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Abstract. Over the last few years there has been a growing and renovated interest in the numerical study of Random
Differential Equations (RDEs). On one hand it is motivated by the fact that RDEs have played an important role in
the modeling of physical, biological, neurological and engineering phenomena, and on the other hand motivated by the
usefulness of RDEs for the numerical analysis of Ito-stochastic differential equations (SDEs) -via the extant conjugacy
property between RDEs and SDEs-, which allows to study stronger pathwise properties of SDEs driven by different kind
of noises others than the Brownian. Since in most common cases no explicit solution of the equations is known, the
construction of computational methods for the treatment and simulation of RDEs has become an important need. In this
direction the Local Linearization (LL) approach is a successful technique that has been applied for defining numerical
integrators for RDEs. However, a major drawback of the obtained methods is its relative low order of convergence; in
fact it is only twice the order of the moduli of continuity of the driven stochastic process. The present work overcomes
this limitation by introducing a new, exponential-based, high order and stable numerical integrator for RDEs. For this, a
suitable approximation of the stochastic processes present in the random equation, together with the local linearization
technique and an adapted Padé method with scaling and squaring strategy are conveniently combined. In this way a
higher order of convergence can be achieved (independent of the moduli of continuity of the stochastic processes) while
retaining the dynamical and numerical stability properties of the low order LL methods. Results on the convergence
and stability of the suggested method and details on its efficient implementation are discussed. The performance of the
introduced method is illustrated through computer simulations.

Palavras-chave: random differential equations, numerical integrators, exponential methods, Local linearization methods

1. INTRODUCTION

In several physical, chemical, industrial and biological phenomena, noise plays a significant role. This is the case, for
example, in turbulent diffusion, epidemiology, genetic regulation, chemical kinetic, biological waste treatment, polymer
dynamics, large scale integrated (VLSI) circuit design, finance, neurosciences, to mention just a few. When the evolution
of such noisy phenomena has to be studied stochastic effects need to be taken into account, thus the mathematical modeling
of such situations is not well matched by deterministic differential equations. There are, of course, many ways to introduce
randomness into a mathematical models. In particular, during the last decades, in order to construct more realistic models,
Random Differential Equations (RDEs) of the form

x
′
(t) = f(t,x(t), ξ(t)), t ∈ [t0, T ],

(which are pathwise Ordinary Differential Equations (ODEs) containing a multidimensional stochastic process ξ in their
vector field function), have been used in a wide range of applications, see e.g. [1], [12], [11], [10], [14], [15], [16]. Since,
unfortunately, closed-form solutions of these equations are rarely available, the construction of computational methods
for the treatment and simulation of RDEs has become an important need.

At a first look one could think that some of the existing numerical schemes for ODEs can be used pathwise for RDEs,
but typically the driving stochastic process ξ(t) in the random equation has at most Hölder continuous sample paths, so the
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sample paths of the solutions are certainly continuously differentiable, but their derivatives are at most Hölder continuous
in time. The resulting vector field f(t,x(t), ξ(t)) is, thus, at most Hölder continuous in time, no matter how smooth the
vector field is in its original variables. Consequently, since the usual estimates of the discretization error of such schemes
require sufficient smoothness of the vector field function, numerical schemes for ODEs when applied to RDEs are not
convergent or rarely attain their traditional order.

On the other hand, similar to the deterministic scenario, there exists a variety of important issues in designing practical
numerical integrators for RDEs. In particular high accuracy, computational efficiency, and stability of the numerical
schemes, are very desirable properties. Taking all this into consideration, some numerical integrator have been proposed
in literature e.g., [2], [6], [8], [3]. However, these methods or are of implicit nature (involving the numerical solution
of a system of nonlinear algebraic equations at each integration step, that typically increase the computational effort of
these numerical integrators) or are explicit integrators, having the appealing feature of retaining the standard order of
convergence of the classical deterministic schemes, but at the expense of high computational cost and low stability.

