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Abstract. Bone remodeling involves the coordinated removal of bone by osteoclasts and
addition of bone by osteoblasts, a process that is modulated by the prevailing mechanical
environment. In this paper a fully coupled model of bone remodeling is developed, based
on coupling a bone cell population model with a micromechanical homogenization scheme of
bone stiffness. While the former model considers biochemical regulatory mechanisms between
bone cells such as the RANK-RANKL-OPG pathway and action of TGF-beta, the latter model
allows for accurate upscaling of the mechanical properties of bone. Importantly, we consider
bone remodeling as being controlled proportionally to the microscopic strain energy density,
on the observation scale where the sensing of the mechanical loading takes place, estimated
by means of continuum micromechanics-based strain concentration. This approach allows to
address two fundamental questions of bone biology: (i) How do biochemical changes influ-
ence bone remodeling and so affect the composition and mechanical properties of bone? and
(ii) What mechanisms are responsible for mechanoregulation of bone remodeling? Numerical
studies highlight the conceptual advantage of this new approach compared to conventional
phenomenological models. It is demonstrated that the proposed model is able to simulate
changes of the bone constituent volume fractions that are in qualitative agreement with exper-
imental observations for osteoporotic and disuse syndromes.

Keywords: Bone remodeling, Mathematical modeling, Bone cell population dynamics, Con-
tinuum micromechanics, Mechanoregulation.

1. INTRODUCTION

Bone remodeling comprises the concerted activities of bone-resorbing osteoclasts and
bone-forming osteoblasts, see [1, 2] for comprehensive reviews. Formulation of mathematical
models, which include different cell types and regulatory factors in the description of bone
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remodeling, is challenging and only recently the research community has realized the need
for such models in order to make links with clinical research. The first model which has
included the action of biochemical factors on bone cells wasformulated by [3]. This model
has been revisited by [4, 5], who refined and extended the considered biochemical factors,
and evaluated the resulting bone cell populations in terms of the temporally changing bone
volume. While the latter model gives valuable insights regarding implications of biochemical
changes caused by diseases and/or therapeutic treatments on the populations of involved bone
cells, no information is provided on how the mechanical integrity of bone is influenced under
such circumstances. This deficit is the motivation for the first question addressed in this paper:

I. How do biochemical changes affect the composition and themechanical properties of
bone?

Experiments show that, apart from the prevailing biochemical conditions, mechani-
cal loads acting upon bone also significantly influence the activation and sequence of bone
remodeling-related mechanisms [6, 7, 8, 9]. The sensing of the local mechanical environ-
ment and the transduction of the sensed signal to corresponding cellular events is managed
by a third bone cell type, osteocytes [10], differentiatingfrom osteoblasts which have been
entrapped during bone formation in the composite of collagen fibres and hyroxyapatite crys-
tals, commonly referred to as extracellular bone matrix. Thereby, osteocytes populate the
lacunar pores within the extracellular bone matrix. The porous material consisting of extra-
cellular material and lacunae is standardly called extravascular matrix. The exact functioning
of mechanosensing in the course of bone remodeling remains to be unraveled, but experi-
mental results strongly support the hypothesis that the deformation of the extravascular bone
matrix (hosting osteocytes which reside in lacunae) is a major indicator for the exertion of
influence on bone remodeling through mechanical forces [11]. This hypothesis is the starting
point for tackling the second question of this paper:

II. What are the mechanism giving rise to mechanical regulation of bone remodeling and
how can they be captured by a mathematical model?

Given the importance of the bone matrix deformation for answering this question, knowl-
edge of the actual bone stiffness is crucial. Predictive modeling of the mechanical properties
of bone requires consideration of its distinctive hierarchical organization [12, 13]. Continuum
micromechanics [14, 15] has proven to be well suited for thistask, providing reliable esti-
mates of bone stiffness [16, 17, 18] based on the volume fractions of the bone constituents
discernible on the investigated observation scales (from wet collagen to cortical bone), on the
universal mechanical properties of the basic building blocks of bone (collagen, hydroxyap-
atite, and water), and on the mechanical interactions between bone constituents. Provided
that both universal mechanical properties and interactions are invariant over the lifetime of
bone [19, 17], the volume fractions remain as the key sourcesaccountable for bone stiffness
changes over time, e.g. in the course of diseases [20] and aging of bone [21], but also due
to long-ranging alteration of the mechanical loading exerted onto bone [7]. However, state-
of-the-art micromechanical models do not consider the boneconstituent volume fractions as



being controlled by the underlying bone cell activities. Rectifying this shortcoming directly
relates to the answer to question I.

