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Abstract. Stepped beams with elastic end supports have been extensively investigated due to 
their importance in structural engineering fields, including active structures, structural 
elements with integrated piezoelectric materials, shaft-disc system components, 
turbomachinery blades, etc. In the present work, a mathematical modeling is proposed for 
stepped beams with elastic end supports. The analysis is based on the classical Euler-
Bernoulli beam theory. In comparison with the published literature on the transverse 
vibration of single cross-section change beams, there are relatively few works covering beam 
vibration when there is  more than one change in the beam cross-section. In the present study, 
the natural frequencies and the mode shapes of beams with two step changes in cross-sections 
are investigated. Combinations of the classical clamped, pinned, sliding and free type end 
supports are considered. The first three natural frequencies of the studied beams are 
evaluated for some types of end supports. The proposed method can be extended to beams 
with any number of changes in cross-section. 
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1. INTRODUCTION 

A brief review of selected publications on transverse vibration of beams with changes 
in cross-sections follows. Taleb and Suppiger (1961) and Levinson (1976) derived the 
frequency equation for a simply supported stepped beam. Heidebrecht (1967) showed 

 numerical method to calculate the first natural frequency of simply-supported beams. 
Jang and Bert (1989a) and Jang and Bert (1989b) were the first to derive the frequency 
equations as fourth order determinants equated to zero, for combinations of the classical 
clamped, pinned and free end supports. Vibration analysis of stepped beam with one step 
cross-section change subject to the constraining effect of rotational and translational springs at 
both ends was presented by Maurizi and Bellés (1993). De Rosa (1994) studied the vibration 
of a beam with one step change in cross-section with elastic supports at the ends. 
Neguleswaran (2002), studied the frequency equations of an Euler-Bernoulli beam with up to 
three step changes in cross-section and on classical and/or elastic supports. The first three 
natural frequencies for three different types of transverse sections of beams, was tabulated by 
this author. 
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Dong (2005) presented a scheme to calculate the laminated composite beam’s flexural 
rigidity and transverse shearing rigidity based on first order shear deformation theory. A 
stepped beam model was then developed by using Timoshenko’s beam theory to predict 
analytically the natural frequencies and mode shapes of a stepped laminated composite beam. 
Modal analysis with piezoelectric materials bonded on beam surface, i. e., stepped 
piezoelectric beams, was validated by Maurini et al (2006). They used Euler-Bernoulli model 
from finite element analysis and experimental procedures validated the results. 

In Stanton and Mann (2010) was developed an analytic framework for determining 
closed form expressions for the natural frequencies, mode shapes, and frequency response 
function for Euler–Bernoulli beams with any number of geometric or material discontinuities. 
Theoretical predictions are experimentally validated as well. 

The present paper presents the transverse vibration of Euler-Bernoulli beams with 
discontinuous geometry and elastic end supports. The natural frequencies and the mode 
shapes of stepped beams are discussed and compared to each other. Combinations of the 
classical clamped, pinned, sliding, and free types of elastic end supports are considered. The 
first three frequencies parameters of beams with two step changes in cross-section are 
evaluated for selected sets of system parameters and types of end supports. The proposed 
method can be extended to beams with any number of step changes in cross-section. 

2. MATHEMATICAL FORMULATION 

According to Euler-Bernoulli beam’s theory, the equation of a clamped-free uniform 
beam in transversal vibration is obtained by applying the static equilibrium equations to sum 
the forces and moments that act in the beam. The differential equation of the transverse free 
vibration of a slender beam is as follows, Inman (2001). 
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where /c EI A , EI is the flexural rigidity ( E is Young’s modulus for the beam ( 2/N m ) 

and I is the cross-sectional area moment of inertia ( 4m )),   is the mass density ( 3/kg m ), 

A is the cross-section area ( 2m ), ( , )v x t  is the deflection of the beam ( m ), x  is the spatial 
abscissa ( m ) and t is the time ( s ). 
 The solution of Eq. (1) subject to four boundary conditions and two initial conditions 
are used to obtain system of linear equations in order to determine the constants of general 
solution. The Eq. (1) is simplified by assuming a separation of variables solution of the form 
as follows: 
 
 ( , ) ( ) ( )v x t X x t   (2) 
 

When one substitutes the Eq. (2) into the Eq. (1), the equation of motion turns:  
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The Eq. (3) can be rearranged as: 
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We define: 
 

 
2 2

4
2

A

c EI

     . (5) 

 
 is the dimensional natural frequency ( m );  is the angular natural frequency ( /rad s ). 

The general solution of Eq. (4) can be put in the form, Inman (2001). 
 
 1 2 3 4( ) sin cos sinh cosh 0X x B x B x B x B x x L          (6) 
 
where ( )X x represents the mode shape of beam, 1 2 3, ,B B B  and 4B are coefficients of general 

solution and L is the length of continuous beam. 
Based on the Euler-Bernoulli beam, one can study stepped beams with several step 

changes in cross-section and with different elastic supports as shown in Fig. 1 where ( n  is the 
number of sections of the beam). 

