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Abstract

Highly flexible structures (springs) can be found in many precise devices, such as small actuators of optical disc drive an
mobile cameras. A good configuration design is crucial for correct operation of these devices. In this case, optimizatior
techniques can be applied to design of these flexible structures, aiming to reduce development time and costs. Remarkab
the design of these structures turns out to be a challenge in topology optimization. Thus, in this work, a formulation for
designing highly flexible structures by using topology optimization is investigated. The topology optimization problem is
defined as minimization of the mean compliance subjected to material volume and perimeter constraints, combined with
projection technique. The material model is based on the traditional SIMP approach and the optimization problem is
implemented by using COMSOL software and solved by using MMA algorithm. A well-known plane string case has been
carried out to evaluate the potential of the proposed topology optimization formulation.
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1. Introduction

A flexible structure can also be found, for instance, in accelerometer sensors that have movable electrode (proof mass
which is suspended by one or more springs [1]. The mechanical sensitivity of these precise devices is directly related t
flexibility of its structures, that is, the more flexible the spring configuration, the higher the sensitivity of the device. Thus, a
good configuration design of the flexible structure (spring) is crucial for their correct operation.

In this case, optimization techniques are regularly applied to the design of these structures, aiming to reduce developme
time and costs. Most of the research in optimization for flexible structure design has been primarily focused on parametri
analysis [2]. An alternative approach widely used for optimal design is the Topology Optimization Method (TOM).

Typically topology optimization applied to structural design aims to obtain low compliance structure, and few works have
been published on topology optimization for high compliance or flexible structures, such as springs. The closer known
formulation for design of springs using the TOM is the one well-established for design of compliant mechanisms [3], which
are mechanical structures with no-moving parts. This mechanisms transfer an input force, applied at determined point, t
output displacement produced at another different point of the domain. However, the formulations of compliant mechanism:
cannot be applied to the problem considered in this work (spring design), because the points of the applied input load and tl
desired output displacement are coincident. Song et al. [4] propose a two-stage search method to improve the converger
and the probability of finding good solutions using topology optimization applied to a leaf spring design.

Naturally, the topology optimization method tries to generate thin regions to obtain structures with high flexibility, as
illustrated in figure 1a. However, it is evident that the manufacturing of this result is usually unfeasible and it would be better
to obtain results as illustrated in figure 1b. By considering the same material and dimensions for design domain of figure 1
the topology optimization result shown in figure 1b is generally simpler to be manufactured, and allows high flexibility.
However, it represents a local minimum result very difficult to obtain by using the traditional formulations of TOM.

The main feature that is different between the results illustrated in figure 1 is the perimeter of both topologies, in which the
total perimeter of result shown in figure 1b is about 30% higher than the one shown in figure 1a. Based on this observatio
and taking into account that slender structures have higher flexibility, in this work a new formulation is proposed for the
topology optimization of such flexible structures (springs). Here, the optimization problem is defined for minimizing the
volume of material subject to a mean compliance and perimeter constraint, combined with the projection technique. The
SIMP material model [5] is adopted, and the continuation method is applied to avoid undesirable local minimum [6]. The
projection scheme proposed by Bourdin [7] has also been applied as filtering technique.
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(a) flexure hinge

(b) zig-zag patter
Figure 1: Structures with high flexibility: (a) thstructure configuration; (b) zig-zag configuratio

The topology optimization algorithm is implemented MATLAB using the COMSOL software as the finitdement
solver. The potential of the proposed formulati®evaluated by designing a well-known plane stcasge.

This paper is organized as follows. In Sectiorh2,tbpology optimization formulation proposed foe esign of flexible
structures is described. Section 3 shows the sats@nalysis, and Section 4 presents the numkenisglementation of the
topology optimization problem. The results are added in Section 5. Finally, Section 6 gives theckaling remarks and
future developments.

2. Proposed approach for topology optimization problem

The classical formulation for structural optimizatiusing the TOM is the mean compliance minimizafi8]. In this
work, the projection scheme proposed by Bourdirhgg also been applied as filtering technique ¢vgmt mesh dependence
and checkerboard problems in the results of TOMeHthe pseudo-density of a given element of thegdedomain is a
linear function of the design variables associatstth their neighborhood. Thus, the following retatiis defined to the
pseudo-densitydt) and the design variablg]):

d,=f(p) 1)

wheref is a projection function [9].

As expected, the mean compliance minimization [8] wesult in very rigid structures, which is undteble for the
flexible structure design because its performanoalgvbe very low. As mentioned previously, the eliéince between two
structures illustrated in figure 1 is the perimetbus, the definition of a perimeter constrainh ¢e an interesting way to
guide the optimization to achieve topologies shawrfigure 1b. To calculate the perimeter of theusture, the Total
Variation (TV) concept introduced by Haber et d0] is applied. The TV in the domai@ for a functionp € L,(Q), is
defined as:

TV(p) :jQ|Dp| dQ )

The value of TV coincides with the perimeter Qf fvhenp has unit value incl| and zero outside. In different situations,
when the density of the different subdomains vditesarly between the “void” (no material) and glalpresence of material),
as made by the SIMP, the definition of equationw@yld represent an approximation of the actuahpeter of the structure.
Thus, Zhang & Duysinx [11] proposes the followirgfidition, in discrete form, to calculate the pegierP of the topology:

I (di - dj )2 3)

1

n
P(p)=
k=
wheren, is the total number of interfaces between the el@gmof the domain ariddenotes the edge length of the interflace
between two adjacent elements with pseudo-densitiaad d;,. For the perimeter calculation of the boundaryesdgf the
domain, the density of the external environmebissidered equal to zero.