In summary, this paper is devoted to development of a fully coupled model of bone
remodeling, based on a bone cell population model and a micromechanical homogenization
scheme of bone stiffness, which contributes to answering the research questions raised above.
This new approach allows for both biochemical and biomechanical regulation of bone remod-
eling, and will be implemented based on extension of the previous bone cell population model
(BCPM) by introduction of mechanoregulatory mechanisms; application of the revised BCPM
to a representative volume element of cortical bone, composed of extravascular bone matrix
and Haversian canals, and analysis of the resulting cell populations in terms of corresponding
bone constituent volume fractions; using the volume fractions as input for a micromechanical,
one-step homogenization scheme which provides the macroscopic stiffness tensor of cortical
bone; and development of a new model for mechanosensing and the corresponding modu-
lation of bone remodeling, based on the microscopic strain energy density, rather than on
the commonly considered macroscopic one. The capabilitiesof this methodology are then
elucidated and discussed in the course of numerical studies.

2. A bio-chemo-mechanically coupled model of bone remodeling

2.1. Fundamental mechanisms

Bone remodeling is the continuous process of bone resorption and bone formation.
Bone cells involved in bone remodeling derive from two different cell lines. Osteoblastic
cells (responsible for bone formation) originate from mesenchymal stem cells, whereas os-
teoclastic cells (responsible for bone resorption) originate from hematopoietic stem cells. It is
well known that bone remodeling is regulated by both biochemical and biomechanical mecha-
nisms, which we will briefly sketch subsequently – for details see [4, 5] and references therein.

By binding to respective cell receptors, transforming growth factor-β (TGF-β) pro-
motes differentiation of uncommitted osteoblast progenitor cells into osteoblast precursor
cells, whereas it inhibits differentiation of osteoblast precursor cells into active osteoblasts
[22, 23]. Furthermore, TGF-β promotes osteoclast apoptosis. The RANK-RANKL-OPG sig-
naling pathway [24] comprises expression of the receptor activator of nuclear factor kappa
β (RANK) on the surface of hematopoietic stem cells, and release of osteoprotegerin (OPG)
by osteoblasts. Binding of RANKL (the ligand of RANK, expressed on osteoblast precursor
cells) to RANK (expressed on osteoclast precursor cells) has been identified as key mecha-
nism for promoting differentiation of osteoclast precursor cells into active osteoclasts. The de-
coy receptor molecule OPG (produced primarily by active osteoblasts) competes with RANK
to bind to RANKL, and thus inhibits osteoclast differentiation. Many systemic hormones are
known to affect bone remodeling. We consider only parathyroid hormone (PTH) in our model,
due to its crucial importance for RANK-RANKL-OPG system – itincreases the production
of RANKL and reduces the production of OPG.

Furthermore, bone cells do not only respond to biochemical regulatory factors, but also



to mechanical stimuli. The response of osteoclasts and osteoblasts to the applied mechanical
loading is mediated by a third type of bone cells, osteocytes, which are able to effectively
sense and transduce mechanical stimuli [10]. We assume thatosteocytes are homogeneously
distributed across the extravascular bone matrix and thus equally experience the mechani-
cal environment to which the investigated volume of extravascular bone matrix is subjected.
Experiments suggest [25] that catabolic mechanoregulation, resulting from disuse (i.e. the
mechanical loading is lower than “normal”), leads to upregulation of osteoclast differentia-
tion and thus to increased bone resorption. On the other hand, anabolic mechanoregulation,
resulting from overuse (the mechanical loading is higher than “normal”), leads to increase
proliferation of osteoblasts and thus increased bone formation. Disuse-related mechanoregu-
lation is considered through a mechanically controlled term of RANKL-production, whereas
overuse-related mechanoregulation is implemented using mechanically controlled prolifera-
tion of osteoblast precursor cells.