 
Figure 1. Stepped beam with multiple step changes in cross-section, Vaz (2009). 

 
where 0 , 1,2, ,i ix L i n    , iL  is the length of the segment of the beam ( m ), 1 2,R Rk k and 

1Tk are the rotational and translation spring constants, nA is the cross-section area of 
thn segment ( 2m ) and nI is the cross-sectional area moment of inertia ( 4m ). 

 The general solution for each section of the stepped beam in multiple steps. 
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where 1, ,i n   is the section number of the beam, k is the number of mode shape, 

jb (where 1, , 4j   ) is the index of the coefficient of the general solution. 

The index of the coefficient of thi  section of the beam can be expressed as follows.  
 

 4( 1)jb j i    (8) 



where 1, , 4j    is the number of coefficient of the general solution. 
 
2.1. Boundary conditions 
 

The vibration equation, Eq. (7), contains four unknown coefficients,
jbB , and one 

natural frequency for each segment of beam. Hence, the calculating of solution of Eq. (7) 
requires four boundary conditions for the end and others four boundary conditions for each 
one of the junction of the different segments of beam.  

The boundary conditions are obtained by examining the deflection, the slope, the 
bending moment and the shear force at each end of the beam. In addition to satisfying four 
boundary conditions, the solution of Eq. (1) can be calculated only if two initial conditions (in 
time) are specified. 

The eigenvalue problem must be solved for a particular set of boundary conditions, 
resulting in expressions for the eigenfunctions , ( )i k iX x  and frequencies  which the structure 

can accommodate in free vibration. The boundary conditions for the structural system under 
consideration, Fig. 1, are as follows. 

 
In the ends: 

 
at 0x   

 
 Bending moment 

 

 
1 1

2
1 1 1 1

1 12
1 10 0

d ( ) d ( )

d dR

x x

X x X x
EI k

x x
 

 . (9) 

 
 Shear force 
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 Bending moment 
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 Shear force 
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The continuity conditions at the junctions are: 
 

 Deflection 
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 Slope 
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 Bending moment 
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 Shear force 
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These boundary conditions are used to obtain the general solution and a system of 

homogeneous algebraic equations in the unknowns bjB . In order to have a non-trivial solution, 

the determinant of the coefficient matrix must vanish identically.  
 
3. NUMERICAL RESULTS 
 

The results for two different stepped beams are presented in this section, one of the 
beams presents a single step change in cross-section. The other beam has two step changes. 
Both beams are supported on elastic ends. Numerical results for the first three natural 
frequencies for different end support were compared to available literature. 

Table 1 and Tab. 2 lists the dimensionless natural frequencies, 1,1̂ , of stepped beam 

with one step change in cross-section, with elastic end supports and ratio of moments of 
inertia of adjacent segments. The goal of this test is to verify the behavior of beam when half 



of the beam has its cross section elongated or shortened. The calculations were carried out 
assuming a stepped beam with lengths equal to 1 2 / 2L L L   and ratios moments of inertia, 

as presented in Eq. (17), starting in 1 0.1I   and finishing in 1 10I  . It is possible to note that 

when 1 1I  the both beam cross-sections are equal in size and in this case the beam is 

continuous. 
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where 1I  is the ratio between adjacent moments of inertial, 1I  ( 4m ) and 2I ( 4m ). 

 

 
Figure 2. Beam with one step change in cross-section, Vaz (2009). 

 
Table 1. First dimensionless natural frequencies of a single stepped beam with elastic support 

in one of the ends and free in other end. 
 

1,1̂   
Supports 1 1R T  2 2R T  

1 0.1I   1 1I   1 10I   

Free-free   0 0 0 

__ 500  0.34821 0.29263 0.22976 

__ 5  1.09088 0.91389 0.71583 

__ 0.05  2.17505 1.81072 1.3883 

Clamped-free 0  2.2355 1.8751 1.43628 

 

where 1 1 2, ,R T R  and 2T are rotational and translational dimensionless parameters. 1,
ˆ

k  is the 

dimensionless natural frequency; the index 1 represents the first segment beam for thk natural 
frequency. The rotational and translational dimensionless parameters, the dimensionless 

natural frequencies 1,
ˆ

k  and the angular natural frequencies, n , are expressed as follows. 
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Table 2. First dimensionless natural frequencies of a stepped beam clamped (R1=T1 = 0) in 
one of the ends and with elastic support in other end. 

