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Abstract. The intense research in the development of new constitutive models has faced the
challenge of devising strategies to determine the corresponding material parameters. The
literature has shown a steady growth in application of parameter identification based on op-
timization techniques to a wide range of engineering problems. Within this framework, in
recent years, parameter identification schemes using heuristic approaches have been pro-
posed as possible alternatives to classical identification procedures mainly due to their poten-
tial ability to avoid local minima, insensitivity to the order of magnitude of parameters and
easy paralléisation. The present work shows that Particle Svarm Optimization, as an exam-
ple of such methods, can also be successfully applied to identification of inelastic parameters
and presents remarkabl e characteristics when compared to Genetic Algorithms.
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1. INTRODUCTION

The ongoing development of commercial packages contemplating numerical model-
ling of elastic-plastic problems at finite strains has made possible the simulation of a wide
range of metal forming processes, such as forging, extrusion and deep drawing amongst oth-
ers. Notwithstanding, the success of a simulation is strongly associated with material model-
ling and corresponding parameters. Such pressing need has fostered the development of new
parameter identification strategies based upon optimization strategies. These identification
techniques are mostly gradient-based optimization procedures and heuristic approaches. The
former requires computation of the gradient of the objective function and has been indicated
to convex problems. However, parameter identification of complex constitutive relations gen-
erally renders non-convex problems causing gradient-based optimization schemes to fail at
finding the global minimum. Heuristic methods, nevertheless, are able to avoid local minima
in non-convex optimization and allow easy parallelisation, mitigating their higher computa-
tional cost.



The literature shows many works addressing apphicatf gradient-based optimiza-
tion procedures to identification of elastic-plastiaterial parameters (see Mufoz-Rojas et al.
[1] and references therein). It is noteworthy timatst authors report some convergence diffi-
culties (to the global minimum) when using dama@sotropic or other complex constitu-
tive relation, giving rise to hybrid strategiesamtopting purely heuristic techniques. For in-
stance, Artificial Neural Networks (ANN) was usegl Abendroth and Kuna [2] to identifica-
tion of a Gurson-type damage model. Aguir et gl. §8ning at anisotropic materials, utilised
also ANN as an alternative to the Finite Elememtudations to evaluate the objective func-
tion within the Genetic Algorithm (GA). A combinat of Genetic Algorithms and gradient-
based optimization methods was also proposed tongoparameter identification problems
[4,5]. In a first stage, Genetic Algorithms are kgxbin order to reduce the search space to a
region sufficiently close to the minimum. The gexdibased technique is applied next using
the best individual of the last generation as thigai parameter estimate. The relatively slow
convergence rate has discouraged sole use of @atesmine the final parameters. In recent
years, Particle Swarm Optimization (PSO) has beepgsed to general optimization prob-
lems [6,7] as an alternative to evolutionary altjons owing to its high success rate and sta-
bility. This method is based on Swarm Intelligeraee attempts to mimic the social behav-
lour of populations, such as bird flocking and fsthooling. Following the route on using
gradient-free optimization techniques to identifica of inelastic parameters, this work,
based upon previous investigations [8], presentssaassment of the PSO method and a brief
comparative study between GA and PSO techniquésnatibte framework of a classical von
Mises material. Apparently simple, the test cas&easagossible to establish the viability of
using PSO in this class of problems, providing sibass and accuracy insights.

2. THE OPTIMIZATION PROBLEM

In elastoplasticity,parameter identification consists of finding material parameters
(elastic and/or inelastic) of the constitutive mioaleing techniques of so-called inverse prob-
lems. The approach used in the present work isdo@seinconstrained optimization, which is
generally defined as

Minimize g,(p) pOR"
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in whichp=[p. p2... pi ... pn]"is the design vector containimgdesign variables (each
design variablep; , corresponds to a given material parameter) pafftandp™ are the upper
and lower bounds of the design variables, respagtivi he objective function (or fitness),
do(p), to be minimized represents an error measuredmstthe experimental and correspond-
ing computed response (the latter is obtained uBinge Elements [9]). This work uses the
relative quadratic difference between the expertaleneasureR™, and numerical response,
RFEM.(p)’
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whereN is the number of experimental points.