2.2. Governing equations

This section is devoted to briefly presenting the mathematical model governing the
mechanisms described in the previous section and the interfaces between systems biology
and continuum micromechanics-based stiffness homogenization.

2.2.1 Bone cell dynamics

Essentially, our model is based on the notion of a representative volume element (RVE).
This implies that within an RVE bone remodeling together with the underlying (average)
biochemistry and the mechanical environment is assumed to be uniform. Hence, spatial ef-
fects can be neglected and the first core module of our model, abone cell population model
(BCPM), providing the temporal evolutions of the concentrations of osteoblast precursor cells
(COBp), active osteoclasts (COCa) and active osteoblasts (COBa) during ongoing bone remodel-
ing, comprises a set of ordinary differential equations:

dCOBp

dt
= DOBuCOBuπa,T + POBpCOBpΠεbm − DOBpCOBpπr,T , (1)

dCOBa

dt
= DOBpCOBpπr,T − AOBaCOBa , (2)

dCOCa

dt
= DOCpCOCpπa,R− AOCaCOCaπa,T , (3)

for details see [4, 5] and references therein. In Eqs. (1) – (3),

• COBu, COBp, COBa denote the concentrations of osteoblast progenitor cells,osteoblast
precursor cells, and active osteoblasts, whereasCOCp andCOCa denote the concentrations
of osteoclast precursor cells and active osteoclasts;

• DOBu, DOBp, andDOCp denote the differentiation rates of osteoblast progenitorcells, os-
teoblast precursors, and osteoclast precursors;POBp denotes the proliferation rate of os-



teoblast precursor cells;AOBa andAOCa denote the apoptosis rates of active osteoblasts
and active osteoclasts;

• πa,T, andπr,T are the activation and repression functions regulating osteoblast differen-
tiation and osteoclast apoptosis by TGF-β, whereasπa,R is the activation function regu-
lating osteoclast differentiation by the RANK-RANKL-OPG system; the nomenclature
of these functions, ranging betweenπ = [0, 1], is to be understood as follows: the first
subscript defines whether the function is related to activation (index “a”) or repression
(index “r”) of a cell transformation (e.g. differentiation) induced by the substance in-
dicated by the second letter in the subscript (“T” represents TGF-β and “R” represents
the RANK-RANKL-OPG system);

• anabolic mechanoregulation is considered via overuse-related functionΠεbm = [0, 1],
controlling proliferation of osteoblast precursor cells as a function of the strain tensor
experienced by the extravascular bone matrix,εbm; and catabolic mechanoregulation
is realized via a disuse-related source term in the expression for the concentration of
RANKL; see Section 2.2.4 and [4] for details on the model implementation.

2.2.2 Quantification of the bone composition

We assume that bone is always composed of pore space and extravascular bone matrix,
i.e. the process of bone mineralization necessitating the consideration of osteoid, the sub-
stance laid down by osteoblasts which is transformed to solid bone matrix after a few days, is,
for the time being, assumed to be negligible. The bone constituents are quantified by means
of volume fractionsfi, with

fvas(t) + fbm(t) = 1 , (4)

wherefvas is the volume fraction of Haversian pore space, andfbm is the volume fraction of
extravascular bone matrix. The action of active osteoclasts cause increase of the volume frac-
tion of pore space and the action of active osteoblasts causedecrease of the volume fraction
of the extravascular bone matrix, reading in mathematical terms

dfvas

dt
= kresCOCa − kformCOBa , (5)

with kres as the resorption rate quantifying the amount of bone resorbed by active osteoclasts,
and withkform as the formation rate quantifying the how much bone matrix isformed by active
osteoblasts. Resorption and formation rates are considered as constant properties, intrinsic to
the respective cells. Analogously, the evolution of the volume fraction of extravascular bone
matrix follows from bone resorption-related decrease, andbone formation-related increase.
I.e.

