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Abstract. The existing methods for predicting of the buckling strength of reinforced concrete 

are satisfactory for the usual cases of use. However their applicability remains limited. The 

approximate methods apply only for shorts columns with a small eccentricity of a 

compression force. The other existing methods impose restrictive conditions: a partially 

loaded column cannot be modelled by the known methods; concentrated horizontal load or a 

concentrated moment applied in an unspecified point of the column cannot be treated. The 

restrictions on the modes of fixing of the supports limit the studies to hinged-hinged columns 

or to cantilever. The interest of the matrix transfer method for the calculation of the buckling 

strength of reinforced concrete columns is its flexibility. It allows studying all the external 

loading cases and all conditions of supports.  
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1. INTRODUCTION 

Column buckling is the basic problem in the studies on structural instability. 

Following the pioneer work by Euler, numerous steps have been made to solve that problem 

(Buket and Aysun , 2010; Hamid and Mohammad ,2010; Germain, 2006 ; Dinis and 

Frangopol, 2003) . Those work have contributed to the development of various approaches 

(Kazem  and  Gowhari , 2008; Mittelstedt, 2007; Kwak and  Kim,2004; Kim and  Yang,  

1995). The most general are those which can be found in finite elements software which take 

into account material non linearity’s and geometrical imperfections. But such analysis is 

economically justified only for special problems, like important structures or expertise. 

Approached methods have been elaborated to deal with the most current problems, essentially 

the design of columns in buildings. All those methods have important limitations (FIB , 

1999). Approached methods proposed for reinforced concrete mostly apply to relatively short 

columns with relatively small eccentricities of the compression force. Other methods apply to 

slender columns, but they all have restrictive limits of application and several hypotheses at 

the start of calculations.The general CEB method (CEB,1967) only apply to hinged-hinged 
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columns; it considers only the first order bending moments and iterations starts with initial 

rotation and compression strains which are defined a priori; the method does not consider 

second order effects. I t also does not provide precise calculation of the deformed shape. 

Other methods, inspired from the general CEB methods also possess restrictive hypothesis of 

use, though they do not take into account 2
nd

 order effects and suppose a sinusoidal deformed 

shape. The model column proposes in Eurocode 2 (Eurocode 2, 2004) only apply to cantilever 

and also has strong limitations of applicability. It also considers that the deformed shape is 

sinusoidal and deduces 2
nd

 order effects in the limits of that hypothesis. On the contrary, the 

transfer matrix method which is explained in this paper has not all those limitations 

mentioned above: no limitations on the support conditions; flexible supports, either 

translational or rotational can be considered; all cases of external loads; like partial horizontal 

continuous loading, concentrated forces or a moment applied at any point of the column can 

be treated; the 2
nd

 moment of area of sections can vary from one element to the next; 

discontinuities can be introduced between two elements; the real distorted shape can be taken 

into account in the analysis; second order effects are included in a systematic manner during 

the successive iterations up to failure. But despite those advantages, the matrix transfer me-

thod is little used in civil engineering, though some works can be found (Vrabie, 2010; Sta-

rossek, 2009; Saptarshi l, 2006; Zhi-Yuan  and Lan-LanLin 2003). That observation has led to 

the development of the transfer matrix which is presented in this paper. The writing into alge-

braic state vectors can reduce the resolution of the problem to a simple linear algebraic prob-

lem with three unknowns, which allows a very effective mathematical treatment offering a 

strong reduction of the required computation capacities. 

2.  PUTTING THE PROBLEM IN EQUATIONS 

For a column submitted to a compression force F with an eccentricity e and with 

arbitrary modes of support (Figure1).  

 

 

 

 

 

 

 

 

 

 

 

Figure1. Column with eccentric compression 
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The basic equation of elasticity which expresses the relation linking the deformation to 

the bending moment is: 

                                                                        ²dx
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M is the bending moment at abscises x: ])(.[)( exFxM     

After the replacement of M(x) in equation (1) and a double derivation, a differential 

equation of the 4
th

 degree is obtained: 
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With: 
2
 = (F / EI). F is the eccentric compression force and EI the rigidity in bending. 

 After solving the differential equation (2), expressions of deformations and stresses 

are obtained based on initial conditions. (Rouche, 1973). The final deflection is: 
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The rotation θ(x), the bending moment M(x) and the shear force V(x) are: 
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with: 0  =  )0( ; o = (0) ; Mo = M(0) ; Vo = V(0). 

