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Abstract. This work concerns Whitney and Nédélec finite element methods for time-harmonic Maxwell’s equations. We
review the derivation of the harmonic equations from full Maxwell’s equations as well as their variational formulation, and
build the Whitney and Nédélec element spaces, whose functions have continuous tangential components along the inter-
face of adjacent elements. We study the dispersive behaviour of first-order Nédélec elements in two and three dimensions,
in terms of the time frequency and the mesh element size, and present an explicit form for the discrete dispersion rela-
tion. Numerical experiments validate the performance of Whitney elements and Nédélec first order in a two-dimensional
domain, that also illustrates the dispersion of the approximate solution with respect to the exact solution. The discrete
dispersion relation for elements of the first order, show, through numerical evidence that the numerical phase velocity
can be used as an error estimator in the Whitney and Nédélec finite element approximation, and thus, display an initial
parameter h to the mesh refinement.
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1. INTRODUCTION

When in a numerical formulation is necessary and directly represent a generic form discretized vector quantity, the
alternative feature that when using only basic functions of the nodal type is the separate treatment of each component of
the field in question, which is individually simply reduce to scalar functions.

Arises from this fact that the first difficulties and concerns the continuity of the discretized vector quantity between
adjacent elements of the finite element mesh. When you have a face in common, two neighboring and adjacent elements
also share the nodes of the finite element mesh located on this face. Because these nodes belong simultaneously to
two elements and because the approximation of vector quantities with nodal basis functions be performed component
by component, it appears that the use of this approach implies the continuity of all components of the vector quantity
in question in face shared by these neighboring elements. The final result of this is the fact that if perhaps each of the
elements belonging to a material medium of different composition, this imposing continuity of all components produces,
of course, a physically incorrect situation.

Such solutions are not guaranteed by, with the use of the nodal basis functions, the continuity of the derivatives of the
interpolation functions between the elements of the mesh.

Fortunately, over time, way to overcome these difficulties have been devised. Among them, we highlight the devel-
opment and improvement of techniques characterized by the use of another variety of finite element as an alternative to
the original nodal approaches. Such alternatives have emerged in the work of Whitney (1957) and Nédélec (1980).
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Despite having used sets of edge vectors in a completely different context to the finite element method developed in
this work, Whitney was one of the first to use a vector space of polynomials to generate such sets Monk (2003). These
edge vectors zero order elements, in the context of the finite element method is an approximation order of elements that
have constant tangential components on edges. In the literature we often find references to these elements as elements
Whitney, Monk (2003).

A little later, Jean-Claude Nédélec presented some families of nonconforming finite elements in R3. We will see later
that one of these families of finite elements is conforming elements in space H(curl,Ω) = {u ∈ (L2(Ω))2;∇ × u ∈
(L2(Ω))2}. From these observations some applications of these elements in the approximation of Maxwell’s equations
and the elasticity equations were presented in Nédélec (1980). This innovative range of finite element is known as vector
finite elements, or even elements of Nédélec.

Several authors have considered the dispersive behaviour of the finite element method, among which the most rel-
evant to this work are: Christon (1999) considered that the dispersive behaviour of a variety of methods for finite wave
equation of second order elements, and presented numerical comparisons between the discrete phase and group veloci-
ties of the exact values. Monk and Parrot (1994) considered the dispersive behaviour of the finite element first-order in
triangular elements for Maxwell’s equations when a refinement is made in the mesh. Monk and Cohen (1998) conducted
a dispersion analysis of elements type Nédélec to time-dependent Maxwell’s equations using a lumping together with
the mass matrix of the tensor product of two and three-dimensional meshes. Ihlenburg and Babuška (1997) studied the
dispersive properties of higher order finite element for the Helmholtz equation in one dimension, and obtained estimates
for the approximation method to fifth order in which ωh < 1. Numerical evidence has been presented, which led to the
conjecture that the elements of order p provide an approximation order 2p of dispersion relation when the mesh size h
tends to zero. Monk (2003) presented evidence, based on duality, for convergence of finite elements of Nédélec applied
in a cavity problem for Maxwell’s equations. This cavity was assumed to be a Lipschitz polyhedron, and the mesh was
considered rectangular, but not uniform. Monk (1991) studied the use of Nédélec finite elements in H(curl,Ω) in the
approximation of time harmonic Maxwell equations over a limited domain. This analysis revealed a rather complicated
by the fact that the bilinear form was not considered coercive. This difficulty was circumvented by the use of discrete
Helmholtz decomposition of the error vector. Ainsworth (2003) demonstrated that the numerical dispersion displays three
different types of behavior, depending on the order of the method in relation to the mesh size and the wave number. These
behaviours are described in the following sequence: Oscillation Phase, Transition Zone and Super-Exponential Decay.
Ainsworth and Coyle (2001) studied a hierarchical basis functions set for the Galerkin descritization space H(curl,Ω)
for both hybrid meshes containing quadrilaterals and triangles with a non-uniform arbitrary polynomial order. Ainsworth
(2004) presented an argument showing that the discrete dispersion relation can be expressed in terms of an approximation
of the scalar Helmholtz equation in one dimension. Moreover, clarified the relationship discrete dispersion in a valid
dimension for arbitrary orders of approximation.