dfbm

dt
= kresCOCa − kformCOBa . (6)



2.2.3 Continuum micromechanics-based stiffness homogenization

Continuum micromechanics provides a physically profound tool for relating the volume
fractions of bone to corresponding mechanical properties [26, 27, 14, 15]. Within a represen-
tative volume element (RVE) of cortical bone whose characteristic length is chosen such that
it is reasonably represented as two-phase material composed of pore space and extravascular
bone matrix, the anisotropic macroscopic stiffness tensorgoverning the elastic deformations
reads Chom

cort =
∑

r

frrAest
r , (7)

with r as the microscopic fourth-order stiffness tensors of constituent r, r = vas, bm, andAest
r as the estimate of the corresponding fourth-order strain concentration tensor, relating the

macroscopic and microscopic second-order strain tensors [15].Aest
r can be estimated based on

Eshelby’s classical matrix-inclusion problem [29, 30], bymeans of the Mori-Tanaka scheme
[31, 32],Aest

r =
[I+Pbm

r : (r − bm)
]−1

:

{

∑

s

fs
[I+Pbm

s : (s − bm)
]−1

}−1

, (8)

where indexr denotes either of the three phases, and the summation over index s includes
all of them, s = vas, bm. Furthermore,I is the fourth-order unit tensor with the com-
ponents defined through the Kronecker delta,δij = 1 for i = j and zero otherwise, as
Iijkl = 1/2(δikδjl + δilδjk), andPbm

r is the fourth-order Hill-tensor of phaser embedded
in a matrix with stiffnessbm. For a detailed explanation how the Hill tensor of a cylindri-
cal phase (such as Haversian pore space) is calculated, see [33, 34]. Numerical evaluation
of Eqs. (7) and (8) requires knowledge of phase volume fractions and phase stiffness tensors.
The volume fractions follow from the bone cell population model, see Section 2.2.2, whereas
the phase stiffness tensors are chosen in the line of [17], with the Haversian pore space as-
sumed as sealed and filled with water-like fluid (from a mechanical point of view), and the
stiffness tensor of extravascular bone matrix being based on the ultrasonics tests by [35], see
[17] for details.

2.2.4 Establishment of mechanoregulatory feedback mechanisms

We are left with definition of the mechanoregulatory functionsΠεbm andPRL,εbm. To this
end, we assume that bothΠεbm andPRL,εbm are directly controlled by the strains experienced
by the extravascular bone matrix,εbm. The macroscopic stress tensor acting on cortical bone,
Σcort, is related to the corresponding macroscopic strain tensor, Ecort, via the macroscopic
stiffness tensor obtained from Eq. (7), through a linear elastic constitutive law,

Ecort =
(Chom

cort

)−1

: Σcort . (9)

As pointed out earlier the strain in the extravascular bone matrix affects the activity of the
osteocytes embedded in that matrix. Making use of the microelastic model presented in the



previous section,εbm can be mathematically related toEcort, and, via Eq. (9) to a macroscopic
stress tensor, through

εbm = Aest
bm : Ecort . (10)

From a practical point of view, it is advantageous to expressthe three-dimensional (3D)
strain state represented byεbm by a corresponding scalar quantity. From the several quantities
suggested in conventional approaches [36, 37, 38], we choose the strain energy density (SED)
as mechanoregulatory quantity. However, contrary to conventional approaches, we consider
the SED on the observation scale of extravascular bone matrix (where mechanosensing ac-
tually takes place), rather than on the macroscopic observation scale of cortical bone. The
microscopic SED, experienced by the extravascular bone matrix reads as

wεbm =
1

2
εbm : bm : εbm . (11)

Not only the strain magnitude, but also other characteristics of the mechanical loading exerted
onto bone have been identified as governing factors of mechanical regulation, e.g. the rate
of the experienced strains, or the frequency of the applied loading [25, 39]. Strain rate and
loading frequency are subsequently considered as constant, thus the strain magnitude is the
only mechanoregulatory quantity, governing both catabolic and anabolic bone remodeling
responses.