Parameter identification may yield a non-convex amghly nonlinear optimization
problem thereby hindering determination of a glabaimum, especially when using gradi-
ent-based optimization strategies. In recent ydwrditerature shows increasing application of
soft computing algorithms to this class of problems owing to ithpgitential capacity to avoid
local minima and to circumvent possible lack of wengence of the elastic-plastic problem
itself [8]. Neural Networks algorithms (e.g. Artificial Neural Networkskvolutionary (e.g.
Genetic Algorithms)3wvarm Intelligence (e.g. Particle Swarm Optimization and Ant Colony
Optimization) are the most referredft computing strategies for general engineering prob-
lems. However, there are relatively few attemptsiging such methods to identification of
elastic-plastic material parameters.

2.1. Particle Swarm Optimization

Particle Svarm Optimization was introduced by Eberhart and Kennedy [6,7] using
concepts of social behaviour of populations. Thehnéque proved to be successful in many
engineering problems, such as design and optiroizadf communication / electricity net-
works, economic load dispatching and electric mmtoobotics, supply chain management,
job and resource allocation, and system identiboaimongst many other applications [10-
12]. In spite of such wide usage spectrum, apptinadf PSO techniques to identification of
material parameters is relatively new (see, faraimese, references [13-15] for identification of
thermal parameters).

In PSO techniques, the population comprises pastith which are applied velocity
operators in an attempt to simulate a combinatioimaividual cognitive abilities and social
interactions. In a first step, the initial poputatiis randomly defined within the parameter
lower and upper limits. The scheme attributes ve&scto each particle taking into account
(i) its inertia, {i) personal history andi() neighbourhood effect.

(i) Inertia: represents the tendency of a particle to foll@aprevious direction;

(ii) Personal history: the location in the search space which resultba# fithess — the
cognitive effect;

(iii) Neighbourhood effect: effect of the best fithess of neighbouring induads — the so-
cial effect.

It is relevant to mention that several differentiaats of the method have been proposed,
most of which defining new rules of particle intetans and neighbourhood conditions [16].
This work addresses the classical implementatiahePSO technique, described as follows:

Initially, a random population and correspondinigahvelocities are generated

0) — 0 0 0 0 0) — 0 0 0 0
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in whichn, is the population size and
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wherep; is the particle coordinate in the search spaaedterial parametery; is the corre-
sponding velocity component, ands the total number of material parameters. Théhotke
establishes subsequent computation of new veledinel locations according to pre-defined
rules and operators. The most widely used PSO tsrdefine the new particle velocity,
v and locationp™?), as

Inertia Cognitive Social
v =wv® + U(0.6,)0(pl - p®) +U(0.4,)0(pY - p¥), (5)
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where the superscripk)(indicates time stegy, andpg, are the individual and global best
locations, respectivelyy is the inertia parameter, ai{0,¢;) andU(0,¢,) represent vectors
of random numbers defined in the intervalf).and [0g-], whereg, andg, are the cognitive
and social parameters, respectively. The operdtidn [0 ( [J) indicates a component-wise
multiplication.

In addition to Equations (5), velocity and boundeoytrol are required in order to avoid
excessive particle dispersion and boundary viakatia the present work, velocity compo-
nents are restricted to a fraction @¥"—p™ ) for each parameter, so that

- Vimax , Where Vimax = VV| (psup _ p_inf ) (6)
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is the maximum velocity component, wher&")| is the absolute value of the velocity com-
ponent, andv; [1 [0 , 0.5] is the velocity restriction parametentideably, there are other ve-
locity control schemes, amongst which Clerc andnéely’s [17]constriction parameter is
the most referred. However, this strategy was offtcgent to waive using boundary control
in the present identification problem.

The random character of the velocity operatorgdlto an eventual proximity of a parti-
cle to the search space boundary may cause aridadivo violate the pre-defined lower or
upper boundsp®*® andp™. The present scheme enforces a boundary contrmveed from
GA, which imposes component-wise limits, i.e., adividual componentp; , is reset at the
boundary,

|f pi(k+1) > pisup = pi(k+1) - isup

_(k+1) ‘inf (7)

If p“?<p”™ = p“?p

2.2. Convergence and accuracy measures

Convergence and accuracy measures in heuristicithigys have prompted a healthy
discussion in recent years. Gradient-based optiinizachemes can naturally use the norm of



the gradient of the objective function to evaluad@vergence. However, GA and PSO meth-
ods do not demand computation of the gradient #retefore, require alternative conver-
gence assessment (or simply stopping criteriagehreral, theg) total number of generations,
K™ (b) the difference between the best and worst indidisl or elsed) the difference be-
tween the best fitness of consecutive generatians been largely used in conjunction with
Genetic Algorithms. Similarly, a normalised fitnessnvergence indexg , computed using
the worst and best particles can also be defined as

