 

messages sent to them by other agents.  

 A spatial shared state component: this component receives virtual space updates from 

agents’ position and attitude, and answers queries from agents about simulation 

entities in their visible space. 

Both components are connected to a database with geographic information support 

(i.e PostGIS/PostgreSQL) and all data is stored for posterior analysis or playing-back. To use 

these features, a shared data model between the simulators is needed, both semantic and 

syntactic. The current implementation does not provide a template for shared data models; it 

is up to developers to choose a suitable model. 

The final DEVS is composed of simulators that interact with each other and advance 
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by the same simulation rate over the simulation-time. The shared spatial representation and 

the communication components provide a point of extension where it is possible to monitor 

all the simulation and to interfere with the joint MASON simulators through message sending. 

The platform implementation was done using the following frameworks and libraries 

(Fig. 2): JADE [8], MASON, Jena [18], JTS [19], and PostGIS. All communications between 

components that run on distinct processes or simulators were implemented using remote 

method invocation (RMI), a Java implementation for the CORBA specifications [27]. 

 

 

4. EXAMPLE OF USE: SUBMARINE HUNTING 

A scenario was implemented to test the solution, and also to exemplify its use. This 

scenario consists of a number of escort ships that hunt a submarine, which is placed in a patrol 

zone and is engaging merchant vessels. The general behaviour is simple: 

 Submarines try to sink all ships detected in the torpedo range, and evade (hide) after 

an attack; 

 Escort Ships search for the submarine, sharing its position to the other escort ships 

when it is detected. If they have a submarine target in torpedo range, they fire on it; 

and 

Merchant Ships cross the area and are eventually sunk. Each ship/submarine is itself 

a MASON simulator able to handle its own knowledge base, updated by sensors and external 

inputs. These simulators implement the actions to be performed by ships/submarines as 

discrete-events actions extending the MASON models. These actions are triggered at the 

appropriated simulation-time by the simulation agents from the architecture. 

The environment used to execute this DVES was formed by two computers, one of 

them running two instances of MABS in virtual machines and the other with only one 

instance. The number of MASON simulations joined on the environment varied from 1 to 120 

during the experiment, and the maximum number of agents in each joined simulator was 40. 

Each MASON simulation represents one military unit, and each MABS instance represents 

one joint wargame, i.e simulator. 

During the experiment, sets of MASON simulations were joined and removed at 

execution time, to verify the heuristic capability of adapting the simulation-rate under harsh 

changes. 

Figure 3 presents a snapshot from the shared environment, where each point 

represents a MASON simulation, that is, a ship or a submarine. The simulation takes place in 

the west entry of the English Channel, and the picture was captured using the software QGIS 

2.6 connected to a geographic database. 

Figure 2: Implementation 
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Finally, the graph depicted in Figure 4 shows the variation of the simulation-rate 

over 25 minutes of simulation, measured in wallclock-time. The wallclock time is measured 

in physical time, stating with the simulation [16]. During the experiment, the tardiness was 

controlled; however, about 8% of the tardiness measures were greater then the limit of 0.2 

established for this test. The graph represents one test that was initiated with one node with 10 

agents, and after 5 and 10 minutes, other nodes with were joined to the simulation. These 

nodes were removed from the simulation in minutes 15 and 20. The consequence of these 

movements can be observed in the graphs. 

 

5.  GENERAL DISCUSSION 

The problem of interoperating wargames depends on a solution to interoperating its 

constructive simulations; which simulators have some specificities that prevent the use of 

standard solutions as HLA or DIS. The presented architecture has been developed to address 

these issues, and provides a solution to simulation-time distribution under a flexible 

simulation-rate. The architecture was conceived aiming at a flexible solution both to 

implement DVES and to integrate legacy simulators, providing components that act as 

interfaces. 

Specific features for supporting a global representation and the information exchange 

between the joint simulators were not incorporated into the architecture, due to its focus on 

the handling-time issue. We have implemented basic support for testing purposes in the case 

study. However, in our view, the federation object model (FOM), which is part of the HLA 

standard, could be used as a base for a more comprehensive work. The FOM is well 

experimented and decoupled from the HLA time management. 

The architecture does not aim to eliminate tardiness: it is designed to ensure that the 

simulation runs below a maximum tardiness level. The key is to define a level of tardiness 

that will not compromise the users’ perception of reality. We didn’t find, during our review, 

works with a focus on the interoperability of wargames simulators with similar characteristics 

as those discussed throughout this work. 

The presented implementation, using a Java-based multi-agent system on distributed 

Figure 3: Sub Hunt 
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environment, is a complex scenario for taming tardiness. Besides the usual problems, Java-

based multi-agent system are usually multi-threaded and have a number of issues relating to 

time-scheduling that affect performance. The example of use is simple and constrained by the 

resources available to conduct it. Despite this, this example was sufficient to check all 

platform features and specifically the tardiness control efficacy. 

6. CONCLUSION 

This paper presents a solution to a specific industry problem in the military domain, 

which is interoperability for constructive simulations used in wargames. The issue affects 

only a small number of simulators, but these systems are used both to conduct planning and 

training activities at strategic/operational levels. This means that the players are frequently 

highly-ranked military or civilians involved in defence affairs. A solution to this problem is 

pressing, since joint wargames are needed both for training and for establishing new 

procedures under the new paradigms of joint military operations in complex endeavours. 

Moreover, wargames are one of the most useful tools to exploit and analyze new scenarios. 

Interoperability between the supporting simulators is a major step needed to 

interoperate wargames and to produce a shared virtual environment. The dynamic view of the 

overall military operation is important for devising interesting outputs, such as: the need for 

new processes to avoid mutual interference in war operations; a logistical bottleneck in a 

multi-modal system being tested to face a hypothetical natural catastrophe (e.g floods); or to 

train the people responsible for governmental agencies (e.g homeland security, police, health 

structure), to respond in a coordinated way to a hurricane approaching the coast. The cost of 

not performing the games could be unacceptable in these cases. 

The solution presented is a conceptual architecture, which was further detailed and 

implemented for testing purposes. The results indicate a viable solution, which is not optimal, 

having space to be improved and refined, or even substituted in the future. However, it is a 

feasible solution, which was designed to be applied with minimal intervention inside 

wargames simulators. 

As a suggestion for future work, the architecture could be extended to provide a 

middleware platform for message exchange. 
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