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Abstract. Experimental and Neural network modeling investigation were completed to study 
the resistance to non uniform flow through porous media with convergent boundaries.  The 
Experimental observations were made with “Convergent Flow Permeameter” using crushed 
rock as the media and water as fluid to anlyse the resistance of flowing fluid with different 
radial lines and with different ratio of radii.   The present investigation aims to develop 
NNCB models to predict the optimal solution by its ability to capture non linear interacts 
among various parameters of the system.  Feed Forward Back Propagation Neural Network 
models have been used in the present study for prediction of resistance flow at different 
radial lines with different ratios of radii and also to predict the relationship between friction 
factor (fk) and Reynolds number (Rk) for flow in porous media with converging boundaries, 
using intrinsic permeability as the characteristic length. The results shows that the ANNs can 
be very efficient tools for predicting resistance flow and also it is possible to obtain good 
ANN model performance even with extremely simplified architectures involving a very few 
input variables. 
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INTRODUCTION 

           Study of flow through porous media has been attracting considerable attention for a 
long time.  The resistance of non uniform flow through the tortuous passage of a porous 
media with convergent boundaries assumes an almost indescribable complexity.  The 
significant contribution made by the authors to Seepage flow through porous media, any fact 
relating directly or indirectly to its flow and contributing to a greater understanding of the 
problems involved is of prime concern. Recently, artificial neural networks (ANNs) have 
emerged as an attractive and easy to implement alternative to solve complex problems 
efficiently.  A look at the field situation involving non-Darcy seepage flow indicates that 
majority of them are of converging flow configuration.  The study of the fluids through 
porous media is important in flow through rock fill dames and banks, flow through filters, 
flow in the area adjacent to a pumping well and flow through fissured rocks in Civil 
Engineering, geology, petroleum and other related fields.  

     Darcy (1856) related velocity of flow and hydraulic gradient by conducting 
experiments and arrived at an equation given by 

                                                            KIV =                                                                     (1) 

where V = macroscopic velocity or seepage velocity; I = hydraulic gradient, and K is the 
coefficient of permeability which depends upon the particle size and shape, and other factors 
like void ratio, structure of the soil mass, fluid properties etc.                              

             Forchheimer (1901) proposed an equation in a quadratic form as, 

                                                               2bVaVI +=                                                                 (2) 

for the non-Darcy regime of flow, in which a and b are the coefficients determined by the 
properties of the fluid and porous media and are known as Darcy and non-Darcy parameters.  

  The investigations carried out by Ward (1964) require special attention.  Ward 
expressed dimensionally the equation for both laminar and turbulent flows in porous medium 
using square root of intrinsic permeability k  as the characteristic length as 
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        in which I is hydraulic gradient, k is intrinsic permeability,  is density of fluid,  is 
dynamic viscosity of fluid, CW is media constant and g is acceleration due to gravity. 
Comparing Forchheimer Eq. (2) with Eq. (3), Ward obtained expressions for a and b as  
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       Defining frictioin factor fK  as 2V
kIg   and Reynolds number Rk as 
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the relationship between friction factor and Reynolds number as  

                                                             W
k

k C
R
1F +=                                                            (6) 

 Mc Corquodale (1970) and Nasser (1970) conducted experiments on converging 
permeameter and assumed that convergence of streamlines mainly affects only non-Darcy 
component of Forchheimer equation and assumes that Darcy parameter is same for both 
parallel and converging flow.  Venkataraman and Rao (1998)  developed theoretical curves 
for flow through porous media with parallel boundaries and related friction factor (FK) and 
Reynolds number (RK) and the media constant Cw to obtain a set of curves, similar to Moody 
diagram used for pipe flow.  Reddy and Rao (2003) developed theoretical curves for flow 
through porous media with converging boundaries and related predicted friction factor (FK) 
and Reynolds number (RK) by using neural network models to obtain a set of curves, similar 
to Moody diagram used for pipe flow.  Reddy and  Rao (2006) studied the effect of 
convergence on linear and non-linear parameter for different radial flow lines with different 
ratios of radii and showed that both a and b are varied along the radial direction of flow with 
different ratio of radii. Reddy (2006) studied the effect of convergence factors CA and CB on 
linear parameter, a and non-linear parameter, b for central radial flow line in a convergent 
flow permeameter and also investigated the relationship between friction factor (Fk) and 
Reynolds number (Rk) with CA and CB  for different rate of flows (Q).  Reddy (2006) studied 
the variation of the friction factor and Reynolds number with different ratios of the radii 
(R1/R2) and for different convergent angles (θ) of a permeameter.  Reddy and  Reddy (2007) 
developed curves relating friction factor (Fk)  and Reynolds number (Rk) with efficiency (η) 
for different rate of flows of the test section of permeameter.  Reddy and  Reddy (2010) 
developed curves relating friction factor (Fk)  and Reynolds number (Rk) with Power (P) for 
different rate of flows of the test section of permeameter and also studied the variation of 
Darcy Parameter, a and Non-darcy Parameter, b  with Power (P). 