 



 

 

3. MATRIX FORMULATION OF DISPLACEMENTS AND INTERNAL FORCES IN 

A COLUMN UNDER COMPRESSION AND BENDING 

The equations (3) to (6) can be written in matrix form as follows: 
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4. DEFINITION OF THE TRANSFER MATRIX OF NODES.  

The principle of the method is to divide the column into several sufficient and ade-

quate portions (Figure 2), (GERY, 1973).   

 

 

 

 

 

 

 

 

 

 

Figure 2. column divide an adequate portions  

 

Each portion EF, (Figure 3),is then defined by its initial vector and its final vector ZF. 

All discontinuities and different modes of support can be studied through the matrix of nodes.  
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Figure 3. portion EF  of the  column 

 

The displacement and stress in a section F can be expressed as functions of 

displacement and stress of Section E as follows: 







































4E44E43E42E41F

3E34E33E32E31F

2E24E23E22E21F

1E14E13E12E11F

dT.CM.C.C.CV

dT.CM.C.C.CM

dT.CM.C.C.C

dT.CM.C.C.C

 

The final state vector in F can be expressed through the initial state vector in E and the 

transfer-matrix: E

F

EF ZDZ .    

And the transfer-matrix of the section E_F is defined as follows: 
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4.1. Discontinuity treatment  

It defined three types of nodes that we can encounter.  

 - Fictions nodes : in the cases of variation in cross section and the variation of the 

distributed load. In this case: "E'E ZZ    

 - Nodes fixed elastically: in the case of the elastically support to the bending: 

EEK .E'E" 'M = M     

Therefore the corresponding transfer matrix is: 
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In the case of the elastically support to the deflection: .C+V = V EE'E"                                                                                                       
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Therefore the corresponding transfer matrix is: 
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- Loaded nodes: in the case of the increase of the deflection: E'EE" + =    

Therefore the corresponding transfer matrix is: 
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In the case of the increase of the flexional rotation: EEE   '"  

Therefore the correspondent transfer matrix is: 
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In the case of the concentrated flexural moment: EEE MMM  '"  

Therefore the correspondent transfer matrix is: 
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In the case of the concentrated load: EEE PTT  '"  

Therefore the correspondent transfer matrix is: 
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5. ALGEBRAIC WRITING OF THE STATE VECTOR  

The difficulty in the study by the transfer matrix is the definition of the junction be-

tween the different sections, the definitions of state vectors at both ends of the column, and 

the transition from one section to another. The algebraic writing of the state vectors of the 

segment can solve all these problems (Rakovsky, 1985). 

The state vector of the initial support of the column can be given for different types of 

fixation. For the first section “
0

G ” of the column, and depending on the support, the state vec-

tor is defined below for each case. 

For a free extremity:                                 
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For a simple support:                               
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For a perfect embedding:                         
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It is noticeable that in each case, two components are nil and two components are non 

nil. If A, B are the nonzero components, a linear combination can be written from A to B. 

 

                                                                     f+.B =A d  (7) 

 

The linear relation (7) can be applied to all cases to support the initial section. Thus, 

for a free end, the relationship is: 
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The relation (8) can be written 

    
301020100 WG.fWG.BWGd.WGZG   

So, for all cases of supports, only the vectors
10WG , 

20WG change. (Rakovsky, 1985). 

For the general case, 0ZG
,
 defines the support of the initial section of the column. The state 

vector of the last section of the first segment can be defined in function of the matrix 1

0D  , as:  
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6. CALCULATION OF THE BUCKLING STRENGTH. 

After determining the stresses and displacements of the column, it remains to verify its stabil-

ity. The column stability is ensured when there is a balance between (solicitations-

displacements) and (internal efforts - deformations) in the most critical section. When the 

equilibrium is not possible, it is deduced that failure is reached.Failure occurs either by 

instability when the column is long, or by loss of resistance when the column is short.The 

internal forces and constraints for the critical section of the column are determined using the 

actual rotation of the column and not imposed ones as in the existing calculation methods. 

Indeed, the rotation for the cross section considered is deduced from equation (4).The 

relationship between the rotation and the deformation diagrams is:   
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Knowing the position of the neutral axis X, the deformation diagrams and the stress 

diagram of concrete and steel, it is possible to calculate the compressive force RdN  and the 

resistance moment RdM :  
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The internal eccentricity then is: 
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In order to obtain the stability, it must be verified at the same time that:
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The whole of the method presented above has been expressed into a software named 

“FLAMBE” (for “column buckling” in French). It allows compute the buckling load of col-

umns of very different shapes and support conditions. But it is necessary, in order to eliminate 

possible errors in the writing of the equations of the problem, to validate that tool by means of 

a confrontation between test results and computation results. 