2. VECTORIAL FINITE ELEMENTS

The Sobolev spaces H(curl,Ω) plays a central role in the variational theory of Maxwell’s equations, because ac-
cording to Monk (2003) this space is the space of finite energy solutions, and this way we can guarantee the existence,
uniqueness and regularity of physically significant discrete solutions Greenleaf, Kurylev, Lassas and Uhlmann (2007).
Thus, it is appropriate to take this finite element space for a class of suitable finite elements subspace for the Maxwell’s
equations system. Another feature of this space is the choice of the finite element discretization, which is necessary for
the tangential components of the fieldE are continuous through the interface element, moreover, there is no obligation to
the components of the normal are continuous.

Vectorial finite element can be used in complex geometries and also the presence of discontinuous electromagnetic
properties. In the case of Maxwell’s equations, the electric permittivity ε is discontinuous across the surface of a domain
Ω of R3, it is known from electromagnetic theory that the tangential component of electric field E is continuous across
this surface, thus it is necessary that the tangential component of the field approximation Eh is also continuous.

Choosing the Nédélec elements which guarantees an approximation H(curl)-conforming, we see that the tangential
component of the field approximation Eh is continuous on the surface, in the case where two mesh elements having
different material properties. In addition, the edge finite element have many interesting and challenging mathematical
properties. Such properties are deeply explored in Monk (2003); Ainsworth (2003, 2004); Jin (2002); Monk (2003)
among others.

We will restrict our study to the Whitney elements and Ndlec elements of the first order and applied in a convenient
way, aiming to provide an initial understanding for readers interested in the foundations of this theory.

2.1. Degrees of freedom and Functions basis

We will give, from now on, a special attention to the two-dimensional finite elements. We define the space of polyno-
mials P̂ associated with the Nédélec element of order p on the reference element K̂ = (−1, 1)2 as

P̂ = Ep =
{
Ê = (Ê1, Ê2); E1 = span{Qp,p+1} e E2 = span{Qp+1,p}

}
, (1)
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where Qp,q is the monomials set of degree less than or equal to p in x̂ and of degree less than or equal to q in ŷ, i.e.

Qp,q = {x̂iŷj : 0 ≤ i ≤ p; 0 ≤ j ≤ q} (2)

Let {Lk}pk=0 be the Legendre polynomials set, which are given by the Rodrigues formula

Lk(ξ) =
1

2kk!

d(k)

dξk
[
(ξ2 − 1)k

]
0 ≤ k ≤ p (3)

and, furthermore, we also define the set {lk}p+1
k=0 as lk(ξ) =

1

2
(1 + ξkξ), k = 0, 1,

lk(ξ) =
∫ ξ
−1
Lk−2(t) dt, k = 2, ..., p+ 1

(4)

where ξ0 = −1, ξ1 = 1 and lk(−1) = lk(1) = 0 for k > 1. In fact, for ξ = −1 the statement is clear. For ξ = 1,
lk(1) = 0 by the orthogonality of Legendre polynomials. Set {lk}p+1

k=0 is used for setting hierarchical basis function,
which are useful for adaptive finite element methods, Adjerid (2001).

We begin by defining the degrees of freedom on a reference element K̂ ⊂ R2, according to Nédélec (1980). In this
work we will adopt quadrilateral elements, thus we consider K̂ = (−1, 1)2.