           The aim of the present paper is to 

1.  Implement NNCB models on Convergent Flow through Porous Media to predict the 
relation between friction factor  and Reynolds Number and compare with the 
experimental results. 
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2.  Obtain the variation of intrinsic permeability, friction factor and Reynolds number 
with different ratio of radii. 

3.  Obtain the curves relating friction factor and Reynolds number for different Cw values 
taken as third parameter using experimental data and implement the NNCB models to 
predict the variation between Fk and Rk and compare with experimental results.  

NEURAL NETWORKS 

            As per Garrett (1994), an artificial neural network is a computational mechanism able 
to acquire, represent and compute a mapping from one multivariate spacing of information to 
another given set of data representing the data.  Haykin (1994) refers that a neural network is  
massively parallel distributed process that has a natural propensity of storing experimental 
knowledge and making it available for use.  It resembles the brain in two respects: 
1) The knowledge is acquired by the network through a learning process. 
2) Interconnection strengths known as synaptic weights are used to store the Knowledge.   

            As per Goh (1995), the neural networks are computer models that mimic the 
knowledge acquisition and organizational skills of the human brain. An artificial neural 
network is usually defined as a network composed of large number of neurons that are 
interconnected, operate in parallel and learn from experience.  The theory of Neural 
Networks was developed and based on the fact that human brain has the advantage of 
handling disperse and parallel distribution data efficiently.  It is used for a variety of purposes 
like function approximation, pattern recognition, association, classification and optimization.  
Mathematically the working of a single neuron or node (Fig.1.) is given by  

 

 

 

 

 

Fig.1. Model of a Single Neuron 
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where Qi=output from ith  Neuron, Wij  = connection weight between ith  Neuron and jth  input, 
Xij =jth input value, bi = bias value for the ith Neuron and summation  is carried out over all 
input values, f[ui]=transfer function, which could be a sigmoid function given by 

                                                              ( )( )uexp11uf ii -+=                                                 (9) 

             Applications of neural networks in Hydro informatics (1992) generally involve a 
Feed Forward Back propagation type network as shown in Fig.2.  Such a network is found to 
be sufficient to approximate any continuous function.  In this network input variable values 
are fed through the input layer of neurons.  As indicated in Eq. (7) and Eq. (9) a hidden layer 
neuron collects each input value, multiplies it by a connection weight, adds such weighted 
inputs together, attaches a bias value and passes on the result through a non-linear function 
like that of a sigmoid one.  The resulting value is fired to the output neuron, which replicate 
the same process and produce in the end the values of the output variables. 

 

 

 

 

 

 

 

 

Fig.2. General Feed Forward Neural Network 

 