7. CONFRONTATION BETWEEN COMPUTATION AND EXPERIMENTAL 

RESULTS  

The modeling has concerned columns that have been tested in laboratories and whose 

characteristics and behavior have been published (FOURE,1975). Among the tests modeled 

which were modeled in this study, thirty are presented in this paper. They correspond to a set 

of columns with various geometrical dimensions and various material characteristics 

(FOURE, 1978). However tests on columns with other modes of support than hinged-hinged 

or with other loading mode than compression only are lacking, so that the confrontation still 

has a limited character. 

7.1 Description of the studied  

For all models studied, the compression force-deflection curves are presented with 

indication of the value of the compression force at failure (figures 4 to 10). Tables provide the 

experimental and the computed values of failure loads, the ratio between those values, the 

average, the standard deviation and the coefficient of variation of every sample.  

 

7.2. The studied tests   



 

 

A research of all existing buckling test results of reinforced concrete columns has been 

made (CEB, 1967). That research has led to keep as well documented the following tests, on 

which computation have been made using the transfer matrix method: 

- tests of F.G. THOMAS on twelve columns with square section 15,24x 15,24 cm, 

hinged at their ends (Table1); 

- tests of O. BAUMANN. Among the twenty studied tests of BAUMANN, six are 

presented; they concern the specimens with meaningful parametric differences, (Table 4); 

- tests of ROBINSON, FOURE and SAMEBDJEM on three hinged-hinged columns 

I1, II1, III1, of transverse section 15x20 cm and five hinged-hinged columns, DB1, DB2, 

DB3, DF1, DF2, of transverse section of 15x30 cm ( Table 6); 

- tests of STEKELENBURG. Four tests on hinged-hinged columns with transverse section 

is15x15 cm (Table 8).have been studied. 

 

Figure 4. Curves (Deflexion- Normal efforts) for THOMAS' column 

 
 

 

Figure 5. Curves (Deflexion- Normal efforts) for THOMAS' column 

 
 

Figure 6. Curves (Deflexion- Normal efforts) for THOMAS' columns 

 
 

 

 

 



 

 

Figure 7. Curves (Deflection- Normal efforts) for BAUMANN  ' column 

 
 

 

Figure 8. Curves (Deflection- Normal efforts) for the columns of ROBINSON, FOURE 

 
 

Figure 9. Curves (Deflection- Normal efforts) for the columns of ROBINSON, FOURE 

 
 

 

Figure 10. Curves (deflection - normal efforts) for the columns of SIEVE STEKELENBURG 

 
 

 

 



 

 

7.3. Discussion of the results 

The validity of the transfer matrix method which has been developed can be assessed 

by looking at the values of the ratios between the experimental ultimate loads and the 

computed ultimate loads, as well as by the standard deviation and the coefficient of variation 

for each sample of test specimens; those values are presented at Tables (1 to4).  

 

- The columns  of  F.G.THOMAS (table 1) 

All columns have a percentage of steel equal to 2.18%. For all these columns the difference 

between the experimental ultimate loads and ultimate loads calculated by this method is low.  

This is confirmed by the average ratio of experimental ultimate loads and ultimate loads cal-

culated which is 1.01 and the coefficient of variation, which is equal at 3.7%. This leads to the 

conclusion that the dispersion of results is low and the method of calculation is valid for these 

columns. 

 

Table 1. Calculated values of the critical loads for THOMAS' columns 

TEST 

 

N exp Ncal N exp /  Ncal 

LC1 588,4 593 0,99 

LC2 544,2 561 0,97 

LC3 478,9 503 0,95 

LC4 465,43 470 0,99 

LC5 455,8 445 1,02 

LC6 448,1 450 0,99 

LC7 463,6 442 1,05 

LC8 474,7 456 1,04 

LC9R 359,8 350 1,03 

LC10 373,7 365 1,02 

LC11 418,5 385 1,09 

LC12 438,4 450 0,97 

The middle value of the report 

Nexp /  Ncal 

1,01 

Coefficient of variation 0,037 

 

 

-  The columns  of  O. BAUMANN (table 2) 

The columns B8, B11 and B11 are the long columns with a slenderness equal to 89.  