The aim of this paper is overcome these limitations by introducing a new, exponential-based, higher order, stable
and explicit integrator for RDEs. For this, a suitable approximation of the stochastic processes present in the random
equation, together with the local linearization technique and an adapted Padé method with scaling and squaring strategy
are conveniently combined. In this way a higher order of convergence can be achieved (independent of the moduli of
continuity of the stochastic processes) while retaining the dynamical and numerical stability properties of the low order
LL methods proposed in [3] and with a suitable computational effort.

The paper is organized in 4 sections as follows. After this introduction, section 2 presents the deduction of the
proposed method, also a Padé algorithm is conveniently adapted and details on the effective implementation of the method
is given. In section 3 the proposed method is evaluated by mean of simulations and finally in section 4 some concluding
remarks are presented.

2. A HIGHER ORDER METHOD FOR RDES

Let (Ω,F , P ) be a complete probability space, and (Ft)t≥0 be an increasing right continuous family of complete sub
σ-algebras of F . Consider the d-dimensional random integral equation (see [7])

x
′
(t) = f(t,x(t), ξ(t)), t ∈ [t0, T ], (1)

x(t0) = x0,

where ξt is a Ft-adapted finite continuous processes.

2.1. Formulation of the method
Let (t)h = {tn : n = 0, 1, . . . , N} be a partition of the time interval [t0, T ], with equidistant stepsize h < 1, i.e.,

defined as a sequence of times t0 < t1 < . . . < tN = T such that tn = t0 + nh, for n = 0, 1, . . . , N .
Starting from the initial value x0, the approximations {xi} to {x (ti)}, (i = 1, 2, . . . , N) are obtained recursively as

follows.
For each time interval Λn = [tn, tn+1] we consider the random local problem

x(t) = xn +

∫ t

tn

f(s,x(s), ξ(s))ds, (2)

Then, the idea is to get an approximation of x(tn+1), through the solution of the auxiliary random equation resulting
from approximating f and the stochastic increment. For this, let´s consider h̄ = hγ (we need to take h̄ in this way in order
to guaranty the order of convergence of the method we are constructing here) with γ ≥ 2 and such that h1−γ ∈ N and let
(tn)h̄ = {tin : tin = tn + ih̄, i = 0, 1, . . . ,

[
h1−γ]+ 1} a partition of Λn.

For t ∈ Λn, define nt = max{k : tkn ≤ t < tk+1
n }. Then by a linear interpolation to ξ(t) in [tntn , t

nt+1
n ]

ξ(t) ≈ ξ̄(t) = ξ(tntn ) +
∆ξ(tntn )

h̄
(t− tntn ), (3)

It follows, by using the approximations above and a first order Taylor expansion of f at (tn,xn, ξn), that the solution
of (2) in Λn can be approximated by the solution of the (pathwise) differential equation

x(t) = xn +
t∫
tn

(f(tn,xn, ξn)+fx(tn,xn, ξn)(x(s)− xn) + f t(tn,xn, ξn)(s− tn) (4)

+

[h1−γ ]∑
k=0

t∫
tn

(f ′ξ(tn,xn, ξn)

(
(ξtkn − ξn) +

∆ξ(tkn)

h̄
(s− tkn)

)
1[tkn tk+1

n ] (s))ds
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Let’s denote

An = fx(tn,xn, ξn)

bkn = ft(tn,xn, ξn) + f
′
ξ(tn,xn, ξn)

∆ξ(tkn)

h̄

ckn = f(tn,xn, ξn)−Anxn − f t(tn,xn, ξn)tn+f ′ξ(tn,xn, ξn)((ξtkn − ξn)− ∆ξ(tkn)

h̄
)tkn

Then, the solution of (4) at t = tn+1 is obtained as follows. Starting at x(t0n) = x(tn) = xn, x(tk+1
n ) is computed

recursively from x(tkn) by solving in [tkn, t
k+1
n+1] the linear differential equation

x
′
(t) = Anx(t)+bknt+ ckn (5)

with initial condition x(tkn) in t = tkn.
That is,

x(tk+1
n ) = eAn(t−tkn)x(tkn) +

∫ tk+1
n

tkn

eAn(t−s)(bkns+ ckn)ds (6)