BACK-PROPAGATION 

                  Back-propagation is perhaps the most popular algorithm for training Artificial 
neural networks.   It is essentially a gradient descent technique that minimizes the network 
error for function.  Each input pattern of the training data set is passed through the target 
output and an error is computed based on equation. This error is propagated backward 
through the network to each node and correspondingly the connection weights are adjusted 
on equation: 
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            Where ΔWij (n) and ΔWij (n-1) are weight increments between node i and j during the 
nth and (n-1)th pass or epoch.  A similar equation is written for correction of bias values.  In 
Eq.(10), E and α are called learning rate and momentum respectively.  The momentum factor 
can speed up training in very flat regions of the error surface and help prevent oscillations in 
the weights.  A learning rate is used to increase the chance of avoiding the training process 
being trapped in a local minimum instead of global minima.  The back propagation algorithm 
involves two steps.  The first step is a forward pass, in which the effect of the input is passed 
forward through the network to reach the out put layer.  After the error is computed , a second 
step starts backward through the network.  The error at the output layer is propagated back to 
the input layer with the weights being modified according to equation. Back propagation is a 
first order method based on steepest gradient descent, with the direction vector being set 
equal to the negative of the gradient vector.  Consequently, the solution often follows a 
zigzag path while trying to reach a minimum error position, which may slow down the 
training process.  It is also possible for the training process to be trapped in the local 
minimum despite the use of a learning rate. 

EXPERIMENTAL PROCEDURE:   

     Experiments were conducted by the authors on a convergent permeameter of 1000 
mm high, 150 mm thick and of width varying from 750 mm at top and 150 mm at bottom, 
using water as fluid and the angle of convergence is 0.76 radians.  Piezometric tapping points 
are provided at 50 mm spacing along three Radial Lines of the permeameter and connected to 
a manometer board facilitated measurement of piezometric heads along the permeameter.  A 
schematic diagram of the experimental arrangement is shown in Fig3. .   A fixed flow was 
allowed in the system to maintain a constant head in the header tank.  Head loss between any 
two points for each radial line located at radii R1 and R2 and the hydraulic gradient I between 
them were evaluated.  The flow rate (Q) through the media was measured by the volumetric 
method and the velocity of flow V at any radius R from the centre of convergence is given by 

                                                               
WR

QV


=                                                               (11) 

  Where Q is flow rate in cm3/sec, θ is angle of convergence in radians and W is width 
of flow between two parallel confining surfaces of the converging permeameter. Experiments 
were conducted at different heads and the rate of flow through the media and the head loss in 
the permeameter were measured.         
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Fig.3.Details of Converging Permeameter 

NEURAL NETWORK MODELS FOR CONVERGENT FLOW THROUGH POROUS 
MEDIA 

                The methodology of Neural Network was utilised for convergent flow through 
porous media, to predict the resistance flow at different radial lines with different ratios of 
radii and also to predict the relationship between friction factor (Fk) and Reynolds number 
(RK) for flow in porous media with converging boundaries, using intrinsic permeability as the 
characteristic length. In the present study Feed Forward Back propagation algorithm was 
used and two different Neural Network models namely NNCB1 and NNCB2 were 
developed.   

           The first NNCB1 Model was developed for prediction of Reynolds number (Rk) and 
the 11 input parameters are those given in Table-1 excepting Reynolds number (Rk) and 
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second model NNCB2 was for prediction of friction factor (Fk) whose 11 input parameters 
are those in Table-1 excepting friction factor for flow through the porous media.   

Table 1. Range of values of various parameters 

S.No Input parameters 
Range of parameters 

Radial line - 1 Radial line - 2 Radial line - 3 

1 Velocity of Flow ( V ), cm/sec 1.3421-2.268 0.6168-2.268 1.5513-2.268 

2 
Hydraulic Gradient/Velocity 
(I/V), sec/cm 

0.0132-0.0653 0.0162-0.0649 0.0193-0.0637 

3 Length of reach (L), cm 5.0-55.0 5.0-55.0 5.0-55.0 

4 Head Loss (HL), cm 0.1-8.15 0.05-8.10 0.15-7.95 

5 Hydraulic Gradient (I) 0.02-0.1482 0.01-0.1473 0.03-0.1445 

6 Friction Factor (Fk) 0.1346-0.6317 0.2746-1.021 0.2889-0.5827 

7 Reynolds Number (Rk) 2.88-6.4673 1.3428-6.4673 3.4292-6.5989 

8 Ratios of the Radii (R1/R2) 1.05-2.25 1.05-2.25 1.05-2.25 

9 Rate of Flow (Q), cm3/sec 
758.43-
1281.65 

348.54-1281.65 876.6-1281.65 

10 Darcy parameter (a), sec/cm 0.0152-0.0274 0.0152-0.0258 0.0146-0.0261 

11 
Non-Darcy parameter (b), 
sec2/cm2 

0.0016-0.0168 0.0048-0.0175 0.005-0.0168 

       

