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ABSTRACT

Similarity searching supports several computational tasks, such as classifi-
cation and content-based retrieval. A plethora of indexes has been proposed aiming
at enhancing similarity queries, being the Omni-family one of the most versatile.
The main strength of Omni methods is they handle the data elements regarding a
small set of carefully selected pivots. In this study, we improve the Omni-family
and create a new class of indexes called Omni-histograms. Our approach summa-
rizes distance distributions to Omni-pivots in such a way histograms’ buckets are
also employed for the partitioning of the search space into disjoint regions. The re-
sulting structures boost query executions by using the frequency within each region
for limiting both disk accesses and distance calculations. Experiments on real-world
datasets showed our approach outperforms existing methods in up to 113%.
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1. INTRODUCTION

Similarity searching is one of the most employed paradigms for the handling
and querying of data that are “alike” but not “equal”. The paradigm supports a
broad variety of computational tasks, such as clustering, classification, and content-
based retrieval [1, 2, 3]. In those tasks, a type of query that is often requested
in practice is the k-nearest neighbor (k-NN) query. Examples of k-NN searches
include: (Q1) Find the 3 closest beaches to ‘Copacabana Beach’, and (Q2) Find
the 5 paintings of the ‘Renaissance period’ which are the most similar to ‘Mona
Lisa’. Notice (Q2) contains a filtering condition on the orthogonal attribute ‘Art
Period’, which limits the candidates to the query answer [4, 5].

Different metric access methods have been proposed to speed up similarity-
based queries [6, 7, 8]. Such methods accelerate similarity searches by targeting an
optimization criterion, such as the number of disk accesses, the number of distance
calculations, or the overhead caused by the querying algorithm [9]. One of the most
versatile strategies for improving k-NN search is the Omni approach [8], which aims
at reducing both distance calculations and disk accesses. It uses a few, but relevant,
elements from the dataset as pivots to create new and multidimensional represen-
tation for each data element [10]. If an underlying access method is employed for
the handling of these new representations, then distance calculations are avoided by
following both the triangle inequality distances to the pivots and the pruning rules
of the underlying structure. Therefore, the Omni approach can be implemented on
top of disk-based indexes, such as B-Tree [11], R-Tree [12], or even Sequential Scan.
Notice a new access method is generated whenever the Omni approach is coupled
to an existing one, which creates the Omni-family of access methods [8].

Traditionally, statistics derived from distances between data elements are
employed for enhancing the execution of similarity searches [13, 14, 15]. Moreover,
recent studies indicate distance distributions characterize the effectiveness of metric
indexing strategies [13, 16, 17]. Seizing the performance enhancement brought by the
Omni approach, this paper employs pivot-based distance histograms for the creation
of a new class of access methods, which we call Omni-histograms. They distinguish
themselves by their partition constraints, which leads to distinct organizations of
the search space and different performances in the execution of k-NN queries. In
this paper, we focus on five Omni-histogram variants that cover most of the par-
tition strategies, namely Equi-Width, Equi-Depth, V-Optimal, Compact-distance
Histogram and Curve-Fitting. The idea behind our structures is the creation
of disjoint and pivot-indexed regions, which are also the bucket boundaries for his-
tograms of distance distributions collected from the pivots’ perspective. Accordingly,
the frequency within each region is available before the query execution and enables
the bounding of both disk accesses and distance calculations.
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We performed extensive experiments on real-world datasets for comparing
the performance of Omni-histograms and previous Omni-family methods in the task
of executing k-NN queries with and without orthogonal attributes. The results
indicate Omni-histograms achieved significant gains for queries in arbitrary search
spaces. Therefore, the contributions of this study are summarized as follows:

1. We introduce the Omni-histogram class of access methods. Omni-histograms
organize the search space according to pivot-based distance distributions, and

2. We propose a bounded and incremental k-NN search algorithm over Omni-
histograms whose parameters are automatically calculated.