= x(tkn) +

∫ h̄

0

eAn(h̄−s)(bkns+ dkn)ds

:= ϕ(x(tkn))

where
dkn = ckn + Anx(tkn) + bknt

k
n

Thus, as we want to approximate x(tn+1), we conclude that

xn+1 = ϕ([h1−γ ]+1)(xn)

= ϕ ◦ ϕ ◦ ... ◦ ϕ︸ ︷︷ ︸(xn)

(
[
h1−γ]+ 1) times

Summarizing, the numerical integrator for (1) is given by the recursive equation

xn+1 = ϕ([h1−γ ]+1)(xn) (7)

for n = 0, 1, . . . , N − 1 with x(t0) = x0 and γ ≥ 2.

An important problem in the evaluation of (7) is the efficient and stable computation of ϕ. A naive way to do this is
through the explicit computation of the integral defining ϕ. However, this procedure might eventually fail since it is not
computationally feasible in case of singular or nearly singular matrices An (see e.g. comments in [4]). In the next section
we will propose an efficient algorithm for computing xn+1. Concerning the convergence and velocity of convergence of
the proposed method we have the following theorem.

Theorem: Let’s suppose that the moduli of continuity of ξ satisfies that $ξ

(
h̄
)

= O(h̄β) and let γβ ≥ 2. Then the
numerical integrator (7) is almost surely globally convergent and we have that with probability one supn ‖x(tn)− xn‖ =
O(h2). (i.e., the method retaining the standard order of convergence of the classical deterministic schemes, namely 2)

2.2. Implementation details
In this section an efficient computational algorithm to implement the method is provided. At first we will show that

x(tk+1
n ) in (6) can be represented in terms of a single appropriated exponential of a matrix. Then we will discuss in detail

an efficient and accurate alternative to evaluate this matrix exponential defining x(tk+1
n ).

The equation (5) can be rewritten

x
′
(t) = An(x(t)− xkn)+bkn(t− tkn) + dkn

x(tkn) = xkn

where xkn is the approximation to x(tkn).
Let Z(t) = (x(t)− xkn, t− tkn,dkn, 1)> ∈ R2d+2 then

Z
′
(t) = M Z(t)

Z(tkn) =
[
01×d+1

(
dkn
)>

1
]>

,
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where

M =


An bkn Id×d 0d×1

01×d 0 01×d 1
0d×d 0d×1 0d×d 0d×1

01×d 0 01×d 0

 .

The solution of this equation is

Z(t) = eM(t−tkn) Z(tkn).

Therefore, looking at the first component of Z(t), it follows that the solution x(t) of (5) in [tkn t
k+1
n ] can be computed by

x(t) = xkn +
[
Id×d 0d×(d+2)

]
eM(t−tkn)

[
01×d+1

(
dkn
)>

1
]>

.

Thus, in particular

x(tk+1
n ) = xkn +

[
Id×d 0d×(d+2)

]
eMh̄

[
01×d+1

(
dkn
)>

1
]>

. (8)

Hence, the numerical implementation of x(tk+1
n ) is reduced to the use of a algorithm to compute exponential of ma-

trices. In particular, those algorithms based on the rational (p, q)-Padé approximation ( p ≤ q ≤ p+ 2) combined with the
“scaling and squaring” strategy provide stable approximations to the matrix exponential. Nowadays, professional math-
ematical software, such as MATLAB, provide efficient codes for implementing a number of such algorithms. However,
note that the matrix M changes in each interval [tkn t

k+1
n ], so we would need to compute a lot of exponentials (one for

each interval). This turns out that a straightforward implementation of the Padé method would be prohibitively expensive.
In the rest of this section we will derive an algorithm that alleviates significantly the computational burden. Our key

idea is to exploit the special structure of the matrix M and to adapt conveniently the “scaling and squaring” strategy (see
[5], [13]) in such a way that the computational saving achieved are very significant.