 

1,1̂ Supports 
1 1R T  2 2R T  

1 0.1I   1 0.5I   1 1I   1 5I   1 10I   
Clamped-free 

0  2.2355 2.00987 1.8751 1.56119 1.43628 
 0 500 2.23663 2.01208 1.87866 1.57413 1.45941 
 0 50 2.24656 2.03147 1.90954 1.67694 1.62735 
 0 5 2.33168 2.1873 2.13952 2.20142 2.29838 
 0 0.5 2.70056 2.77289 2.87787 3.24695 3.40801 
 0 0.05 3.42543 3.83194 4.0691 4.56259 4.74954 
 0 0.005 3.88099 4.42004 4.65386 5.03687 5.20451 

Clamped-clamped 0 0 3.94537 4.50112 4.73004 5.095 5.26124 
 
 The Figures (3) and (4) present the mode shapes of continuous and stepped beam, 
respectively, with the same conditions of elastic supports. The boundary conditions have been 
modified by using different translational parameters and keeping the rotational parameters 
( 1 2R R   ). 

 

 
Figure 3. First mode shape of continuous beam with dimensionless parameters of 

translational. 

 



 
Figure 4. First mode shape of stepped beam with dimensionless parameters of translational. 

 
The first three dimensionless beam’s natural frequencies with two step changes in cross-

sections are showed in Tab. 3 to Tab. 5. The beam lengths are L1 = 0.200 (m), L2 = 0.300 
(m), and L3 = 0.500 (m). The main dimensions related to cross-section depends on beam type, 
that is, type 1,and type 2 are rectangular cross-section beam, and type 3 is circular cross-
section beam, as follows: 
 

 for type 1: rectangular cross-section with constant height and the following values for 
width, b1 = 0.005 (m), b2 = 0.006 (m), and b3 = 0.009 (m) 

 for type 2: rectangular cross-section width constant width and the following values for 
height, h1 = 0.005 (m), h2 = 0.006 (m), and h3 = 0.009 (m) 

 for type 3: : circular cross-section with the following values for the diameters, d1 = 
0.005 (m), d2 = 0.006 (m), and d3 = 0.009 (m) 

 
Table 3. First three dimensionless frequencies of a stepped beam with three cross- 
sections - type 1. 
 

Type 1 Classical end 
supports R1 T1 R2 T2 

1,1̂  1,2̂  1,3̂  

clamped-free 0 0   1.66100 4.56222 7.84841 

free-free     0 4.77621 7.91134 

clamped-sliding 0 0 0  2.20800 5.42355 8.62546 

clamped-pinned 0 0   3.80416 7.04505 10.1739 

 

 

 

 



Table 4. First three dimensionless frequencies of a stepped beam with three cross-sections - 
type 2. 
 

Type 2 Classical end 
supports R1 T1 R2 T2 

1,1̂  1,2̂  1,3̂  

clamped-free 0 0   1.71452 5.16922 9.41405 

free-free     0 5.57601 9.51969 

clamped-sliding 0 0 0  2.57846 6.32019 10.2630 

clamped-pinned 0 0   4.39742 8.43703 11.8825 

 
Table5. First three dimensionless frequencies of a stepped beam with three cross-sections - 
type 3. 
 

Type 3 Classical end 
supports R1 T1 R2 T2 

1,1̂  1,2̂  1,3̂  

clamped-free 0 0   1.50383 4.93207 9.42708 

free-free     0 5.54988 9.59866 

clamped-sliding 0 0 0  2.42957 6.28097 10.1805 

clamped-pinned 0 0   4.18529 8.50978 11.7550 

 
 The mode shapes of stepped beams with two step changes in cross-section are shown 
in Figures 5(a) to 5(c). The different colors indicated in Figures 5(a), 5(b) and 5(c) represent 
the different segments of discontinuous beam. 

 
 

 

Figure 5 (a). Figure 5(b). 



 
Figure 5(c). 

Figure 5. The first three mode shapes for three different types of cross-section: (a) the cross-

section is rectangular with constant height; (b) the cross-section is rectangular with constant 

width; (c) the cross-section is circular. 

4. SUMMARY AND CONCLUSIONS 

This work presents Euler-Bernoulli Beam theory known as elementary theory in order 
to evaluate the natural frequencies and the mode shapes of stepped beams in multiple parts. 
The characteristic equation is function of the dimension of the individual parts and the general 
constraints at the end of the parts. The general solution, Eq. (4), gives the dimensionless 
frequencies, ,i k , for the beam and allows to study the several parameters obtained from these 

frequencies, as the dimensionless natural frequencies 1,
ˆ

k  and the angular natural 

frequencies, n . The coefficient matrix is formulated by applying the boundary conditions 

into Eq. (4). The natural frequencies of the transverse vibrations of a stepped beam are 
obtained by setting the determinant of the coefficient matrix to vanish and then the mode 
shapes can be calculated. To clarify the proposed method, numerical simulations have been 
presented for a beam with one step change in cross-section and two step changes in cross-
section for different elastic end supports. Three types of cross-section area were considered as 
the rectangular with constant height, the rectangular cross-section with constant width and the 
circular. The numerical results from discontinuous geometry beam model confirm the validity 
of the approach and hence, exact methods such as the proposed beam are required for 
practical implementation of such discontinuous structures. 
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