RESULTS AND DISCUSSIONS 

Prediction of Reynolds number: NN model NNCB1  

            The NN model NNCB1 was developed for the prediction of Reynolds number for 
radial flow through homogeneous porous media.  The actual range of max-min values was 
considered during normalization.  The comparison between predicted and actual Reynolds 
numbers is depicted in Fig. 5 for different radial lines with different ratios of radii.   In this 
model NNCB1, 11-5-1 is the successful network.  That means the network with 11 input 
nodes, 5 hidden nodes in the hidden layer, 1 output node in the output layer.  The NNCB1 
model has 55 neurons in the first layer and 5 neurons in the second layer.  The overall result 
is obtained with correlation coefficient of 0.994 for Radial Line – 1, correlation coefficient of 
0.998 for Radial Line – 2 and correlation coefficient of 0.928 for Radial Line – 3 and the 
sum-squared error is 0.0993 achieved after 8000 cycles. 
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Prediction of Friction factor: NN model NNCB2              

         The NN model NNCB2 was developed for prediction of friction factor.  The network 
was trained with normalization values within actual range of max-min values.  The 
comparison between predicted and actual friction factor is depicted in Fig. 6 for training and 
testing data for different radial lines with different ratios of radii.  In this model NNCB2, 11-
5-1 is the successful network.  The NNCB2 model has 55 neurons in the first layer and 5 
neurons in the second layer.  The overall result is obtained with correlation coefficient of 
0.938 for Radial Line – 1, correlation coefficient of 0.953 for Radial Line – 2 and correlation 
coefficient of 0.928 for Radial Line – 3 and the sum-squared error is 0.10 achieved after 
10000 cycles. 

Variation of  Fk  and Rk  for Different Radial  Lines with Different R1/R2 ratio 

        For media of certain size, the approach section a radius R1 and an exit sectioin at a 
radius R2 were arbitrarily selected.  Based on the flow rates and the piezometric heads at 
these two points, the seepage velocity (V) and the hydraulic gradient (I) were computed.  The 
values of the coefficients a and b for this R1/R2 ratio were then obtained from a plot of I/V 
versus V and the values of Cw , Fk and Rk were computed for a given velocity (V) using the 
values of a and b obtained from the Eq.4 and Eq.5.   Figs. 2(a-d) shows the contours of 
pressure head distribution for different rate of flows for crushed rock.  Fig.5 and Fig.6. 
shows the comparison between predicted and actual   Friction Factor, Fk and Reynolds 
Number, Rk for different Radial  Lines with different R1/R2 ratios and observed that the 
predicted data with actual data is within permissible limit.  Fig.7. depicts the variation of 
Friction Factor (Fk ) with Reynolds Number (Rk) for Predicted  and Actual Data for Different 
Radial Lines and Ratio of radii (R1/R2).  Fig.8. shows the variation of Predicted Friction 
Factor (Fk) and Reynolds Number (Rk) for Different Radial Lines and for different  Ratio of 
radii (R1/R2).  In Fig.8, It is observed that the Friction Factor (Fk ) decreases with increase of 
Reynolds Number (Rk) and also observed that the Friction Factor decreases with decrease of  
Ratio of radii (R1/R2). The same trends are also observed for other two radial lines. 

Variation of fk with Rk 

           Assigning different values for Cw , Fk values for different Rk have been computed using 
Eq.(6).  Figs. 9(a-c) shows the theoretical plot of Eq.(6) with Cw as third parameter.  When 
Cw is equal to zero, Eq.(6) yields Darcy’s law with relation between Fk and Rk being 
inversely proportional.  The inclined dashed line in Figs. 9(a-c) demarcates,  approximately, 
the Rk at which the flow changes from non linear transition to wholly turbulent flow.  The 
predicted data values of Fk and Rk are sorted based on the values of Cw and are plotted in 
Figs. 9(a-c) against the theroretical Fk -Rk curve.  In Figs. 9(a-c), the range of Cw values is 
shown on the theoretical curve against which the predicted points of Fk – Rk were plotted.  
The correlation is very good with all predicted points falling on the Fk - Rk curve for the 
corresponding values of Cw .  Variation of Fk with Rk for each Cw value and R1/R2 ratio is 
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also shown in Figs. 9(a-c)  for different radial lines for experimental and predicted data from 
NNCB models.   