Before this, we first summarize the existing Padé algorithm with “scaling and squaring” strategy on which we will
work.

2.2.1. The Padé algorithm for computing the matrix exponential

The (p, q) rational Padé approximation to eC is defined by

Pp,q(C) = [Dp,q(C)]−1Np,q(C),

where

Np,q(C) =

p∑
j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!

Cj

and

Dp,q(C) =

q∑
j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)!

(−C)
j
.

Diagonal approximation (that is, p = q) are preferred, since Pp,q with p > q (p < q) is less accurate than Pp,p (Pq,q),
and Pp,p (Pq,q) can be evaluated at the same cost. From now on, we denote Dq,q(C), Nq,q(C), Pq,q(C) by Dq(C),
Nq(C), Pq(C) respectively.

eC can be well approximated by Padé only near the origin, that is, for small ‖C‖. For this reason eC is approxi-
mated by

(
Pq(

C
m )
)m

where m is the minimum integer such that
∥∥C
m

∥∥ < 1
2 . In order to reduce the number of matrix

multiplications, the idea is to choose m to be a power of two. Then
(
Pq(

C
m )
)m

can be efficiently computed by repeated
squaring.

The Padé algorithm with scalling-squaring strategy for computing eC can be described as follows.

1. Determine the minimum integer k such that
∥∥ C

2k

∥∥ < 1
2

2. Compute Nq(
C
2k

) and Pq(
C
2k

)

3. Compute Pq(
C
2k

) = [Dq(
C
2k

)]−1Nq(
C
2k

), by solving the system Dq(
C
2k

)Pq(
C
2k

) = Nq(
C
2k

) (using, for instance,
a suitable Gaussian elimination)

4. Compute [Pq(
C
2k

)]2
k

by squaring Pq(
C
2k

) k times



Congresso Nacional de Matemtica Aplicada Indstria, 18 a 21 de novembro de 2014, Caldas Novas - GO

2.2.2. The Adapted Padé algorithm for computing eMh̄

Now we apply the (q, q) Padé method above to compute the exponential of the matrix we are interested, namely
C = Mh̄. Let us denote, for simplicity, A = An and b = bkn, then

C =


A b Id×d 0d×1

01×d 0 01×d 1
0d×d 0d×1 0d×d 0d×1

01×d 0 01×d 0

 h̄.

Let k the minimum integer such that
∥∥ C

2k

∥∥ < 1
2 and the coefficients cj = (2q−j)!q!

(2q)!j!(q−j)! (j = 0, . . . , q), then

(
C

2k

)
=


A b Id×d 0d×1

01×d 0 01×d 1
0d×d 0d×1 0d×d 0d×1

01×d 0 01×d 0

 h̄

2k
,

(
C

2k

)2

=


A2 Ab A b

01×d 0 01×d 0
0d×d 0d×1 0d×d 0d×1

01×d 0 01×d 0

( h̄

2k

)2

, ...,

and in general, by an induction argument, we have that for any j ≥ 2, j ∈ N

(
C

2k

)j
=


Aj Aj−1b Aj−1 Aj−2b

01×d 0 01×d 0
0d×d 0d×1 0d×d 0d×1

01×d 0 01×d 0

( h̄

2k

)j
.

Hence,

Nq(
C

2k
) =

q∑
j=0

cj

(
C

2k

)j

=


I + A (α1I + AS) (α1I + AS) b (α1I + AS) Sb

01×d 1 01×d α1

0d×d 0d×1 Id×d 0d×1

01×d 0 01×d 1

 ,

where,
S = α2I + α3A + ...+ αqA

q−2,

where αj = cj

(
h̄
2k

)j
.