The remainder of the paper is organized into four sections. Section 2 pro-
vides the background on similarity searching and discusses related work. Section 3
introduces the Omni-histograms, their settings, and algorithms. Section 4 provides
an evaluation of Omni-histograms, while Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1. Similarity searching

Similarity searching is the information retrieval process in which the query
includes an element of a domain, and the answer is composed of a set of elements of
the same domain that are somehow similar to the query instance [18]. Among the
several types of similarity queries, two are the most basic, namely the range query
and the k-nearest neighbor (k-NN) query [1, 9]. Let S be a data domain, S ⊆ S
be a set of elements, and δ be a metric that holds the properties of symmetry, non-
negativity, and triangle inequality, then the pair 〈S, δ〉 is a metric space in which
similarity searches are performed [19]. Given a query element sq, a range query
Rq retrieves all elements of S which are at most a given threshold ξ ∈ R+ from sq
such that Rq (S, sq, ξ) = {si ∈ S | δ(si, sq) ≤ ξ}. In contrast, k-NN queries return
a quantity k of elements whose distance to the query element sq are the smallest.
Therefore, a k-NN query is a variation of the Rq query, i.e., a Rq with a set radius
ξ such that |Rq| = k [14]. The pair 〈sq, ξ〉 defines a closed query ball in the search
space, which covers more or fewer elements according to ξ. Therefore, small values
of ξ may lead to empty result sets, whereas if ξ is indiscriminately increased, all
elements of S can be returned [2, 20]. Since k-NN queries enable to control the
result cardinality, reducing their execution time is the focus of our investigation.

2.2. The Omni-family of access methods

Pivot-table strategies [9, 10] rely on precomputing and storing distances
δ(si, p) of the elements si ∈ S to a set of pivots p ∈ P . Therefore, given a range query
Rq (S, sq, ξ), the triangle inequality property of metric distance functions ensures
elements sj ∈ S outside the query ball 〈sq, ξ〉 comply with pruning rule |δ(sj, p)−
δ(p, sq)| > ξ for at least one pivot p ∈ P [18]. The Omni approach [8] combines such
a pruning rule with the clustering of precomputed distances to reduce both distance
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calculations and random disk accesses by means of the querying algorithm. The
approach clusters the precomputed distances by means of a broad set of underlying
access methods so that incremental k-NN searches [21] can be executed. Accordingly,
both the triangle inequality distance to the pivots and the pruning rules of the
underlying access method are used for avoiding distance calculations. Omni-pivots
p ∈ P ⊆ S are fetched in linear time by the Omni Hull-Foci algorithm, and the
number of pivots is calculated as the dataset fractal dimension (dDe) [8]. Every
element si ∈ S is mapped into an Omni-coordinate through P , as in Definition 1.
Figure 1 provides an example of such mapping for (a) one, and (b) two pivots.

Definition 1 (Omni-coordinate). Given an ordered set of pivots P and an element
si ∈ S, the Omni-coordinate O(si) of si is the set of distances from si to each pivot
p ∈ P such that O(si) = {δ(si, p1), . . . , δ(si, p|P|)}. The set of Omni-coordinates of
all elements si in a dataset S is denoted by OS.

As for Omni implementation, the approach relies on an abstraction layer
that includes S, P , OS and a map between S and OS. Any existing access method
can become part of the Omni-family by extending the abstraction layer and provid-
ing a partition to OS.

p1
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s1

s2

s4

s5

s3

s6

s1 = <0.98, 2.11>

s2 = <1.21, 2.05>
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s4 = <1.48, 0.87>

s5 = <2.13, 0.54>

s6 = <2.03, 1.48>
....

Omni-coordinate
to pivots <p1, p2>
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ξ

0 ∞δ(si, p1)

si

Figure 1: Mapping of a metric space into a multidimensional space according to the
L2 distance. (a) Map of distances for a single pivot p1 to a one-dimensional space.
(b) Map and distance distribution for 100 random points and two pivots.

2.3. Solving of k-NN Queries by Best-First Search

Unlike range queries, k-NN queries do not have a radius defined beforehand
and, therefore, the access method cannot draw a query ball for limiting the search
space [14, 15]. Alternatively, clustered access methods’ algorithms employ a branch-
and-bound strategy for the pruning of regions during the query [6]. Such a strategy
initially sets the radius to a maximum (ξ = ∞) and dynamically reduces it until
the k-nearest neighbors have been found. For a faster radius reduction, regions are
evaluated in order of proximity to the query element, which results in a procedure
known as best-first search (bf-kNN).