The anabolic mechanoregulatory function,Πεbm, is defined as

Πεbm = Πεbm,st

[

1 + λ

(

wεbm

wεbm,st

− 1

)]

, (12)

with wεbm,st as set point SED corresponding to balanced bone turnover at steady-state,Πεbm,st

denoting the steady-state value ofΠεbm, andλ as parameter allowing for adjustment of the
proliferation rate. The bilinear functionΠεbm is defined byλ = 0 for wεbm ≤ wεbm,st and
λ > 0 otherwise. Mechanically induced production of RANKL,PRL,εbm, is assumed to be
only initiated by mechanical disuse, implying increased bone resorption.PRL,εbm is defined
analogously toΠεbm, and reads as

PRL,εbm = κ

(

1−
wεbm

wεbm,st

)

, (13)

with κ as a parameter allowing for adjustment of mechanically induced source of RANKL.
The bilinear function forPRL,εbm is defined byκ = 0 for wεbm ≥ wεbm,st andκ > 0 otherwise.
For introduction ofPRL,εbm in the mathematical framework given by Eqs. (11) – (13) see [5].

3. Numerical studies: Mechanical disuse regimes

In the subsequently presented numerical study, the generalmodel response to mechani-
cal disuse and reuse is investigated. The corresponding simulations are based on the following



parameters: RatioaDOBu
, defining the ratio of osteoblast precursor proliferation to differenti-

ation at steady state, is set toaDOBu
= 0.1 (i.e. at steady state 10 % of the overall supply of

new osteoblast precursors, governed by Eq. (1), stems from proliferation); parametersκ and
λ, implemented for calibration of the mechanoresponsiveness in Eqs. (12) and (13) are set to
κ = 105 pM/day andλ = 1.25, whileΠεbm,st = 0.5; the vascular porosity at steady-state condi-
tions is set tofvas,st= 0.05; the normal loading (although physiological loading scenarios are
expected to be of three-dimensional nature we consider, forthe sake of simplicity, uniaxial
loading) is specified byΣnormal

cort,ij = −30MPa if ij = 33 and zero otherwise, and a disuse load-
ing regime is simulated withΣdisuse

cort,33 = −25MPa for0 ≤ t ≤ 2000 d (after disuse the loading
is set back toΣnormal

cort,33 and the system is observed for further 3000 d); all other parameters are
chosen as calibrated in [4, 5] and are, for the sake of conciseness not further elaborated in this
paper.

Evaluation of the coupled methodology presented in Section2 reveals, on the basis of
above defined parameters, a sudden drop of the experienced microscopic SED, correspond-
ing to the imposed disuse scenario, see Fig. 1(a). This deviation from steady-state loading
conditions (wεbm < wεbm,st) provokes increased production of RANKL, governed by Eq. (13),
leading to an increase of the concentration of active osteoclasts (relative to the concentra-
tion of active osteoblasts), thus(COCa/COCa,st) > (COBa/COBa,st), see Fig. 1(b). Obviously,
this alteration of the cell concentrations entails increased bone resorption, and consequently
an increase of the volume fraction of vascular pore space through Eq. (5), see Fig. 1(c). An
increasing porosity of the RVE is accompanied by a corresponding weakening of the RVE,
i.e. the macroscopic stiffness increases, and given that the prescribed macroscopic loading is
assumed to be constant, the deformations increase, and so does the microscopic SED, as gov-
erned by Eqs. (11) and (12). Over time, the coupled model converges to a new, disuse-related
steady-state, with equilibrated bone turnover. This is observed after≈ 1000d, indicated by a
subsequently constant volume fraction of vascular pore space, see the black graph in Fig. 1(c),
by an equilibrated SED (wεbm = wεbm,st), see Fig. 1(a), which results in setting the disuse-
related additional production of RANKL back to zero. Consequently, the cell concentrations
return to the original level relating to the steady-state (Ci/Ci,st = 1), see Fig. 1(b).