Similarly,

Dq(
C

2k
) =

q∑
j=0

αj

(
−C

2k

)j

=


I + A

(
−α1I + AS̄

) (
−α1I + AS̄

)
b

(
−α1I + AS̄

)
S̄b

01×d 1 01×d −α1

2k

0d×d 0d×1 Id×d 0d×1

01×d 0 01×d 1

 ,

where,
S̄ = α2I− α3A + ...+ (−1)q−2αqA

q−2.

Now, we will compute Pq(
C
2k

) = [Dq(
C
2k

)]−1Nq(
C
2k

) by solving the matrix linear system Dq(
C
2k

)Pq(
C
2k

) = Nq(
C
2k

).
It is not hard to see that Pq(

C
2k

) has the form

Pq(
C

2k
) =


U1 U2 U3 (U4)b
01×d 1 01×d 2α1

0d×d 0d×1 Id×d 0d×1

01×d 0 01×d 1


where the matrices U1,U3,U4 and the vector U2, satisfy the systems of linear equations[

I + A
(
−α1I + AS̄

)]
U1 = [I + A (α1I + AS)][

I + A
(
−α1I + AS̄

)]
U2 =

[
(α1I + AS)−

(
−α1I + AS̄

)]
b[

I + A
(
−α1I + AS̄

)]
U3 =

[
(α1I + AS)−

(
−α1I + AS̄

)][
I + A

(
−α1I + AS̄

)]
U4 =

[
S− S̄−2α1

(
−α1I + AS̄

)]
,
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Since the fundamental matrix of each system above is the same one, we can exploit this, and that U2 = (U3) b, to
yield significant improvements in the computational cost when solving these set of simultaneous equations. That is, we
can do the LU descomposition to

[
I + A

(
−α1I + AS̄

)]
and then use the standard procedure for obtaining the definitive

solution (see for instance [5]).
Once the U1,U2,U3,U4 are obtained, it remains to compute

(
Pq(

C
2k

)
)m

, where m = 2k, to conclude the scalling-
squaring Padé method. By an induction argument, it is not hard to prove that

(
Pq(

C

2k
)

)m
=


U1 U2 U3 (U4)b
01×d 1 01×d 2α1

0d×d 0d×1 Id×d 0d×1

01×d 0 01×d 1


m

=


(U1)

m

(
m−1∑
i=0

(U1)
i

)
U2

(
m−1∑
i=0

(U1)
i

)
U3

(
m−1∑
i=0

(U1)
i

)
(U4)b+α1

(
m−2∑
i=0

(m− 1− i) (U1)
i

)
U2

01×d 1 01×d mα1

0d×d 0d×1 Id×d 0d×1

01×d 0 01×d 1

 .

Then, by substituting the above Padé approximation to eMh̄ in (8), the implementation of the approximation xk+1
n to

x(tk+1
n ) is

xk+1
n = xkn +

[
Id×d 0d×(d+2)

](
Pq(

C

2k
)

)m [
01×d+1

(
dkn
)>

1
]>

(9)

= xkn + Ldk
n + Qb,

where

L =

(
m−1∑
i=0

(U1)
i

)
U3,

and

Q =

(
m−1∑
i=0

(U1)
i

)
U4 + α1

(
m−2∑
i=0

(m− 1− i) (U1)
i

)
U3.

Note that L and Q remain the same in each subinterval [tkn t
k+1
n+1], so these values are computed only once in each

interval [tn tn+1].

