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Abstract: The main purpose of this work is the evaluation of spatial schemes used on CAA (Computational 

AeroAcoustic): Traditional finite differences, and DRP (Dispersion Relation Preserving), on 1D (one dimension) 

acoustic propagation prediction. A secondary goal is to present details of construction of DRP, proposed by Tam and 

Webb (1993) and advantages of this schemes over traditional finite differences schemes. Temporal schemes as Euler, 

Runge-Kutta 2nd and 4th order methods and CAA optimized methods such as LDDRK and RK46-NL will be evaluated. 

This work shows an outstanding efficiency of Runge-Kutta 2nd order over Runge-Kutta 4th order scheme, and in some 

cases, even superior to the optimized CAA schemes. The simulations revealed that DRP loss efficiency over traditional 

finite differences scheme when grid refinement occurs. 
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1. INTRODUCTION  

 

The stream noise generated by the air over trees, rocks and other obstacles always interested researchers along the 

centuries. Older studies of the phenomenon goes back to the ancient Greece and the term eolian is used to describe that 

behavior. In modern age, names as Vincent Strouhal left a great legacy on the development of this science, studying the 

sound generated by air streams through wires (aeolian tones).  

A few decades later, the aeroacoustic emerges as a branch of fluid mechanics interested in  sound generation an its 

propagation of air flowing over flat surfaces. Once more, a practical problem guides the research efforts to this area. In 

this case the primary motivation was the start operation of the noise turbojets after second world war, in the decades of 

1950 and 1960, mostly in north america and europe continents.  

In fact, the fast growing of the aviation using reaction engines (also called turbojets), the problem of the noise 

generated by high speed exhaust gas flow became an inconvenience for the society, a hard psychological and 

physiological impact in the people living close by large airports, for example, Heatrow, in London, and JFK, in New 

York.  

The intense engine noise is created by the interface of exhaust gas flow and the atmospheric air, due a strong shear 

strength of the velocity gradient between the two flows, like the sound produced when two smooth surfaces are rubbed 

one against the other. 

In this scenario of crisis born the aeroacoustic, with the first works of Sir James Lighthill. Lighthill deduced a 

transport equation from Navier-Stokes equations describing the specific mass fluctuation in an outflow. Under certain 

conditions the analytical solution of this equation enable to determine the sound propagation to a far field, away from 

the sound source. Moreover, following his researches, Lighthill also demonstrate that the intense of the aerodynamic 
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noise is proportional to the relative velocity between the exhaust gas flow and the atmospheric air, elevated to the power 

of 8.  
As a result of these first studies the aeronautic industry created the turbofan engines, that were nothing more than 

the turbojet engines now equipped with a huge inlet air to supply the engine, and also to cover the exhaust gas flow with 

a coat, faster than static (or quasi static) atmospheric air and slower than the exhaust gas, decreasing the shear stress 

between those flows.  
Surpassed the first obstacles, the daily coexistence shows other noise sources apart of the engines. The airflow 

passing through the aircraft`s body, the high lift devices, the landing gear and the wing tips, proved to be sources of 

noise so intense as the turbofan engines. 

In-depth studies revealed that the turbojets generated noises in order of 115 dB (decibel). The air pressure gradient 

due sound propagation, even close to the engine, was very small, about      of the atmospheric pressure. Although the 

sound generation and its propagation depend on the same variables, the order of magnitude of those variables for the 

same phenomena are too disparate. To solve the sound generation together with its propagation requires a refined 

control error, a very high computational cost even in these days, and for that time, unthinkable. To solve the sound 

generation means to solve the flow (aerodynamics), to solve the turbulence present in the flow. From the point of view 

of the fluid mechanics, the best way to do this is by DNS (Direct Numerical Simulation), solving Navier-Stokes 

equations completely. But, even through the powerful moderns computers, this task is only possible for very simple 

cases, for very low Reynolds numbers. To solve the turbulence without solve all its scales (RANS, URANS, LES...), is 

still under discussion  because of the required filtration, which eliminates a very large band of sound frequencies. To 

solve the turbulence in all scales requires a very refined mesh, even in a little domain, is still impractical for most of 

engineering problems. To add to the solution the sound propagation, in a far field (extremely large mesh), elevates the 

computational efforts beyond the current technological capability. 

Lighthill`s research brought a perception that was possible to separate sound propagation from its generation if the 

flow had a very low Mach number. His studies revealed also the low influence of air viscosity for propagation purposes, 

far from source sound generation (low Mach number). This fact reduced the costs of the heavy computational 

processing, turning the Navier-Stokes equations into Euler equations.  

Many sound propagation schemes have been proposed over the years to solve the first order spatial partial 

derivative of the sound equation. Minimize the error under a low computational cost is the main objective of all 

schemes, but some of them has add a very simple implementation to its profile. In computational aeroacoustic (CAA) 

the finite differences technique has been detached. 