An optimization of bf-kNN is the estimation of the initial radius ξ′, which
delimits a search region, and reduces the number of disk accesses and distance
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Figure 2: Histograms of Tp with a fixed number of buckets and distinct parti-
tion constraints. (a) Original pivot-based distribution. (b) V-Optimal histogram.
(c) Curve-Fitting histogram. (d) Compact-distance histogram.

calculations. In this case, estimated radius ξ′ and sq define the query ball, and the
access method executes a combination of range and bf-kNN to return the k closest
elements [14] – A procedure we call limited bf-kNN. Radius estimation depends on
metric statistics and requires the gathering of distance distributions [14, 19]. Such
statistics can be calculated following viewpoints, in the form of pivot-based distance
distributions, which are formally given by Definition 2.

Definition 2 (Pivot-based distance distribution – Tp). Given a dataset S, a metric
δ, and a pivot p ∈ P, Tp captures the distance from each si ∈ S to p. Distance value
set Vp contains the distinct and sorted values of δ(si, p), i.e., Vp = {vp(j) : 1 ≤ j <
mp, mp ≤ |S|}, where vp(mp) is the largest distance between any si to p. Frequency
fp(j) is the number of elements of S whose distance δ(si, p) = vp(j). Therefore, Tp
is the ordered set of pairs Tp = {〈vp(1), fp(1)〉, . . . , 〈vp(mp), fp(mp)〉}, and T +

p is the
extension of Tp to R by setting 0 as the frequency of any vp ∈ R+ \ Vp.

Histograms [22] can be employed for the summarization of pivot-based dis-
tance distributions. In this case, the histogram sort and source parameters are
Vp and the set of frequencies, respectively. Distances within each bucket are uni-
formly distributed, but frequencies are approximate according to a user-posed his-
togram partition constraint. Hence, a histogram Hp = {b1, · · · , bβ} partitions either
Tp or T +

p into β mutually disjoint buckets. Each bucket bi covers a range of the
value set such that 0 ≤ low(bi) < up(bi) ≤ low(bi+1) < up(bi+1) < ∞, where
low(bi), up(bi) ∈ Vp. For the partitioning of T +

p an extra bucket bβ+1 is employed in

the interval
(
up(bβ),∞

)
with frequency 0. Examples of classical partition constraints

include the Equi-Width and Equi-Depth histograms [13, 22, 23] constructed with
uniformly spaced buckets regarding vp (distance value) and fp (frequency), respec-
tively. More complex constraints involve the optimization of an objective function
in the partitioning of the source parameter. For instance, V-Optimal histograms
partition Tp by minimizing the variance of the frequencies within each bucket.
Curve-Fitting histograms [23] improve V-Optimal by approximating the frequen-
cies through a set of polynomial functions, while Compact-distance histograms [13]
simplify Curve-Fitting histograms by approximating Tp as a continuous piecewise
linear function. Figure 2 shows examples of histograms for Tp following the former
three partition constraints, which generate different approximation errors.

2.4. Limited Best-First Search vs. Incremental Search

Another approach for the execution of k-NN queries is the incremental
search [21], a procedure known as inc-kNN. Such a strategy limits the number of
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distance calculations based on an optimality principle. The idea is to incrementally
retrieve the closest element to the query instance by using two priority queues. The
first queue sorts the partitions to be evaluated, while the second one sorts the el-
ements of the already examined regions, which include the next potential nearest
neighbor. Elements in the second priority queue are sorted by their distances to the
query instance, while the partitions in the first queue are sorted by the minimum
and maximum distances between their boundaries and the query element. The deci-
sion to select the next nearest neighbor is made upon the evaluation of both queues.
If the top of the second queue is closer to the query instance than the minimum
distance of the region on top of the first queue, then the first element of the second
queue is the next nearest neighbor. Otherwise, the partition of the first queue must
be loaded from disk and its elements be inserted into the second priority queue.

One advantage of inc-kNN is it enables solving queries with orthogonal
attributes, as in the query example Q2 about the nearest Renaissance paintings
most similar to ‘Mona Lisa’, a feat that limited bf-kNN is unable to accomplish.
However, inc-kNN may require an execution time greater than limited bf-kNN in
other cases [14, 15]. It happens because inc-kNN must handle two expensive priority
queues (especially the second one) for the solving of k-NN queries, which generates
an overhead in both memory and processing. Moreover, inc-kNN does not define a
query ball and, consequently, it may not benefit from elevator-based disk scheduling
that could improve the k-NN search performance.