Now that, from (9), we have a computational algorithm to implement xk+1
n from xkn, the integrator (7) can be effi-

ciently implemented by the recursive equation

xn+1 = (I + LAn)
h1−γ

xn +
h1−γ∑
i=0

(I + LAn)
i−1

(Q + L(f(tn,xn, ξn)−Anxn))

+h−γ

(
h1−γ∑
i=0

(I + LAn)
i−1

∆µ(k−i)

)
L

where ∆ξ are increments of the process ξ on the partition (tn)h̄.
Note that If we are interested in computing E(φ(x(t))), where φ(.) is a bounded function, we apply Monte Carlo

method. For this we need to apply the numerical integrator M times to get approximate samples {z[i]}Mi=1 from the

distribution of x(t). Our computed approximation to E(φ(x(t))) would then be the sample mean µ = 1
M

M∑
i=1

φ(z[i]).

Here is the importance that the numerical evaluation of the proposed scheme can be carried out in an effective,
accurate and simple way.

3. A NUMERICAL TEST

In this section a simulation study is carried out to estimate the order of convergency of proposed method, and so, to
corroborate that the method introduced in this work retains the standard order of convergence of the classical deterministic
schemes.

Let 0 ≤ t ≤ 4, consider the RDE defined by
.
x1(t) = −x2 + x1(1− x2

1 − x2
2) sin(BH(t))2 (10)

.
x2(t) = x1 + x2(1− x2

1 − x2
2) sin(BH(t))2

x1(0) = 0.5

x2(0) = 0.5,
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where BH(t) denotes a fractional Brownian process with Hurst exponent H .
The quantity

e(h) = E( sup
t0≤tn≤T

‖x (tn)− y (tn)‖)

is used to estimate the order β of strong convergence of the proposed scheme, where the simulated trajectory y = (y1, y2)

of x = (x1, x2) is computed with step size h. The estimated order or convergence β̂ is obtained from the slope of the
straight line fitted to the set of points {log2(hi), log2(ê(hi))}i=1,...p, where ê(hi) denotes the estimate of e(h) computed
as in [9]. That is, the simulations are arranged into M = 20 batches with K = 100 trajectories y(t) in each. The error
for the j-th trajectory of the i-th batch is given by

êi,j(h) = sup
t0≤tn≤T

∥∥x (tn)− yi,j (tn)
∥∥ ,

and the sample mean error of the i-th batch and of all batches by

êi(h) =
1

K

K∑
j=1

êi,j(h), and ê(h) =
1

M

M∑
i=1

êi(h)

respectively.
Specifically, the simulations were arranged into M = 20 batches of K = 100 trajectories for each step size hi =

2−(i+3), with i = 1, ..., 6. The significance level was taken α = 0.1. Table I shows the estimated values of e(hi) and their
respective 90% confidence interval.

h ê(h)
H = 0.25 H = 0.5

2−5

2−6

2−7

2−8

2−9

0.0001856
0.0001091
0.0000647
0.0000381
0.0000233

0.0000673
0.0000238
0.0000084
0.0000029
0.0000011

Table I: Uniform discretization errors for the method (7) applied to (10).

Table II show the estimated slope β̂ (with its 95% confidence interval). This corroborate the usefulness of (7) for the
achievement of a desirable deterministic order of convergence.

β̂
H = 0.25 H = 0.5
1.9802± 0.0197 1.9938± 0.0064

Table II: estimated slope β̂

4. CONCLUSIONS

In this work we introduce an effective numerical integrator for the computer simulation of the RDE (7). For this, a
suitable approximation of the stochastic processes present in the random equation, together with the local linearization
technique and an adapted Padé method with scaling and squaring strategy are conveniently combined. In this way we
avoid order reduction an consequently deterministic order of convergence can be achieved independent of the moduli of
continuity of the driven stochastic processes. It is important to note that thanks to the particular structure of the involved
matrix in the proposed method, the computational burden is considerably reduced (from dimension 2d + 2 to dimension
d, via an adapted Padé method with scaling-squaring strategy) to the same computational load of solving simultaneous
linear systems through a LU decomposition of a unique matrix. It is worth to note that the proposed method is well suited
for parallel computing and since the computational cost scales with the dimension of the underlined original equation the
approach has great potential even for very large simulation models.
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