Based on Taylor series this simple technique has reached good efficiency. The focus of these techniques is to 

minimize the sound dissipation error (energy loss) but, for the fact that it is an approximation of the real value of the 

variable, the imprecision of the scheme stimulates the growing of an artificial sound dispersion. So it has been created 

by Tam and Webb (1993) a finite differences schemes to inhibit this dispersion growing, among them stands out the 

DRP (Dispersion Relation Preserving).  
On the basis of the above, this work has the main objective to evaluate the performance of these two groups of 

spatial schemes (finite differences and DRP) together with temporal schemes (Euler method, 2nd and 4th order Runge-

Kutta and the CAA optimized methods: LDDRK and RK46-NL) on 1D (one dimension) acoustic pulse propagation, 

comparing results with analytical data and show a brief deduction of DRP schemes. 

 

2. GOVERNING EQUATIONS 

 
2.1. Acoustic Propagation Equations 

 

As shown by Mainieri et al. (2013), the set of equations of the acoustic propagation for a quasi-static flow with 

Reynolds number < 1000 are presented by eq. (2) for 1D (one dimension) case: 

 

1D: {

   
  

  
   

  

  
 

  

  
  

  

  
   

  

  
 

  

  
      

                (1) 

 

where u is the velocity in x direction, p is the pressure, t is the time and    is the velocity propagation of the acoustic 

pulse in relation to the sound speed.  

That set of equations were nondimensionalized as described by Mainieri et al. (2013). 

 

2.2. Spatial Derivatives 

 

The spatial derivatives were solved by finite differences or by DRP. The deduction of both schemes is explained in 

detail in Mainieri et al. (2013). The coefficients of the finite differences schemes are shown in Tab. 1 and for DRP 

schemes in Tab. 2. In this work it was adopted central schemes due its looseness property. 
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Table 1.  Coefficients for central finite differences schemes. 

 
Points/Order 2ª 4ª 6ª 8ª 10ª 12ª 

         1/5544 

        -1/1260 -1/385 

       1/280 5/504 1/56 

      -1/60 -4/105 -5/84 -5/63 

     1/12 3/20 1/5 5/21 15/56 

    -1/2 -2/3 -3/4 -4/5 -5/6 -6/7 

   0 0 0 0 0 0 

    ½ 2/3 ¾ 4/5 5/6 6/7 

     -1/12 -3/20 -1/5 -5/21 -15/56 

      1/60 4/105 5/84 5/63 

       -1/280 -5/504 -1/56 

        1/1260 1/385 

         -1/5544 

 

Table 2. Coefficients for central DRP schemes. 

 
Points/Order 2ª 4ª 6ª 

      0.005939804 

     -0.0265199521 -0.052305492 

    0.123171607 0.189413142 0.233157260 

    -0.746343213 -0.799266427 -0.833157260 

   0 0 0 

    0.746343213 0.799266427 0.833157260 

    -0.123171607 -0.189413142 -0.233157260 

     0.0265199521 0.052305492 

      -0.005939804 

 

2.3. Temporal Derivatives 

 

The temporal derivatives were solved by: 

 Euler`s method (1ª order) (EULER), 

 Runge-Kutta 2
nd

 order (RK2), 

 Runge-Kutta 4
th

 order (RK4), 

 LDDRK (optimized method of 2
nd

 order for nonlinear problems and 4
th

 order for linear problems), 

 RK46-NL (optimized method of 4
th

 order for linear and nonlinear problems). 

The Euler and Runge-Kutta methods requires no detailed comments because of its widespread use and well known 

by specialized literature. LDDRK (Low Dispersion low Dissipation Runge-Kutta) is a Runge-Kutta optimized method 

for aeroacoustic developed by Hu et al. (1996). RK46-NL is also a Runge-Kutta optimized method for aeroacoustic (46-

NL – 4th order and 6 steps NonLinear problems) developed by Berland et al. (2006). 

 

2.4. Absolute Error 

 

As the main purpose of this work is to present in a clear and unambiguous manner concepts and ideas of acoustic 

propagation, it was chosen the simpler kind of error, the absolute error, defined as: 

 
       |                              |                                                      ( ) 

 
It is important to remember that there is no damping function inside the computer code in order to not minimize 

numeric fluctuations. 
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3. CONSTRUCTING DRP 

 
Taking the general formula for finite differences schemes: 
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and transporting it to Fourier spectral space: 
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Remembering that even in spectral space the expression of Eq. (4) still remain an approximation of the variable. 