One way to ensure continuity between two elements with the same interface, is to select the degrees of freedom on
an edge γ to be the weighted moments of the tangential component of a field Ê ∈ Ep. Degrees of freedom at the edges
of the reference element is defined by linear functional αγ ∈ P̂′

αγ(u) =

∫
γ

(t · u)φ ds ∀ φ ∈ Pk−1(γ) k = 1, ..., p+ 1 (5)

where t is the unit tangent vector to the edge, P̂′ denotes the dual space P̂ and Pk−1 is the linear space of polynomials,
the degree of which is less or equal to k − 1. We have a total of 4(p + 1) degrees of freedom in the edges. Degrees of
freedom within the reference element are defined by the linear functional αint ∈ P̂′

αint(u) =

∫
K̂

(u · φ) dK̂ ∀ φ =

[
φ1
φ2

]
with φ1 ∈ Qk−2,k−1 and φ2 ∈ Qk−1,k−2 k = 2, ..., p+ 1 (6)

We have a total of 2p(p+ 1) degrees of freedom within the reference element K̂.
Using the functions Lk and lk defined above, we define the basis functions associated to the degrees of freedom at the

edges as {
φγi,j,1(x̂) = Li(x̂)lj(ŷ)e1
φγi,j,2(x̂) = lj(x̂)Li(ŷ)e2

i = 0, ..., p; j = 0, 1 (7)

where e1 = [1 0]T and e2 = [0 1]T denote the canonical basis of R2 and x̂, ŷ are the coordinates of x̂. Basis functions
associated to the degrees of freedom inside of element are complement functions on (7) when using lk with k ≥ 2:{

φinti,j,1(x̂) = Li(x̂)lj(ŷ)e1
φinti,j,2(x̂) = lj(x̂)Li(ŷ)e2

i = 0, ..., p; j = 2, ..., p+ 1, (8)

Despite the representation (7)-(8) have the convenience of be compact and general, we use a different notation for the
functions of the edges; This rating takes into account the edges of the reference element chosen:

φγ1i (x̂) = Li(x̂)l0(ŷ)e1; φγ2i (x̂) = Li(x̂)l1(ŷ)e1;

φγ3i (x̂) = Li(ŷ)l0(x̂)e2; φγ4i (x̂) = Li(ŷ)l1(x̂)e2,
(9)

Thus, the basis function associated with the edges satisfy∫
γl

(t · φγji )Lkds = δljδik||Li||2 with j = 1, 2, 3, 4 (10)

Similarly, the basis functions associated to inside the element satisfies∫
K̂

Lm(x̂)ln(ŷ)φinti,j,1 · e1dx̂dŷ = δmiδnj ||Li||2||lj ||2∫
K̂

Lm(ŷ)ln(x̂)φinti,j,2 · e2dx̂dŷ = δmiδnj ||Li||2||lj ||2
(11)

A Nédélec element (P,K,Σ) on the physical domain K is built from the reference element (P̂, K̂, Σ̂) as follows:
Let E be a vector field. The mth degree of freedom on the edge ς is given by the linear mapping
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E −→
∫
ς

vmE · dx,

where the weight function vm is chosen to coincide with the mth Legendre polynomial when the edge ς is parametrized
by t ∈ (−1, 1). In particular, let ς be an oriented edge of an element in the mesh with endpoints xva e xvb , where the
indices va e vb correspond to adjacent vertices in the quadrilateral element. Now, we introduce the parameterization on
the edge as

x(t) = (x(t), y(t)) =
1

2
(1− t)xva +

1

2
(1 + t)xvb with t ∈ (−1, 1) (12)

Hence, using equation 5.34 found in Kaplan (1970), we obtain∫
ς

vmE · dx =

∫ 1

−1

Lm(t)

(
E1

dx

dt
+ E2

dy

dt

)
dt =

∫ 1

−1

Lm(t)E · σςdt, (13)

where σς = (dxdt ,
dy
dt ) is the tangent vector on the edge ς .

Let FK be a mapping of the reference element to the physical element K, FK : K̂ −→ K, defined by

FK(x̂) = JK x̂+ b, (14)

where JK is an invertible square matrix and b is a translation vector. Note that FK is a differentiable bijection, and the
Jacobian matrix transformation is given by dFK = JK . It has from the covariant transformation, Kaplan (1970), that the
tangent vectors σ e τ are related by

σ(x) = JK(x̂)τ (ξ)

therefore, we can represent (13) as ∫ 1

−1

Lm(t)E · (JKτ )dt

and using the mapping Fγ , restricted to reference edge γ and with m = k, we obtain∫ 1