In this study, we combine the best of both inc-kNN and limited bf-kNN
approaches in the form of a bounded and incremental k-NN algorithm on top of
Omni-histograms. Our approach enables the definition of a query ball and the
sorting of partitions and elements into priority queues, which limits on-demand disk
accesses and leads to a reduction in the number of distance calculations.

3. THE OMNI-HISTOGRAMS

This section proposes the Omni-histograms, a new and robust class of met-
ric access methods that extends the abstraction layer of the Omni-family. The
addition of histograms into the Omni approach enables both the partitioning of
Omni-coordinates and k-NN search optimization. In particular, Omni-histograms
divide the search space into disjoint regions by using the Omni-pivots, whereas the
final number of regions depends on the number of buckets for each pivot-based his-
togram. The following parameters define a specific instance of an Omni-histogram:
(i) the number of pivots |P|, (ii) the maximum number of buckets β, and (iii) a
histogram partition constraint R. The overall idea is to take advantage of the Omni
abstraction layer for the gathering of extended pivot-based distributions so that they
can be clustered according to the histogram partition constraint.

Therefore, an Omni-histogram can be seen as the set of non-independent
pivot-based distance histograms derived from the set of Omni pivots. Formally, an
Omni-histogram H is defined as a set of pairs H = {〈p, Hp〉, p ∈ P}, where Hp

is the histogram partitioning of T +
p . Figure 3 shows an example of a 2D dataset

with geographical coordinates of Brazilian cities and its partitioning by two distinct
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Figure 3: A dataset with geographical coordinates where most cities are closer to the
coast. Histograms are constructed for two pivots, β = 5 buckets, and L2 distance.
The darker regions are the denser ones. (a) A sample of 60 medoids. (b) Equi-Width
Omni-histogram regions. (c) Compact-distance Omni-histogram regions.

Omni-histograms. Figure 3(a) presents a sample of the spatial distribution of 60
medoids found by the k-medoids clustering algorithm, while Figures 3(b) and (c)
show the Equi-Width Omni-histogram and Compact-distance Omni-histogram

built for the same dataset with regards to L2 distance.

An Omni-bucket b∗ covers a hyper region in the search space defined by a set
of buckets from distinct pivot-based histograms in H. The boundaries of an Omni-
bucket b∗ are the limits of buckets bi ∈ Hp related to b∗ and H by pivots p ∈ P . Each
element of S falls into only one Omni-bucket calculated by the distance between the
element and P . The frequency of each Omni-bucket is the number of elements
which lie inside the corresponding hyper region. We call Omni bucket-coordinate
the mapping between an element sj ∈ S and its Omni-bucket as in Definition 3.

Definition 3 (Omni bucket-coordinate). Given an Omni-histogram H and an el-
ement sj ∈ S, the Omni bucket-coordinate B(sj) of sj addresses the Omni-bucket
b∗ of H whose limits include sj. Therefore, B(sj) = {〈p, bi〉 | ∀ 〈p,Hp〉 ∈ H, bi ∈
Hp; low(bi) ≤ δ(sj, p) < up(bi)}. If the order for pivot set P is fixed, then B(sj) can
be written as B(sj) = {bi1, . . . , bi|P|}. The set of Omni bucket-coordinates regarding
all elements of S is denoted BS.

Omni-histograms organize the search space into three levels. The first level
includes the Omni-buckets, BS and a map between OS and BS (M(OS, BS), for
short). The second level includes the Omni-coordinates OS and a map between S
and OS (M(S,OS), for short). Finally, the third level includes all the elements of S
and their mapping to OS and BS (M(OS, BS), for short). Figure 4 shows an example
of the relationship between Omni-bucket coordinates and Omni-coordinates.

3.1. Generalized Omni-Histograms

The frequency of an Omni-bucket b∗ can be expressed as the distribution of
elements within b∗ regarding any orthogonal attribute A. In this case, the frequency
of b∗ itself is a histogram on A regarding the data distribution of elements inside
the hyper region delimited by b∗. We generalize Omni-histograms by expressing the
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Figure 4: Omni-histogram partitions for Omni-buckets 〈2, 3〉 and 〈4, 5〉 regarding
pivots p1 and p2. (a) Data elements. (b) Instances are mapped according to its
Omni-coordinates that define two distributions: from p1, and p2. (c) Distance dis-
tributions are partitioned into Omni-buckets that reference their elements.

