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Abstract:Based on energy principle, an analytical formula for lateral flexible stability 
capacity of single-rib and double-rib tied through arch bridge is presented under conservative 
forces and non-conservative forces. The correctness of the analytical formula is verified by 
two examples of finite element numerical solution, and some important structural parameters 
of lateral stability capacity are analyzed according to analytical formulas. The conclusions 
illustrate that increasing the lateral stiffness of arch rib is the most significant way for 
improvement of lateral stability capacity, and improving the stiffness of traverse brace and 
lateral stiffness of girder are conducive to greatly improvement of lateral stability capacity, 
and the lateral stability capacity of arch bridge with traverse brace is about 30% greater than 
that of arch bridge without traverse brace. 
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1. INTRODUCTION 

The stability[1-7] is an important indicator of carrying capacity for arch bridges. The lateral stability[8-11] 
of arch bridge is more prominent problem as the bridge span increases. At present, the research of lateral 
stability about arch bridge is usually taken by the radial loads on circular arch in order to obtain analytical 
solution, the parabolic and catenary arches are mostly for spreadsheets[12-14]. Furthermore, circular arch on 
small span ratio has a good approximation with the parabolic and catenary arches. Therefore, the lateral 
stability of circular arch is feasible in practical application instead of the parabolic and catenary arches. 
Based on some assumptions, an approximate analytical solution for the lateral stability is derived by 
dual-energy method and some examples are given to verify the correctness of the formula, and some 
important structural parameters of lateral stability are discussed according to the formula, and some 
effective ways are proposed to improve calculation for the lateral stability of arch and provid a reference.
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2 THEORETICAL ANALYSIS 

With regard to the lateral bucking of through tie arch bridge, the method is derived based 
on the following assumptions: 

 ① The arch axis is arc-shaped; 
② The arch springer is embedded solid boundary conditions; 
③ The axial strain energy is ignored when the arch rib is in the state of lateral bucking; 
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Figure 1 Elevation coordinates 

 
Figure 2 Three-dimensional coordinates 

Based on the lateral bucking state of through tied arch bridge, the structural deformation 
parameters are shown in Figure l~Figure 2. The dead load of bridge floor system is "q", and 
"α " is the central angle for the arch rib, and " l "、" λ " are respectively the span of arch and 
vector high of arch rib. 

By deriving analytical formula in application of Ritz method, the displacement functions 
of the lateral bucking state (torsion angleθ , lateral displacement u) are shown as follows: 
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The above functions are satisfied with solid boundary conditions of bending and torsion, 
where ϕ =0 or α , θ  = 0, 'θ  = 0, u = 0, u′ = 0. 

2.1 The energy of lateral buckling  

The total potential energy are including the following parts when the arch rib is in the 
state of lateral bucking: the lateral bending strain energy of arch rib; the torsion strain energy 
of arch rib; the lateral bending strain energy of bridge deck; the external potential energy of 
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boom; the potential energy of non-conservative forces of boom; the local deformation 
potential of arch rib and traverse brace. 
① Lateral bending strain energy of arch rib 
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Where: yEI  is the lateral bending stiffness of single rib, and 2 /β π α= ; 

② Torsion strain energy of arch rib 
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Where: GJ  is the torsion stiffness of single rib 
③ The lateral bending strain energy of bridge deck system; 
Where: /Du uξ = , and Du  is displacement of the bridge deck system, and D DE I  is lateral 

bending stiffness of the bridge deck system. 
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④Vertical bending strain energy of traverse brace   
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Where: bxEI  is the vertical stiffness of single rib 
⑤ Local deformation potential energy of arch and horizontal bending strain energy of 

traverse brace.   
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Figure 3 Horizontal deformation of traverse brace 

The total energy for local deformation potential energy of arch rib and horizontal 
bending strain energy of traverse brace is shown as follows: 
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Where: bzEI  is the traverse stiffness of single rib 
⑥ The external potential energy of boom  

When the arch rib is in the state of lateral bucking, the external potential energy of boom 
is shown as follows: 
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⑦ The potential energy of non-conservative forces of boom 
When the arch rib is in the state of lateral bucking, the non-conservative forces potential 

energy of boom is shown as follows:     
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2.2 The formula of lateral stability under conservative forces 

According to the concept of Ritz method, the total potential energy of arch under 
conservative forces could get the extreme data. 
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When the determinant is zero, it can get a critical bucking load in the state of lateral 

bucking. According to the geometric relationship of Figure 1:
1
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When the 2 3 1 2, , ,n nµ µ are zero,the critical bucking loads of single-rib arch can be 

introduced under conservative forces. 
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2.3 The formula of lateral stability under non-conservative forces 

The energy of non-conservative forces is shown as follows: 