−1

Lk(t)E · (JKτ )dt =

∫ 1

−1

Lk(s)JTKE · τds

Note that the electric field Ê on a reference element K̂ is related to the electric field E, defined on physical element
K by covariant transformation Kaplan (1970)

E(x)|K = J−T
K Ê(x̂), x = FK(x̂). (15)

Similarly, the global basis function φ(d)
i,j (d = 1, 2) corresponding to the local basis function φ̂

(d)

i,j on the reference
element is defined by

φ
(d)
i,j (x)|K = J−T

K φ̂
(d)

i,j (x̂), x = FK(x̂). (16)

The degrees of freedom on the edges ensures that (K,P,Σ) isH(curl,Ω)-conforming; complementing them with the
degrees of freedom inside of element. We also ensure that (K,P,Σ) is unisolvente (see Theorem 5 of Nédélec (1986)).

2.2. Basis Function for Whitney Elements (p = 0)

An emphasis on the definition of Ep for the case p = 0, implies Q0,1 = {1, ŷ} and Q1,0 = {1, x̂}, therefore

E0 =
{
Ê = (Ê1, Ê2); Ê1 = span{1, ŷ} and Ê2 = span{1, x̂}

}
(17)

For Whitney elements there is only one degree of freedom at each edge, equation (5), thus we can define the basis
functions as

φγ10 (x̂) = L0(x̂)l0(ŷ)e1; φγ20 (x̂) = L0(x̂)l1(ŷ)e1;

φγ30 (x̂) = L0(ŷ)l0(x̂)e2; φγ40 (x̂) = L0(ŷ)l1(x̂)e2,
(18)

where e1 and e2 denote the canonical basis of R2. Zero-order functions can be characterized by the fact that they have
free divergent, i.e., ∇ · φγi

0 = 0, and also for having the constant tangential component on each edge γi, Jin (2002).
Figure 1(a) shows in plane x̂ŷ, the degrees of freedom distributed on the edges of the reference element.
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2.3. Basis Function for Nédélec (p = 1)

Space of polynomials associated with the element of Nédélec of order p = 1 on the reference element K̂ = (−1, 1)2

is defined as
E1 =

{
Ê = (Ê1, Ê2); Ê1 = span{Q1,2} and Ê2 = span{Q2,1}

}
, (19)

where
Q1,2 = {1, ŷ, ŷ2, x̂, x̂ŷ, x̂ŷ2} e Q2,1 = {1, x̂, x̂2, ŷ, ŷx̂, ŷx̂2} (20)

E1 is constructed by increasing the space E0 – Hierarchical basis. Furthermore, we note that there are four new basis
functions on edges that are generated by the elements x̂, x̂ŷ ∈ Q1,2 and ŷ, ŷx̂ ∈ Q2,1, which will be added to the edges
together with the basis functions for elements of Whitney .

Unlike the basis functions for Whitney elements, here, we have interiors basis functions generated by elements
x̂, ŷ2, x̂ŷ2 ∈ Q1,2 and ŷ, x̂2, ŷx̂2 ∈ Q2,1. Figure 1(b) shows the distribution of degrees of freedom on the quadrila-
teral element.

γ1

γ2

γ3 γ4

(1, 1)(−1, 1)

(−1,−1) (1,−1)

(a)

γ1

γ2

γ3 γ4

(1, 1)(−1, 1)

(−1,−1) (1,−1)

(b)

Figure 1. (a) Degrees of freedom for Whitney elements. The arrows indicate the zero-order moment of the
tangential field Ê. Note that the direction of the tangent remains in the anti-clockwise around the element; (b)
The arrows indicate the degrees of freedom of the elements of order p = 1 distributed over edges. The black

squares in the interior of the element represent the degrees of freedom necessary for a quadrilateral.

As we can see, the elements of order p = 1 are armed with degrees of freedom on the edges and inside the element.
Thus, the basic functions of these elements are organized as follows:

1. Basis function in the edges as

φγ10 (x̂) = L0(x̂)l0(ŷ)e1; φγ20 (x̂) = L0(x̂)l1(ŷ)e1;

φγ30 (x̂) = L0(ŷ)l0(x̂)e2; φγ40 (x̂) = L0(ŷ)l1(x̂)e2

φγ11 (x̂) = L1(x̂)l0(ŷ)e1; φγ21 (x̂) = L1(x̂)l1(ŷ)e1;

φγ31 (x̂) = L1(ŷ)l0(x̂)e2; φγ41 (x̂) = L1(ŷ)l1(x̂)e2

(21)

Note that the first four basis functions of edge are the same basic functions for elements of order p = 0. The basis
functions in (21) are built using the weight vk = Lk, so satisfying (10).