(a) (b)

pivot p2

pivot p1
1, 4

2, 4 
3, 4

3, 4

4, 4

4, 4
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4, 3 4, 2

4, 2
4, 1

2, 4 

p1 = 1

p1 = 2
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....

1, 4

2, 4 2, 3

3, 43, 2 3, 3

Attribute A = A1
Attribute A = A2
Attribute A = A3
Attribute A = A4
Attribute A = A5

Figure 5: Structure of a generalized Omni-histogram. (a) Equi-Width Omni-his-

togram. (b) Adjacency list for Equi-Width histograms on a orthogonal attribute,
which are the frequencies of Omni-buckets.

frequency of Omni-buckets as separated histograms, whereas the histogram build
for the orthogonal attribute may comply with a partition constraint distinct from
that of H. Figure 5 shows an example of a generalized Omni-histogram in which the
hyper regions are enumerated by their Omni bucket-coordinates, and the frequency
of each Omni-bucket is an Equi-Width histogram on an orthogonal attribute A.

Algorithm 1 constructs a generalized Omni-histogram by using pivot-based
distance distributions on attribute S and data distributions on attribute A. The
algorithm maps the elements of S into the Omni-buckets by calculating their coor-
dinates. Next, it builds a separated histogram HA for each Omni-bucket b∗ of H
regarding the attribute A by taking into account the elements covered by b∗. Finally,
histograms HA are set as the Omni-buckets’ frequencies.

3.2. Solving k-NN Queries with Omni-Histograms

The k-NN search in Omni-histograms is optimized regarding two aspects:
(i) disk accesses are calculated beforehand as in range queries, and (ii) distance cal-
culations are minimized through incremental processing. Omni-histograms estimate
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Algorithm 1: CreateGeneralizedOmniHistogram(S,A, βS, βA,R1,R2).

H ← ∅; P ← omni pivots (S);
for p ∈ P do

Create Hp(partition constraint(R1), S, βS) for T +
p ;

H ← H ∪ {〈p, Hp〉};
for si ∈ S do

Add M(si, O(si)); M(O(si), B(si)); M(si, B(si));

for b∗ ∈ H do
Create HA(partition constraint(R2), A, βA) regarding b∗;
Set frequency of b∗ as HA;

return H;

the minimum radius that defines a query ball in which it is ensured at least k ele-
ments can be found for the k-NN query, whereas only Omni-buckets that intercept
the query ball are load into main memory for evaluation. The minimum number
of elements within an Omni-bucket is calculated by using the frequency within the
partition and a possible query-imposed filter on the orthogonal attribute. Routine
numElements() is implemented for such a calculation and returns the accumulated
area within the histogram on the orthogonal attribute whose data values comply
with query criteria.

Omni-histograms minimize the number of distance calculations for the non-
discarded buckets by using two baseline functions: maxdist() and mindist(). Func-

Algorithm 2: omni hist-kNN(sq, k, Ac)

pq1 ← {b∗};/* Omni-buckets sorted by maxdist() and mindist() */

pq2 ← ∅; /* Omni-Buckets sorted by mindist() and maxdist() */

ξ′ ←∞; k′ ← k; RS ← ∅; /* Resulting si sorted by δ(si, sq) */

while not pq1.empty() do
b∗ ← pq1.pop();
if k′ > 0 then

pq2.push(b∗); k′ ← k′ − b∗.numElements(A,Ac); ξ′ ← b∗.maxdist();
else

if b∗.mindist() ≤ ξ′ then pq2.push(b∗);

while (not pq2.empty()) and (pq2.top().mindist() ¡ ξ′) do
b∗ ← pq2.pop();
for si ∈ b∗ do

if (check(si, A,Ac)) and (O(si)−O(sq) ≤ ξ′) and (δ(si, sq) ¡ ξ′) then
RS.push(si);
if RS.size() ¿ k then

RS.removeLastElement(); ξ′ ←RS.maxdist();

return RS;
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tion mindist() of the query element sq to an Omni-bucket b∗ ∈ H is the mini-
mum distance between sq and a boundary of b∗. It is calculated as min(|low(bi) −
δ(sq, p)|, |up(bi)− δ(sq, p)|) ∀ p ∈ P , where bi is the bucket of Hp that defines b∗. On
the other hand, maxdist() of b∗ ∈ H is calculated as max

(
up(bi)+δ(sq, p)

)
∀ p ∈ P .