CONCLUSION 

         Flow through porous media with converging boundaries has been analyzed and it is 
shown that there is a good agreement between the theoretical curve , experimental data and 
predicted data using NNCB models.  In the present study, two Feed Forward Back 
Propagation Neural Network models were developed and successfully implemented and 
conclusions drawn are 

1. The variation of Fk and Rk for different Cw values and for different Radial Lines are 
compared with the experimental data and predicted data and observed lie on the 
theoretical curve. 

2. The relation between FK and RK for predicted data, using the square root of intrinsic 
permeability as the characteristic length and Cw as a parameter is shown to be similar 
to the Moody diagram for pipe flow.  There is a good agreement between the 
theoretical curves and predicted data obtained from the NNCB modal. 

3. The obtained results suggest that NNCB models can be effectively trained in a neural 
system inspite of data complexity, incompleteness and incoherence and these models 
are useful to predict the resistance flow for any Radial Line   even with extremely 
simplified architectures involving a very few input variables. 
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NOTATIONS 

a  = Darcy parameter or linear parameter 
b  = Non- Darcy parameter or non linear parameter 
bi = Bias value for the ith Neuron 
CW = Media constants 
E = Learning rate 
Fk = Friction Factor 
f[ui]= Transfer function 
g = Acceleration due to gravity 
HL = Head loss 
I  = Hydraulic gradient 
K = Coefficient of permeability 
k = Intrinsic permeability 
Q = Rate of flow 
Qi=output from ith  Neuron 
R = Radius of the permeameter 
Rk = Reynolds number 
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S MAX = Maximum value of parameter 
S MIN = Minimum value of parameter 
W =Width of flow between two parallel confining surfaces of the Converging Permeameter 
Wij  = Connection weight between ith  Neuron and jth  input 
ΔWij (n) = Weight increments between node I and j during the nth pass 
V = Velocity of flow 
 X = Normalised value of parameter 
Xij =jth input value 
α = Momentum 
μ = Dynamic viscosity 
 = Kinematic viscosity 
ρ = Density of the fluid 
Σ= Summation 
θ =Angle of convergence in radians 
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Fig.4. a. For Q = 1281.64 cc/sec Fig.4. b. For Q = 1242.33 cc/sec 

  

 

 Fig.4. Pressure Distribution for Different Rate of Flows 

Fig.4. c. For Q = 1065.79 cc/sec Fig.4. d. For Q = 978.26 cc/sec 
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Fig.5. Actual and Predicted Reynolds Number (Rk ) for Different Radial Lines and Ratio of radii (R1/R2) 
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Fig.6. Actual and Predicted Friction Factor (Fk ) for Different Radial Lines and Ratio of radii (R1/R2) 
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Fig.7. Variation of Friction Factor (Fk ) and Reynolds Number (Rk) for Predicted  and Actual Data for 
Different Radial Lines and Ratio of radii (R1/R2) 
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Fig.8. Variation of Predicted Friction Factor (Fk ) and Reynolds Number (Rk) for Different 
Radial Lines and Ratio of radii (R1/R2) 
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Fig.9.a. Variation of Friction Factor (Fk) with Reynolds Number (Rk) for Theoretical Values 
and for Predicted and Actual Data for Radial Line 1 with different Ratio of Radii (R1/R2) 
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Fig.9.b.  Variation of Friction Factor (Fk) with Reynolds Number (Rk) for Theoretical Values 
and for Predicted and Actual Data for Radial Line 2 with different Ratio of Radii (R1/R2) 
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Fig.9.c.  Variation of Friction Factor (fk) with Reynolds Number (Rk) for Theoretical Values 
and for Predicted and Actual Data for Radial Line 3 with different Ratio of Radii (R1/R2) 