2. Basis functions inside φinti,j,1 and φinti,j,2, with i = 0, 1 and j = 2, as
φintx0,2,1(x̂) = L0(x̂)l2(ŷ)e1; φintx1,2,1(x̂) = L1(x̂)l2(ŷ)e1;

φ
inty
0,2,2(x̂) = L0(ŷ)l2(x̂)e2; φ

inty
1,2,2(x̂) = L1(ŷ)l2(x̂)e2

(22)

Basis functions in (22) are constructed to satisfy (11).
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3. PERFORMANCE OF WHITNEY/NÉDÉLEC ELEMENTS

Now, in order to illustrate the performance of Whitney/Nédélec elements, consider a numerical example of a pro-
pagation of a plane wave through a square domain Ω = (0, 1)2 with boundary Γ. Let the fixed frequency ω and sufficiently
smooth function g be. Based on time harmonic Maxwell’s second order system, Monk (2003), we approximate the electric
field E ∈ H(curl,Ω) such that

(∇×E,∇× v)− ω2(E,v) = 0 (23)

for all v ∈ H0(curl,Ω) = {u ∈ H(curl,Ω); t · u = 0}, where (·, ·) defines the inner product in (L2(Ω))2, Kreyszig
(1978). Moreover, the operation ∇×E is the surface scalar rotational, Boffi and Perugia (1999); Monk (2003), defined

for any vector function u = (u1(x, y), u2(x, y)) as ∇ × u =
∂u2
∂x
− ∂u1

∂y
. Problem (23) is subject to the boundary

condition
t ·E = g on Γ, (24)

where t is the unit tangent vector on the boundary Γ.
Let us choose the function g so that we have the exact solution known. Following Ainsworth (2004), let Ẽ =

i∇× eiξ·x be a plane wave propagating in the direction ξ = (4π, 4π). If we choose ω2 = 32π2 and g = t · Ẽ, then Ẽ is
the exact solution of the problem (23)-(24).

Consider that the domain Ω = (0, 1)2 is discretized on a uniform mesh of square elements of side h, Figure 2, and
uniform p-order Nédélec elements are used to define the space of finite elements V hp.

The finite element approximation is seeking Ehp ∈ V hp such that

(∇×Ehp,∇× v)− ω2(Ehp,v) = 0 (25)

for all v ∈ V hp ∩H0(curl,Ω). Essential boundary conditions are imposed requiring that over all edges γ ⊂ Γ, we have∫
γ

(t ·Ehp − g)v ds = 0 (26)

for all v ∈ Pp(γ), where Pp denotes the one-dimensional space of polynomials of degree at most p in the arc length.

Figure 2. Example particular mesh used in the numerical experiments, with n2 = 16, being n the number of
elements in the base domain, i.e. h = 1/n.

Following, we will opt for making approximations to Ẽ using Whitney elements and first order Nédélec elements.
Present some numerical experiments concerning the problem seen earlier in this section. Figures 3-5 highlights the
approximation of the real part of the second component of the exact solution Ẽ to the problem (23)-(24).

(a) (b) (c)

Figure 3. (a) Exact solution; (b) Numerical solution with Whitney elements and h = 1/16; (c) Variation along the
main diagonal of the Figures 3(a) and 3(b) of exact solution (dashed line) and numerical solution (continuous

line), respectively.
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(a) (b) (c)

Figure 4. (a) Exact solution; (b) Numerical solution with Whitney elements and h = 1/32; (c) Variation along the
main diagonal of the Figures 4(a) and 4(b) of exact solution (dashed line) and numerical solution (continuous

line), respectively.

(a) (b) (c)

Figure 5. (a) Exact solution; (b) Numerical solution with first order Nédélec elements and h = 1/4; (c) Variation
along the main diagonal of the Figures 5(a) and 5(b) of exact solution (dashed line) and of numerical solution

(continuous line), respectively.

(a) (b) (c)

Figure 6. (a) Exact solution; (b) Numerical solution with first order Nédélec elements and h = 1/16; (c) Variation
along the main diagonal of the Figures 6(a) and 6(b) of exact solution (dashed line) and of numerical solution

(continuous line), respectively.