The left side has the wave number  , which describes the real wavelength of the exact spatial derivative. The sum of the 

right side of Eq. (5) can be describe as: 
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Note that the wave number is no longer   but   , and that the expression is now an equality instead of an 

approximation.    is known as efective wave number, an approximation of the real wave number  , which is a wave 

number produced by the finite differences scheme.   is now defined as:  
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The purpose of DRP scheme is to make   as close as possible of  . The dispersion relation is a function of the 

wave number, it means that taking the effective wave number    equal or close as possible of the real wave number  , it 

will be preserving the dispersion relation of the phenomenon, which is exactly the purpose and the name of this scheme, 

DRP – Dispersion Relation Preserving. To get there it seeks to minimize the integral of the error:  
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turning the error as low as possible by minimizing the error of each coefficient    of Eq. (8):  

 
  

   
                                                                       (8) 

 

The original DRP original was constructed under 7 points: Three points behind and three points forward of the 

interest point. For a traditional finite difference scheme using seven points it would reaches sixth order of convergence, 

however the DRP truncates the convergence into fourth order, as shown below (Eq. 9): 
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By this all coefficients remains without an exact solution, depending of one coefficient that will be optimized by the 

integral of Eq. (7) and the derivative of Eq. (8). 
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Multiplying the first row of Eq. (9) by    , the second by    , the third by    , the fourth by    , the fifth by     

and the sixth by    . Adding all these rows and setting the result to be 1 (one) for the sum of coefficients of the first 

derivative (  
 ), and 0 (zero) for the others derivatives: 
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Solving the first row, the coefficient      remains as function of    ,    ,    ,    , and    : 

 

                                                                                   (11) 
 

Replacing     on second row,     remains as function of    ,    ,    ,    : 

 

                                                                                   (12) 

 

Doing the same process on third row,     remains as function of    ,    ,    : 

 

    
 

 
(                   )                                                         (13) 

 

Solving fourth row,     remains as function of    ,    : 
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In fifth row,     f remains as function of    : 

 

    
 

  
(        )                                                                  (15) 

 

Equation (6) reveals that the effective wave number    is a sum of complex numbers. These complex number can 

be written in trigonometric form: 

 

             (      )       (      )                                                      (16) 
 
The integral of Eq. (7) can be written as: 
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Making some simplifications it becomes: 
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Open the term of sum: 

  

        (19) 
 

As    coefficient doesn`t appear in the deduction of the finite difference scheme, it means that   = 0. So, the result 

of the integral becomes: 
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a second degree function of     whose concavity is like a dish (minimum point).  

It is interesting to note that the expression above doesn`t contain any complex number. In a centered finite 

difference scheme the equidistent terms has the same value with opposite signals (Eq. 21): 

 

                                                                                     (21) 

 

This behavior allow to cancel the complex numbers of equidistent terms. This information can be useful to reduce 

computational work on Eq. (19). Differentiating Equation (20) and setting it equal to zero it obtains    : 
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With the value of     it obtains    . With     and     it obtains    , and so on. Table 2, in previous section, 

shows some DRP coefficients.  

DRP was idealized as a centered scheme. To construct a sided scheme with the same integration limits (from      

=    ⁄   to      =   ⁄ ) results in the appearance of complex numbers on the error integral, not leading application of 

the scheme on the border of the domain or on obstacles immersed in the flow. However, using symmetric integration 

limits the complex coefficients are cancelled. 

For a sided scheme 4-2 (four points behind and two points forward) the interior of the error integral (Eq. (19)) 

becomes: 

 

             (23) 

 

For an integration limit        , Eq. (23) can be written as: 

 

                                     (24) 

 

Remember that now the scheme is not centered, than     . Taking the symmetric integration limit,        ,  

the Eq. (24) is written as: 

 

                                      (25) 

 

Elevating to the square the complete expression it will appear a huge expression of complex numbers that will 

cancel itself for those integration limits              .  
To illustrate these ideas, suppose that the expression to be square elevated is: 
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     (    )       (    )                                                                    (26) 

 

For symmetric positions under the integration interval, 
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it becomes: 
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Elevating to the square: 
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It is possible to see clearly that the complex numbers will cancel itself for symmetric integration limits and that this 

symmetric integration limits can be also used to construct centered DRP schemes. 

 
4. SIMULATION CONDITIONS 

 
It was simulated an 1D (one dimension) acoustic pressure pulse propagation in the center of the domain, as 

illustrated in Fig. 1 below. As can be seen, the initial pulse decomposes into two lower pulses that propagates in 

opposite directions.  

 

 

 

 

 

 

 

                                                           

 

Figure 1. Schematic shape of a 1D pressure acoustic pulse. 

 

In these simulations were tested several combinations of spatial and temporal schemes. Simple tests revealed the 

best temporal scheme. By setting the temporal scheme, it was simulated the propagation of the acoustic pulse changing 

spatial schemes into two different meshes: A mesh of 201 points (dx = 1) and a refined one of 401 points (dx = 0.5), 

ranging from -100 to 100 into x axis. The domain was extended from -400 to 400 and interrupted before the pulse 

achieve the border of the domain to avoid the pulse reflection and, consequently, contamination of the solution.  