1 2 3 4 5 1 2U U U U U V V∏ = + + + + + +   0 ( 1, 2)
i

i
C

∂ ∏
= =

∂
  /D Dm E I GJ=  

2 2 2
2 1 22

1

2 2 2 2
3 1 1 2

183
0

1 ( 1) 6

n n C
Cq D m n n

A

µβ µ β µβ
α

µ β µ ξ β µ η

+ + +  
= 

 + + + − + +

               (14)         

Simplify the above determinant, it can get 
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When the 2 3 1 2, , ,n nµ µ are zero, the lateral stability capacity of single-rib arch can be 
introduced under non-conservative forces. 
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3 EXAMPLE 

3.1 The example of single-rib arch  

The first example is single-rib parabolic tied arch bridge, with a 120m span length and 
11.2m width.The span ratio of arch is 1/4.6, and the section size of steel-box rib is 1.8×2m. The tie 
is low-slack and high-strength galvanized steel wire, and the boom is high-strength parallel 
steel wire. 

For simplicity, the parabolic arch is approximated with a circular arch, the basic 

parameters are as follows: l =120m, λ =1/4.6, R =82m, α =1.64rad, yEI =3.83×107kNm4 , 

GJ = 1.79×107kNm4; and then μ1=0.48, m=46.2, β=3.82. According to formula (12) and (17) , 

the analytical lateral stability capacity under conservative and non-conservative forces are  

respectively crQ =948kN/m and crQ =2210kN/m. The spatial bridge model is build up by 

Ansys, imposing 116kN/m on the deck, the buckling mode are respectively 7.8 and 20.6 under 
conservative forces and non-conservative forces. Therefore, the calculated lateral stability 
capacity under conservative forces and non-conservative forces are respectively: 
116×7.8=904.8kN/m, 116×20.6=2389.6kN/m；the results in recommended analytical formula 
are difference of 4.0%, 7.5% with the calculated results.  

3.2 The example of double-rib arch 

The second example is a simply supported double-rib parabolic tied arch bridge, with a 
span 62m length and 15m the width. The span ratio of arch is 1/5. The arch is steel tube which 
is of 1.1m diameter; and the tie is the low-slack and high-strength galvanized steel wire, and 

the boom is high-strength parallel steel wire with three 600 12mmφ × traverse brace in arch. 

For simplicity, the parabolic arch is approximated with a circular arch, the basic 

parameters are as follows: l =62m, λ =1/5, R =45m, α =1.52rad, and the distance between 

two arches is b=10.5m, and the distance between traverse braces is 

d=12.9m; yEI =0.35×1010m4, GJ =0.12×1010m4, ,bx bzEI EI  =2.1×108m4; and then 
μ1=0.33, m=56, β=4.13, μ2, μ3=0.06. According to formula (10) and (12), the analytical lateral 
stability capacity under conservative and non-conservative forces are respectively 
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crQ =810kN/m  and crQ =2152kN/m. The model is build up by Ansys, imposing 35kN/m2 

on the deck, and the buckling mode are respectively 4.93 and 12.84 under conservative forces 
and non-conservative forces, and the calculated lateral stability capacity under conservative 
forces and non-conservativ forces are respectively: 35×5.25×4.93=905.9kN/m and 
35×5.25×12.84=2359.4kN/m; the results in recommended analytical formula are difference of 
10.6%, 8.8% with the calculated results.  

4. PARAMETER DISCUSSION OF LATERAL STABILITY CAPACITY  

According to the formula (12) and (17), the lateral stability factors of single-rid are 
invloved in the following parameters: the lateral bending stiffness of arch rib, and the ratio 

between lateral bending stiffness of arch rib and torsional stiffness of arch rib " 1µ ", and the 

span ratio of arch "λ"; furthermore, the lateral stability of factors under non-conservative 
forces should also be considered the ratio between lateral bending stiffness of bridge deck and 
lateral bending stiffness of arch rib. In formula (10) and (15), besides the factors mentioned 

above, the factors of double-rid arch bridge should also be considered the ratio ” 2µ , 3µ ” 

between the bending stiffness of traverse brace and torsional stiffness of arch rid. In Figure 
4~Figure 5, Figure 7~ Figure 9, ”c” stands for conservative forces, and ”non-c” stands for 
non-conservative forces. 

4.1 Parameter discussion of single-rid lateral stability capacity 
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Figure 4 the μ1-K curves (λ=0.2, m=40) 
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Figure 5 the λ-K curves (μ1=0.5, m=40) 
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Figure 6 the m-K curves (μ1=0.5, λ=0.2) 

 ① In formula (12) and (17), the lateral stiffness is the most direct and effective way for 
lateral stability under conservative forces and non-conservative forces. 