4. SELECTING THE MESH PARAMETER

In section earlier we saw that the error of approximation by finite elements may cause a phase difference with respect
to the exact solution, see Figure 5(c). This effect depends not only on the h mesh parameter, but also the temporal
frequency ω as illustrated in Figures 7(a) and 7(b). This fact can be analyzed by studying the dispersive properties of
numerical solution in an infinity mesh.

Expressions that represent: (i) the dispersion relation for the equation of the electric field ∇ ×∇ ×E − ω2E = 0;
(ii) the discrete dispersion relation elements of Nédélec of dimension d = 2 of arbitrary order (Whitney elements when
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(a) (b)

Figure 7. (a) Variation along the main diagonal (h = 1/8) of exact solution (dashed line) and of numerical solution
with Nédélec elements of the first order (solid line) with ω2 = 32π2 and with (b) ω2 = 128π2.

p = 0), are found in Ainsworth (2003, 2004), and are given respectively by

ω = |ξ| (27)

and

ω2 =

d=2∑
i=1

ωhp(ξi)
2 with h −→ 0 (28)

where ξ1,2 are the components of the wave vector ξ.
The dispersion relation (27), tells us that the phase velocity of the continuous problem is c = 1. In the case of an

approximation by Whitney elements, according to Ainsworth (2004), we can express each plot ωh0(ξi), with i = 1, 2, in
(28) as

ωh0(ξ)2 =
6

h2

(
1− cos(hξ)
2 + cos(hξ)

)
, (29)

while that for first order Nédélec elements one has

ωh1(ξ)2 =
1

h2

(
16cos(ξh) + 104 +

√
(16cos(ξh) + 104)2 − 4(cos(ξh)− 3)(cos(ξh)− 1)

6− 2(cos(ξh))

)
(30)

Setting the numerical phase velocity as

C =
ωhp(ξ)

ξ
(31)

we can see in Figure 8(a) the comparison between the exact phase velocity of the continuous problem and the numerical
phase velocity when we substitute the expressions (29) and (30), one and then another, in equation (31). Figure 8(b) is a
closer view of Figure 8(a) that estimates, for example, the largest possible value of the parameter h so that the estimated
phase error is less than 0.01 %. To do so, simply observe the points where the velocity curves reach the value 1.0001, i.e.,
ξh ≈ 0, 05 and ξh ≈ 0, 62 for Whitney and Nédélec elements, respectively.

We will validate the estimates obtained for h from the numerical experiments made in section 3. Use in this section
ξ = (4π, 4π), then ξ = 4π and thus recommended for h values are: h ≈ 0,05

4π ≈ 1
251 (Whitney elements) and h ≈ 0,62

4π ≈
1
20 (Nédélec elements).

In fact, for example, from the parameter h ≤ 1
20 phase difference in the experiment with Nédélec elements becomes

is negligible within the error suggested. This shows that the dispersive effects caused by numerical approximation by
Whitney(p = 0) and Nédélec(p = 1) elements can be controlled according to the choice of initial parameter h estimated
by this analysis.

Let ε be the relative error in the phase velocity given by |1 − C|. Equations (29) and (30) are employed to show
the phase velocity approximation for a fixed ξ and an increasing n. This is shown in Figures 9(a) and 9(b) for three
different ξ values. As expected, it is clear that improving the approximation for c = 1 requires smaller h values for larger
frequency numbers, similar way the approximation by vector finite element, see Figures 7(a) and 7(b). Therefore, we can
characterize the error in the phase velocity as error estimator in the vector finite element approximation.
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(a) (b)

Figure 8. (a) Numerical phase velocity for Whitney and Nédélec elements, and phase velocity c = 1.; (b) Closer
view Figure 8(a)

(a) (b)

Figure 9. (a) Error between the phase velocity of the continuous problem and the numerical phase velocity for
Whitney elements; (b) Nédélec elements of first order. The number of elements in the mesh is given by n2, where

h = 1/n. (see Figure 2).
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ao Instituto Federal Catarinense - IFC pelo apoio.

REFERENCES

Adams, R. 1975. Sobolev Spaces. New York, USA: Academic Press. 300p.
Ainsworth, M. 2003. Discrete dispersion for hp-version finite element approximation at high wavenumber. SIAM J.

Numer. Analysis, vol.42, 553–575.
Ainsworth, M. 2004. Dispersive properties of high - order Nédélec/edge element approximation of the time - harmonic
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