Therefore, the combination of functions mindist() and maxdist() with routine
numElements() enables the cutting of partitions that do not include any candidate
element to the query answer. In particular, numElements() defines the query ball,
whereas mindist() enables the incremental evaluations of Omni-buckets covered by
the query ball that include the k-nearest elements to sq.

Algorithm 2 describes a k-NN search on Omni-histograms for a query ele-
ment sq and a filter Ac on the orthogonal attribute A. First, it limits the number
of disk accesses by selecting and sorting the candidate Omni-buckets that intercept
the query ball and proceeds with the goal of delaying the distance calculations as
much as possible. Next, Algorithm 2 starts a loop on pq2 that runs until k-nearest
neighbors are found or pq2 becomes empty. The closest bucket b∗ within pq2 is picked
for evaluation, and their elements si are verified through the filtering criteria on the
orthogonal attribute by boolean routine check(si, A,Ac). If the criteria are satisfied,
the algorithm applies the triangle inequality rule O(si)− O(sq) ≤ ξ′, which verifies
if at least one of the precomputed distances satisfies |δ(si, p)− δ(p, sq)| ≤ ξ′.

Therefore, the distance between si and sq is calculated only when the criteria
on the orthogonal attribute are satisfied, and no pruning is performed in the Omni-
coordinates. In such a case, si is inserted into the result set RS, a priority queue
sorted by distance δ(si, sq). If si is selected for insertion into RS and the result set
has already k elements, the algorithm pushes si into RS, removes the last element
of the priority queue, and updates the pruning radius ξ′. Figure 6 illustrates the
running of Algorithm 2 for query example (Q2) that retrieves the five Renaissance
paintings which are the most similar to ‘Mona Lisa’.

Figure 6: k-NN search example for query element sq, filter Ac, and distance L2.
(a) Location of sq Omni-bucket coordinate. (b) Histograms on the orthogonal at-
tribute define the query radius ξ′. (c) Buckets intercepting the query ball are marked
for evaluation. (d) Closest regions are visited first.
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We assume an Compact-distance Omni-histogram was constructed for
partitioning paintings, whereas the frequencies of each Omni-bucket were described
by Equi-Width histograms on orthogonal attribute Art Period. Accordingly, the first
step of Algorithm 2 is locating the Omni-bucket corresponding to the ‘Mona Lisa’
painting so that all remaining Omni-buckets are sorted to the query element by func-
tions mindist() and, then, maxdist() (Figure 6(a)). Next, Equi-Width histograms
on the orthogonal attribute are used for calculating the number of elements within
every Omni-bucket that satisfy filtering condition Art Period = ‘Renaissance’

(Figure 6(b)). Accordingly, the sorted list of Omni-buckets is traversed until the
accumulated number k′ of Renaissance elements of visited Omni-buckets become
equals or greater than five. At this point, a query ball is defined by using ‘Mona
Lisa’ and a radius ξ′ corresponding to the maxdist() of the last examined Omni-
bucket, and the inspection of the sorted list of partitions stops (Figure 6(c)).

The query ball performs the first pruning of Algorithm 2 so that only the
Omni-buckets whose mindist() are not greater than ξ′ are orderly loaded into main
memory. One region is evaluated at a time according to its position in the priority
queue (Figure 6(d)). For each inspection, the elements within the Omni-bucket
are first evaluated by their Omni-coordinates and the filtering condition, which
avoids unnecessary distance calculations. When the first candidate set of k-nearest
neighbors sorted by distance to the query element is built, the query radius ξ′ is
adjusted, and the Omni-buckets of the priority queue in main memory becomes
prunable by mindist() once again. If the distance of the instance on top of the
candidate result set to the query element is lower than mindist() of the Omni-
bucket on top of the priority queue, then the instance on top of candidate set can be
safely returned as the next nearest neighbor. Accordingly, Algorithm 2 may either
incrementally return the nearest neighbor or retrieve the entire set of k-nearest
neighbors as a single final result.