(k))worst (k))best
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9

- wor ' (8)
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The characteristics of PSO algorithms make possibtefine stopping / convergence
criteria based upon dispersion of particles oresponding velocities. As the optimization
process evolves, particles tend to cluster togetbducing velocity and dispersion, so that
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where [( O | indicates the Euclidean norm gmg® is the best particle of time stel).(The
dispersion indexg, represents the relative mean distance betwediclparand the best indi-
vidual of the stefk. Convergence in GA and PSO schemes can also b&umedabased on a
fraction of the total populatioms, defined in order to exclude non-physical indiattufrom
computation of convergence indices (although defwwéhin predefined limits, some combi-
nation of parameters may render unrealistic indigld or particles, hampering convergence
of the direct elastic-plastic problem, especiatiyarly optimization stages).

An alternative convergence indicator can be expkssterms of thenean equivalent
number of bits, n,;, of the algorithm, which measures the averagdu#en in each time step
or generationk. Although the present PSO implementation doesuseta binary approach,
n, has proved to be a good quality indicator of tmalfiparameters. In GA algorithms, the
relation of the resolutior\p;, upper and lower limits of a parametgf*? andp,™, and num-
ber of bits,ny,, is well established [18]. Similarly, rmean equivalent number of bits can be
computed in each step/generation usingaileeage resolution of parametersAp°, as

( sup __ pinf ]
In| - L+1
—e() ) in (k)
e _ 1 Lk (k) Ap e _ P = p™
n, ==)n>, wheren® " = and Ap? T =+ ' , (10
° n; ! In(2) P n, -1 (10)

min

in which n® is the equivalent number of bits of a parameted @"* andp™" are, respec-
tively, the maximum and minimum values of each peater in a given generatidn. As the
optimization evolves, GA individuals group closerthe minimum, progressively narrowing

“max

p™* andp™". The mean equivalent number of bits accounts for such narrowing effect and



represents the effective resolution of the algaritkt certain stage of the identification proce-
dure. Early in the process, the population presange dispersion, reflected also in large val-
ues of Ap° and small equivalent number of bits. In later gatiens,n,” approaches the theo-
retical resolution, i.en, — n,. Therefore, such assessment makes possible tctiobg
determine how close the algorithm is able to adhithe theoretical number of bits, i.e. it
gives an alternative indication of the rate of cengence and quality of parameters. In addi-
tion, themean equivalent number of bits can also be used to compare GA/PSO techniques.

3.NUMERICAL EXAMPLES

The present work addresses the classical von Misgsrial in an attempt to gain fur-
ther insights on this class of identification peaols and to establish eventual advantages or
disadvantages of the PSO algorithm when comparé&iAtoThis work emphasises some as-
pects of convergence assessment and presents abivgpaesults against GA using the ten-
sile test data presented by Ponthot and Kleinernjal) corresponding to a special steel
used in piping manufacture for the nuclear indu¢8teel A-533, Grade B, Class 1). The
gauge length and initial radius of the specimenrare6.413mm and 2x/, = 53342 mm.

The Finite Element mesh assumes revolution symnagtdy contains 400 elements and 451
nodes with refinement at the necking region (sintibereference [19]). Modified Voce’s [20]
yield stress curve is also used in the presentlations,

Oy, =0,+{€,+ (Jm —0’0) [1—exp(— dsp)] , (11)

whered., d,, { anddare the parameters to be determined. The Youngilme®dnd Poisson’s
ratio are assumel = 206.9GPa andv = 0.29, respectively.

Table 1. GA/PSO lower and upper limits, and BR@&al estimate and final parameters.