Returning to the original macroscopic load att = 2000 d, Σcort,33 = Σnormal
cort,33 implies a

sudden increase of the deformation of the RVE, due to which the proliferation of osteoblast
precursors is increased via Eq. (12). Increased osteoblastproliferation is maintained until the
original steady-state is reached (occurs att ≫ 5000 days). The results indicated by the black
graphs in Fig. 1 clearly resemble, at least qualitatively, the mechanoregulatory behavior ob-
served experimentally for bone subjected to disuse scenarios, compare e.g. the investigations
of Vico and co-workers during and after space flight [40, 41].In essence, exposure to micro-
gravity, accompanied by reduced loading to which bone is subjected, leads to adaption of the
bone mass towards a new equilibrium after a certain period oftime. When subjected again
to terrestrial gravity, bone responses by recovering, i.e.by adjusting its mass to the original
level. This behavior, as interpreted in terms of corresponding volume fractions of the bone
constituents, is predicted by the above described simulation, see Fig. 1.
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Figure 1. Numerical results for a disuse-scenario, characterized byΣcort,33 = Σdisuse
cort,33 =

−25MPa for0 ≤ t ≤ 2000 d, and byΣcort,33 = Σnormal
cort,33 = −30MPa fort > 2000 d: evolutions

of (a) microscopic SEDwεbm, normalized with respect towεbm,st, (b) bone cell concentrations
Ci, normalized with respect to the steady-state cell concentrationsCi,st, and (c) vascular poros-
ity fvas for kres = 200pM−1 day−1 (black graph) andkres = 500pM−1 day−1 (grey graph)



The results, as compared with experimental results, furthermore underline in striking
fashion that species-dependent calibration of the model iscrucial. E.g. measurements on
the bone mineral density (BMD) carried out on cosmonauts after a six month-exposure to
microgravity [41] show that the BMD of cortical bone decreases by not more than2.5% (in
the distal radius) and by4.3% (in the distal tibia), respectively. In other words, the average
rate of bone loss amounted to0.42%/month (distal radius) and0.72%/month (distal tibia),
respectively. The bone loss rate revealed by the computational simulations,0.48%/month, see
the black graph in Fig. 1(c), fits well to the experimentally obtained range. Investigating the
disuse behavior of other species, quite different numbers are obtained – e.g. rats show much
higher rates of bone loss as exposed to microgravity. Several explanations are conceivable,
e.g. that the resorption activity of active osteoblasts in rats is increased compared to humans.
To study the relevance of this explanation, a second disuse-study is carried out, with the
resorption rate being multiplied by factor 2.5, i.e.kres = 500 (pM day)−1. The grey graph
in Fig. 1(c) shows that increasing the resorption rate leadsto distinctive acceleration of bone
resorption, i.e. adaption to the new loading regime is concluded much earlier. I.e. the response
of the presented model can be adjusted to different species (but also to different bone tissues),
by reasonable adjustment of the underlying parameters.

4. Conclusions

For the first time, the model proposed here provides biophysically reasonable estimates
of the stiffness changes in cortical bone, governed by both biochemical and biomechanics fac-
tors. This was achieved through coupling of a bone cell population model with a microelastic
model of bone stiffness, through a feedback loop implemented on the basis of the micro-
scopic strain energy density which is experienced on the observation scale of extravascular
bone matrix, controlling both anabolic and catabolic bone remodeling responses.

For demonstration of the capability of the approach, a mechanical loading regime com-
prising mechanical disuse and reuse (as experienced in spaceflight scenarios). It was revealed
that the model soundly reproduces, at least qualitatively,physiologically observed features,
such as fast loss of bone because of unloading, and slow increase of bone mass after ex-
posing the bone to normal mechanical loading. These outcomes of the numerical study pre-
sented in the previous section show that the proposed approach captures important features of
mechanoregulation of bone remodeling.

To improve the model, in future studies, we will focus on consideration of mechanoreg-
ulation in mechanistic fashion, through explicit introduction of the actions of osteocytes and
the signaling pathways by which osteocytes are able to direct osteoclasts and osteoblasts.
This will allow us to further validate the model and eventually utilize it as interpretative and
predictive tool.
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