Therefore, in this work, the following optimizatiéormulation that uses a perimeter constraint aopgsed for the design
of flexible structures:

Minidmize L=u"Ku

S.t. Ku=F (equilibrium equation) (4)
Z yAVESYA (volume constraint)
i=1
il 2
I (di —dj) 2P, (perimeter constraint)
k=1
d=f(p)
O<p<1



where the superscript denotes the transpose vectbrjs the mean complianc& is the stiffness matrix, and is the
displacement vector yielded by applying the loadteeF, ne is the total number of elements in the design dom4 is
volume of the individual elements, aRgl;, is the minimum value for the perimeter of the tiogg.

Traditionally, the perimeter constraint is usedhasalternative to the projection scheme, for lingitthe occurrence of the
checkerboard pattern and, thereby, ensures thieerges of the solution [12]. For this, an upper tifj. is imposed on TV
defined by equation (2), i.e., TY<Pna However, in this work the perimeter constrainti&ipn is defined as TY>Pax
to guide the optimization for results with high ipester. To avoid the appearance of checkerboartkerpat in the
optimization result, this perimeter constraint $&d together with the projection technique.

Thus, by using the proposed formulation (4), oualds to show that a perimeter constraint can nthkedifference for
obtaining higher flexible structures even by empligythe classical topology optimization formulatiavhich minimizes the
mean compliance subjected to volume constraint.

3. Sensitivity Analysis

To perform the topology optimization, calculatiohgnadients of the objective functions and constsaare needed. Here,
these gradients are calculated analytically byqusiire adjoint method. This sensitivity analysisti@ightforward and it will
be briefly described. The gradient of the mean d@mgpe in relation to the pseudo-densitly) (s given by:

d(u"Ku
a_L:u:—uTa_Ku (5)
ad ad, ad

e e

However, a sensitivity analysis in relation to tthesign variable 4) is also needed, which is calculated by using the
equation (1) as following:

w(x' -x°
oL _ 0L od, , Where od, =—( — )_e (6)
dp & ad, op op Y w(X -x7)
Analogously, from equation (6) the gradient of gfeeimeter constraint is calculated by:
n
i ﬁade, wherea—P:ZZIk de—dj|. (7)
0o 5 ad, 9p, od, =

4. Numerical Implementation of the Topology Optimizaton Algorithm

The code of the topology optimization algorithninglemented in MATLAB by using the COMSOL softwaas the finite
element solver. At each iteration of the topologyimization algorithm, a structural analysis isr@d out by using Finite
Element Method (FEM), to account for the calculataf the output displacement of the structure.his tvork, the design
domain is discretized by using a linear isoparaimetrnode Mindlin-Reissner-based plate with 6 degref freedom per
node [13].

The gradients of the objective function and comstsaare calculated. They are used as input foogtenization problem,
which is solved by using the Method of Moving Asyiotes (MMA) [14]. The optimizer generates a new gktesign
variables after each iteration and the optimizationtinues until convergence is achieved for theailve function.

5. Results

In this section a well-known two-dimensional (2Dqpe string case has been carried out to demoastratpotential of
the topology optimization formulation for solvingsign of highly flexible structures. Figure 2a skotive design domain,
which is discretized by using a 120x120 finite edetnmesh. The left side is full constrained, anchi¢ary load (F) is applied
at the center of the right side of the domdw).(To highlight the feasibility of including perirtex control for increasing the
level of flexibility, some results, shown in figu, have been carried out by using the modifiadsital formulation given
by equation (4). A volume fractioi = 10% and the projection radius.= 2 are applied for all results obtained in thiseca
For easy comparison, various minimum values Fgf, are applied to the perimeter of the structure,cwhis gradually
increased from 0 up to 1000 (see figure 2b).

The mean compliance valug)(is shown in the upper left corner of each topglogsult presented in figure 2b. As
expected, the first result shown in figure 4 = 0) is a tapered column structure, which has flexibility (L = 13) and
perimeterP = 186. The simple inclusion of the perimeter caist P,,;, = 200 has enabled an increase of almost 10 times i
the magnitude of the structural flexibility, as ebged in the second result of figure 2b. Obsendldhe results, it is clear
that there is a strong relationship between ine@gerimeter and flexibility of the structure. Mover, it is noticed from a
certain point R, = 1000) appearance of disconnected structuremgslof material) can occur, which from a poinviefwv
of the structural strength has little influencewewer contributes significantly to increase theipeter. These islands of
materials must be removed by a post-processing Stepappearance of islands can be avoided bytadjuse value of the



volume constraint and perimeter constraint.
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Figure 2 — (a) Design domain of the topology optition problem; (b) topology optimization resultstaned by including
various perimeter constraint values.

6. Conclusion

A methodology for the design of high flexible strures by using the Topology Optimization Methodigsented and
evaluated by considering a 2D plane string desitpus, a different approach is proposed, in whiehdptimization problem
has been defined for minimizing the mean compliasgkjected to volume and perimeter constraintsetteg with the
projection technique. Structures with higher fléliip have been generated through the proposedoagprpresented in this
work.

Despite the relative success of the formulatiors@néed here, this subject needs to be more stagiédxhausted. It is
essential to propose new formulations for the TQMsolve this kind of problem, which certainly hasvale range of
applications beyond that already discussed in wuosk. As future work, other formulations which allothe design of
structures with a specified level of the flexikjldhould be included and evaluated more carefallyis context.
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