The columns C3, C6 and C9 are  the very long columns with a slenderness equal to 141. They 

have respectively the same percentage of steel, with change of other parameters. For all these 

columns the difference between the experimental ultimate loads and ultimate loads calculated 

by this method is low. This is confirmed by the average ratio of experimental ultimate loads 

and ultimate loads calculated which is 0,94  and the coefficient of variation, which is equal at 

0,11. This leads to the conclusion that the dispersion of results is low and the method of cal-

culation is valid for these columns. 



 

 

Table 2. Calculated values of the critical loads for the columns of BAUMANN 

TESTS N exp Ncal N exp /  Ncal 

B8 233,822 280 0,83 

B11 193,159 201 0,96 

B14 233,822 205 0,80 

C3 666,04 680 0,98 

C6 225,637 202 1,12 

C9 203,449 221 0,92 

The middle value of the report 

Nexp /  Ncal 

0,94 

Coefficient of variation 0 ,11 

.  

-The columns of ROBINSON, FOURE, SAMEBDJEM (table 3) 

These columns are the very long columns with slenderness equal to 141, with change 

of more parameters. For all these columns the difference between the experimental ultimate 

loads and ultimate loads calculated by this method is low. This is confirmed by the average 

ratio of experimental ultimate loads and ultimate loads calculated which is 0,963  and the 

coefficient of variation, which is equal at 0,09. This leads to the conclusion that the dispersion 

of results is low and the method of calculation is valid for these columns. 

 

Table 3. Calculated Values of the critical loads for the columns of ROBINSON, 

FOURE and SAMEBDJEM 

TESTS N exp Ncal N exp /  Ncal 

I1 387 397 0,98 

II1 444 427 1,04 

III1 427 391 1,09 

DB1 1079 1210 0,892 

DB2 1030 1300 0,79 

DB3 1055 1325 0,99 

DF1 1226 1290 0,95 

DF2 736 758 0,97 

The middle value of the report 

Nexp /  Ncal                                    

0,963 

Coefficient of variation 0,09 

 

-The columns de VAN STEKELENBURG (table 4) 

 The columns 101,201 and 301 are the long columns with slenderness equal to 89.  

They have the same initial eccentricity of the normal force equal to 20% of the height of the 

section of the column. The column 401 is a post which the slenderness ratio equal to 54 and 

whose initial eccentricity of the normal force equal to 20% of the height of the section of the 

column. 

For these four columns the difference between the experimental ultimate loads and ul-

timate loads calculated by this method is low. This is confirmed by the average ratio of expe-



 

 

rimental ultimate loads and ultimate loads calculated which is 0,9  and the coefficient of var-

iation, which is equal at 0,06. This leads to the conclusion that the dispersion of results is low 

and the method of calculation is valid for these columns. 

 

Table 4. Calculated Values of the critical loads for the columns of STEKELENBURG 

TESTS N exp Ncal N exp /  Ncal 

101 179,5 205 0,875 

201 229,6 232 0,99 

301 310,1 370 0,838 

401 345 385 0,896 

The middle value of the report 

Nexp /  Ncal          

0,90 

Coefficient of variation 0,06 

 

   Finally, we note that the values of the ratios between experimental ultimate load and 

ultimate load calculated are  between 0.90 and 1.01. The coefficients of variation are below 

11%.(table 5). 

 We therefore conclude that the dispersion of results is small and the calculation me-

thod is accurate for the cases studied 

 

Table 5. Calculated values for the studied tests 

   Authors  Number 

of tests 

Average  

ratio 

gap  

marks 

 

Coefficient of  

variation 

THOMAS 12 1,01 3,7% 0,037 

 

BAUMANN 6 0,94 10,5% 0,11 

 

ROBINSON,FOUR,

SAMEBDJEM, 

 

8 0,96 8,6% 0,09 

STEKELENBURG 4 0,90 

 

5,61% 

 

0,06 

 

     8. CONCLUSION 

The comparison between test buckling loads and failure loads computed with the 

transfer matrix method set forward the fact that the computation method gives a good 

accuracy in the estimation of buckling strength of reinforced concrete columns. The method, 

which is light and flexible in numerical computations, has not the limitations which 

characterize other existing methods. It will thus be usefull to solve problems in situations 

which are more complex than the simple hingedhinged column; in particular, all the situations 

with complex supports, variable sections dimensions or with loads applied in the span of the 

column, can be successfully studied by the method. 
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