 ②As shown in Figure 4~Figure 5, the lateral stability capacity coefficient K under 
non-conservative forces is much more favorable than this under conservative forces, and the 
datas show that the lateral stability capacity under non-conservative forces is 2~3 times than 
this under conservative forces. 

 ③As shown in Figure 4, the lateral stability capacity coefficient K decreases 16% with 

the increase of 1µ from 0 to 1 under conservative forces; while K improves 24% as 

1µ increases from 0 to 1 under non-conservative forces, but 1µ is not obvious effect on the 

improvement of the lateral stability capacity of arch. 
 ④As shown in Figure 5, the trend of the lateral stability capacity coefficient K is that 

the curve first increase up to the maximum value and then gradually decrease to stable value 
with the increase ofλunder conservative and non-conservative forces. The optimum value of 
span ratio is between 0.2 and 0.3; When the span ratio λ is constant, the lateral stability 
capacity is greater with the lower span. 

 ⑤As shown in Figure 6, the lateral stability capacity improves largely with the increases 
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of ratio m from 0 to 10 times under non-conservative forces; while the lateral stability 
capacity improves a lesser extent while m is between 10 to 60 times, and lateral stability 
capacity of arch is gradually stabilized with the increase of m; but the change of λhas little 
effect on lateral stability capacity with the increase of m. 

4.2 Parameter discussion of double-rid lateral stability capacity  

① In formula (10) and (15), the flexural lateral stiffness is the most direct and effective 
way for lateral stability under conservative forces or non-conservative forces, which is qutie 
consistent with the single-rid arch bridge. 

 The lateral stability capacity ② under non-conservative forces is much more favorable 
than this under conservative forces, and the data show that the lateral stability capacity under 
non-conservative forces is 2~3 times than this under conservative forces, which is also quite 
in agreement with the single-rid arch bridge. 
③ As shown in Figure 7, the lateral stability capacity of the arch improves with the 

increase of 1µ  under conservative or non-conservative forces, but coefficient K increases not 

more than 1% when 1µ is increasing between 0 and 1; and 1µ is not a susceptible for the 

lateral stability capacity of arch; 
 ④As shown in Figure 8, the regularity for span ratio λ on the lateral stability capacity 

under conservative or non-conservative forces, which is in quite agreement with the single-rid 
arch bridge. 
④ As shown in Figure 9, the traverse brace is quite important for lateral stability 

capacity under conservative or non-conservative forces; the lateral stability capacity increases 

about one times when the ratio 2 3,µ µ are improving from 0.05 to 0.3. 

⑤ As shown in Figure 10 , the lateral stability capacity coefficient K is increasing when 
m is between 10 and 60 under non-conservative forces; but changingλhas little effect to lateral 
stability of arch with the increase of m. 
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Figure 7 the curve of μ1-K (λ=0.2, μ2,μ3=0.05) 
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Figure 8 the curve of λ-K (μ1 = 0.33, μ2, μ3= 0.05, m=56) 

μ2,μ3-K

0
50

100
150
200
250
300

0 0.05 0.1 0.15 0.2 0.25 0.3

μ2,μ3

K

c
non-c

 
Figure 9 the curve ofμ2, μ3-K (μ1=0.33, λ=0.2, m=56) 

 

m-K

0

50

100
150

200

250
300

350

0 10 20 30 40 50 60

m

K

λ=1/3

λ=1/4

λ=1/5

λ=1/6

 
Figure 10 the curve of m-K (μ1=0.33, μ2, μ3=0.05) 
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5. CONCLUSIONS 

As mentioned above, we can draw following conclusions: 
 The elastic lateral stability capacity  analytical fo① rmula of arch bridge is a more 

comprehensive description about the bridge span, the span ratio, the cross-section flexural 
lateral rigidity ,the lateral torsional stiffness, the deck stiffness and other factors of single- rib 
and double-rib arch bridge under conservative forces and non-conservative forces for the 
lateral stability capacity of arch. 
② The lateral stability capacity under non-conservative forces is much more favorable 

than this under conservative loads, and the lateral stability capacity under non-conservative 
forces is 2~3 times than this under conservative forces. 
③ The flexural lateral stiffness of cross-section is the most direct and effective way for 

lateral stability capacity; while increasing the ratio between lateral bending stiffness of arch 
rib and torsional stiffness of arch rib is not obvious effect on lateral stability capacity of arch. 
④ The optimum span ratio is between 0.2 to 0.3, and the lateral stability capacity of arch 

is gradually stabilized with the increase of the span ratio; 
⑤ The lateral stiffness of traverse brace and  the lateral stiffness of bridge deck are 

important way for lateral stability capacity of arch, and the lateral stability capacity of arch 
bridge with traverse brace is about 30% greater than lateral stability capacity of arch bridge 
without traverse brace. 
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