4. EXPERIMENTS

This section reports on three experiments over six real-world datasets, namely
CITIES1, BIKE2, COLORS3, CANVAS4, BANK7, and YEAST7. The first experiment com-
pares distinct histogram partition constraints for the identification of the most suit-
able settings of Omni-histograms. The second experiment aims at comparing Omni-
histograms to access methods Omni-Sequential, Omni R-Tree and Sequential Scan
regarding the execution of k-NN queries without orthogonal attributes. Finally, the
last evaluation compares the same access methods in the solving of k-NN queries
with filtering criteria. Omni-Sequential, Omni R-Tree, and Sequential Scan run
inc-kNN algorithm, while Omni-histograms run omni hist-kNN routine.

Table 1 summarizes the datasets characteristics and parameters employed
in the trials. All comparisons were performed according to a 10-fold cross validation
procedure (90% of data for indexing and 10% of data for querying, cycling) regarding

1Available at: ibge.gov.br
2Available at: archive.ics.uci.edu/ml/datasets.html
3Available at: sisap.org/metricspaceslibrary.html
4Available at: commons.wikimedia.org/wiki/Category:Paintings
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accumulated query execution time. The experiments were executed in a computer
with Intel R© CoreTM i7 2.67 GHz, 6 GB of RAM and HDD SATA III 7200 RPM.

Table 1: Datasets and parameters. A is the orthogonal attribute. |S|, Dim., dDe
are the set cardinality, dimensionality, and fractal dimension, respectively.

Name A |S| Dim. dDe δ Description

CITIES n/a 5, 507 2 2 L2 Geographical coordinates of
5507 Brazilian cities.

BIKE n/a 17, 379 7 2 L∞ UCI dataset of bike roads.
COLORS n/a 112, 682 112 3 L1 SISAP dataset of features ex-

tracted from color images.

BANK Type 1, 372 4 2 L∞ UCI dataset of features from
bank notes.

YEAST Location 1, 484 8 4 L2 UCI dataset of cellular loca-
tion of proteins.

CANVAS Art Pe-
riod

3, 879 16 4 L1 Features extracted from Wiki-
media photos of paintings.

4.1. Comparison of Omni-Histograms Settings

We selected the Omni-pivots according to the Omni Hull–Foci algorithm
by setting |P| = dDe. The constraint number of buckets β was chosen following
P so that all Omni-histograms fit in less than 0.0001% of available memory. In
particular, we set five buckets for datasets CITIES, BIKE and BANK, three buckets for
dataset YEAST, and two buckets for datasets COLORS and CANVAS. We experimented
on five distinct partition constraints that generated five different Omni-histograms,

Equi-Width Omni-histogram Equi-Depth Omni-histogram V-Optimal Omni-histogram
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Figure 7: Comparison of distinct Omni-histograms in the execution of k-NN queries.
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namely Equi-Width Omni-histogram, Equi-Depth Omni-histogram, V-Optimal

Omni-histogram, Compact-distance Omni-histogram, and Curve-Fitting Omni-

-histogram. Figure 7 shows the overall comparison of the average time required by
each Omni-histogram to execute k-NN queries without orthogonal attributes.

Although V-Optimal Omni-histogram was the fastest method regarding
datasets YEAST and COLORS, it was also one of the slowest on the remaining of
experimented datasets. Equi-Depth Omni-histogram followed a similar behav-
ior, i.e., it was the fastest at solving k-NN queries on CANVAS, but showed poor
performance on other datasets. On the other hand, Equi-Width Omni-histo-

gram and Compact-distance Omni-histogram showed the most stable behavior,
as they consistently achieved one of the top-3 performance regardless of the evalu-
ated dataset. Equi-Width Omni-histogram, specifically, achieved the highest per-
formance on datasets CITIES and BIKE. Therefore, we selected both Equi-Width

Omni-histogram and Compact-distance Omni-histogram for the comparison of
Omni-histograms to other Omni-family access methods.