Analyzing the performance of these combinations (spatial and temporal schemes) in different mesh sizes, it was 

found the best spatial scheme that was set while varying the temporal schemes, with the same mesh sizes. The previous 

temporal scheme choice was confirmed. 

Taking into account that the describe phenomenon equation are hyperbolic type, the sound propagation velocity   

can not exceed the numeric solution velocity (     ):      . If CFL exceeds 1 the solution will lose information 

and it won’t represent correctly the phenomena. To avoid interference of the temporal derivative over spatial derivatives 

and vice versa the CFL was set 0.05. For a fixed CFL value, the temporal increase    varies according to the mesh (  ):  

              , e  

                 .  

According to Eq. (30): 

 

      
  

  
                                                                                   (30) 

 

where c is the sound velocity.  

The analytical solution of the pressure pulse propagation (Eq. (31)) was taken from Zhang et al. (2004). 
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First moment 

𝑥  𝑥 

Any time 
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 The initial conditions for 1D case were: 

 

{            (   )
(    ) 

 

                                              
                                                                  (32) 

 
5. RESULTS 

 
5.1. Spatial Scheme Variation – Mash of 201 Points 

 

The graphics were constructed in order to enable a better overview of the schemes performance. The pressure 

absolute error in all points of the domain, in all times, until the pressure pulse reaches the border of the domain, were 

overlaid.  

 

 
                            (a)                                                     (b) 

Figure 2. Pressure absolute error growth using RK46-NL (4th order optimized Runge-Kutta) and: (a) DRP69 

(6th order DRP) - (b) FD12 (12th order finite differences). 

 

It can be observed an asymptotic behavior of the error growth in this mesh of 201 points. 

It is possible to see that the DRP69 (sixth order) has a performance almost equal to the FD12 (twelveth order), six 

order above. 

 

5.2. Spatial Scheme Variation – Mesh of 401 Points 

 

In this mesh the performance of DRP schemes decreased considerably, as shown below. 

 

 
                            (a)                                                     (b) 

Figure 3. Pressure absolute error growth using RK46-NL (4th order optimized Runge-Kutta) and: (a) DRP69 

(6th order DRP) - (b) FD8 (8th order finite differences). 

 

5.3. Temporal Scheme Variation – Mesh of 201 Points 

 

It can be seen in the next two graphics the superior performance of RK2 (2nd order Runge-Kutta) over RK4 (4th 

order Runge-Kutta). 
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                                                                  (a)                                                    (b) 

Figure 4. Pressure absolute error growth using FD12 (12th order finite differences) and: (a) RK2 (2nd order 

Runge-Kutta - (b) RK4 (4nd order Runge-Kutta. 

 

Comparing the graphics of absolute error growth of LDDRK, RK46-NL, and RK2 it shows that RK2 has the lower 

error and the lower growing error velocity (inclination of the tangent). 

 

 
                                                                  (a)                                                    (b) 

Figure 5. Pressure absolute error growth using FD12 (12th order finite differences) and: (a) LDDRK (4th order 

optimized Runge-Kutta - (b) RK46-NL (4th order optimized Runge-Kutta. 

 

In the mesh of 201 points RK2 revealed an outstanding superior performance over the optimized aeroacoustic 

temporal schemes (LDDRK and RK46-NL). 

  

5.4. Temporal Scheme Variation – Mesh of 401 Points 

 

Under this mesh the graphics show that the optimized aeroacoustic temporal schemes (LDDRK and RK46-NL) 

achieved much better performance than RK2, but RK2 still got superior performance over RK4. 

 

 
                                                                  (a)                                                    (b) 

Figure 6. Pressure absolute error growth using FD12 (12th order finite differences) and: (a) RK2 (2nd order 

Runge-Kutta) - (b) RK4 (4th order Runge-Kutta). 
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                       (a)                    (b) 

Figure 7. Pressure absolute error growth using FD12 (12th order finite differences) and: (a) LDDRK (4th order 

optimized Runge-Kutta) - (b) RK46-NL (4th order optimized Runge-Kutta). 
  

Note that the graphics for RK2 and RK4 have different full scales. RK2 is one order of magnitude lower. The mesh 

refining increased the performance of the methodology. 

 

6. CONCLUSION 

 
This work has shown the need for use high order schemes in CAA, even using optimized schemes for acoustic 

propagation. A refined grid contributed significantly to reduce the spurious waves within the numerical procedure. The 

Runge-Kutta 2nd order shows an outstanding efficiency over Runge-Kutta 4th order in all simulations. This behavior 

must be investigated for futher work in this issue. When the mesh was refined DRP schemes performance dropped in 

comparison to finite differences schemes, but in general terms, both DRP and finite differences schemes performed well 

in acoustic propagation. 
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