4.2. Omni-Histograms vs. Other Members of Omni-Family

We compared Omni-histograms to access methods Omni-Sequential, Omni
R-Tree, and Sequential Scan. Omni-Sequential is the general purpose method of
the Omni-family, i.e., it is implemented on top of Sequential Scan, whereas Omni
R-Tree employs the R-Tree for the indexing of Omni-coordinates. Figure 8 shows
the comparison between the Omni-histograms and previous Omni methods in the
execution of k-NN queries without orthogonal attributes. Equi-Width Omni-his-

togram outperformed Omni-Sequential in up to 113% and 41% on datasets CITIES
and BIKE, respectively. Compact-distance Omni-histogram outperformed Omni-
Sequential in up to 83% and 30% in the same scenario.

Moreover, Equi-Width Omni-histogram and Compact-distance Omni-his-

togram outperformed Omni-Sequential for k ≤ 45 in dataset COLORS (112 dimen-
sions). In particular, Equi-Width Omni-histogram was up to 5.4% faster than
Omni-Sequential on dataset COLORS, while Compact-distance Omni-histogram was

Equi-Width Omni-histogram Compact-distance Omni-histogram
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Figure 8: Comparison of Omni-histograms to Omni R-Tree, Omni-Sequential, and
Sequential Scan regarding k-NN query execution time.
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up to 3.7% faster in the same dataset. Both Omni-histograms outperformed Omni
R-Tree in the majority of k values.

We highlight Equi-Width Omni-histogram was up to 500%, 160% and
16.1% faster than baseline Sequential Scan on datasets CITIES, BIKE, and COLORS,
respectively. Likewise, Compact-distance Omni-histogram also outperformed Se-
quential Scan in up to 443%, 131% and 12.4% for the same datasets.

4.3. k-NN searching with Filtering Criteria

The last experiment provides a comparison between Omni-histograms and
their competitors in the task of answering k-NN queries with orthogonal attributes.
Each query was in the form of “Find the k-nearest elements to sq, where attribute
A equals to Ac”, being the orthogonal attribute A of each dataset described in
Table 1. Accordingly, we set A = Ac as in Type=‘Class 0’ (55.5% of elements),
Location=‘mitochondrial’ (16.4% of elements), and Art Period=‘Renaissance’

(20% of elements) for datasets BANK, YEAST, and CANVAS, respectively.

Figure 9 shows the comparison between the access methods regarding their
execution time. Equi-Width Omni-histogram outperformed Omni-Sequential by
30%, on average, for every dataset, while Compact-distance Omni-histogram also
outperformed Omni-Sequential by 24.3%, on average. Both Equi-Width Omni-his-

togram and Compact-distance Omni-histogram outperformed Omni R-Tree for
every value of k. Equi-Width Omni-histogram also outperformed baseline Sequen-
tial Scan in up to 456%, 186% and 147% for datasets BANK, YEAST and CANVAS.
Likewise, Compact-distance Omni-histogram was up to 455%, 164% and 125%
faster than Sequential Scan when executing a k-NN query in the same datasets.

Such results indicate Omni-histograms consistently delivered faster execu-
tions of k-NN queries, with and without orthogonal attributes, in comparison to the
competitors. In particular, Equi-Width Omni-histogram and Compact-distance

Omni-histogram outperformed the former members of the Omni-family, Omni-
Sequential and Omni R-Tree by 37.4% and 32.3%, on average, regarding all evaluated
scenarios (datasets and values of k).
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Figure 9: Comparison of Omni-histograms to Omni R-Tree, Omni-Sequential, and
Sequential Scan regarding k-NN queries involving an orthogonal attribute.
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5. CONCLUSION

In this study, we extended the Omni-family by creating a new class of met-
ric access methods, the Omni-histograms. Such methods distinguish themselves
by their partition constraints, which split data elements into disjoint buckets by
following an optimization function. The frequency within Omni-histogram regions
is represented as either the number of elements or the data distribution of an or-
thogonal attribute. By using these stored frequencies, our approach enables the
use of a bounded and incremental k-NN search, which limits the number of visited
regions (bounding disk accesses) and reduces the number of distance calculations.
Experiments on real datasets showed k-NN queries (with and without orthogonal
attributes) are faster executed by Omni-histograms in comparison to previous Omni
methods. In particular, Omni-histograms outperformed Omni-Sequential in up to
113% and Sequential Scan in up to 500%. Future work includes the evaluation of
other pivot selection strategies and algorithms in the setting of Omni-histograms.
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