Parameters
% [MPa] g.[MPa] ¢[MPa] o 9o(P)
Lower limit, p™ 200 300 100 10 0.539816086420°
Upper limit, p*** 800 1000 700 50 0.553318142280°
Initial 500 700 400 30 0.886559392440™"

BFGS
Final 471.2533 678.1928 218.1305 15.52408 0.881@ATEX 10°

The present test case was also solved using theSRffadient-based method [21] in
order to obtain a reference solution. This strategyvides verification grounds for the PSO
and GA methods, making possible to determine tied fithess and inelastic parameters with
verifiable accuracy ¢ =|0go(p™)| / Pago(p®)| < 1x 10°). It is worthy to highlight that
the BFGS method was able to solve successfullyptbposed inverse problem provided the
initial parameter estimates fall within a given elope. This behaviour is typical of gradient-
based optimization procedures which require inigslimatessufficiently close to the final
parameters. Table 1 presents the PSO / GA uppdowaed limits and the initial estimates for



the BFGS scheme — noticeably, the BFGS method tiaitonverge when using the upper /
lower limits as initial estimates. Figure 1 illustes the load — elongation curve computed us-
ing the material parameters presented in Table 1.
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Figure 1. Experimental and numerical load curvegHe tensile test.

The PSO technique requires definition of the i@ewi, cognitive, ¢,, and social pa-
rametersg,. In a previous study, the authors investigatedinifieence of the PSO control
parameters in the identification process, conclgdimat excessively smaller values lead to
sub-optimal solutions and larger values cause swastability and convergence failure [8].
The recommended control parameters werg [04,08] and ¢, =¢, 0 [0.7,18]. In the
present study the weight parameters are assume@5 and ¢, =¢, =1.0. Moreover, con-
vergence of the PSO method is assumedfcr80 wBen the fithess convergence and par-
ticle dispersion indices reaclp™" = 10'%and @™ = 10°, respectively .

3.1. Influence of parameterson theidentification process

The success of an identification process is redlbdty determination of accurate pa-
rameters combined with smaller number of fithesmmatation. Although no sensitivity
analysis is required by PSO schemes, a singlerabic@tion of material parameters can sub-
stantially affect the identification process. Tkisample illustrates this issue by determining
two out of a 4 parameter set (the parameters aatausing the BFGS method are used to
complete the set), as indicated in Table 2, usipgulation sizen, =10. The simulations
show that all cases, excepase (3), present very similar convergence behaviour, atbu-
racy for parameters and fitness in theahd 18 significant digits, respectively, when com-
pared against the BFGS solution.



Table 2.

Influence of parameters: populatign=10.

Parameter

Case oh[MPa]  0.,[MPa] { [MPa] o do(p)

BFGS 471.2533 678.1928  218.1305  15.524080.8818130661% 1072
Case (1) 471.2533 678.1% BFGS BFGS  0.8818130654 x 102
Case (2) 471.2533  BFGS  218.1305 BFGS  0.8818130686 x 102
Case (3) 471.2%21 BFGS BFGS  15.5248 0.8818130684 x 10°
Case (4) BFGS 678.197 BFGS 155240  0.8818130689 x 107
Case (5) BFGS BFGS  218.13@  15.524@ 0.8818130664 x 10°
Case (6) BFGS 678.192  218.13Q3 BFGS  0.8818130682 x 102
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Figure 2. Convergence process evaluated usingdimatised fitness indexg.

Figures 2 and 3 present the convergence processl loasthe normalised fithess and
dispersion indices. The results show that the costwieffect of parameters, and &
— Case (3) — yields higher influence on the identificationo&tion, requiring larger popula-
tion sizes to guarantee higher accuracy (to mdtehother cases, as illustrated in Table 2).
Such behaviour indicates that, in this case, thpulation sizen, = 10 represents thaecuracy
threshold, under which one would obtain convergence to qutb¥@l parameters. It is also
interesting to note that the higher influence & garameters, ando are notdue to the dif-
ference in the order of magnitude of parametegs110° and510110Y, since the combination
[0 J]"and ¢ J]" presents similar magnitude differences but theeeted convergence
behaviour. Therefore, the higher influence of thebination p, J]" can be credited to ef-

fect of such parameters on the physics of theipldsformation process.
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Figure 3. Convergence process evaluated usingisperdion indexg.
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Figure 4. Effect of the population size to obtainja;, J]".

The aforementioned influence of the population sszdlustrated in Figure 4 and Ta-
ble 3, which show, respectively, the convergenaegss and final parameters foase (3).
As the population size increases, evolution ofdpgmization process approximates the ex-
pected behaviour (see Figure 4). However, it isartgnt to emphasise that in all cases con-
vergence was achieved with acceptable accuracy.



Table 3. Influence of the population size to idécdtion of [g, J]".

Parameter
Population @[MPa] o0.,[MPa] {[MPa] o) do(p)

BFGS 471.2533 678.1928 218.1305  15.52408).8818130661% 10>
n, =10 471.221 BFGS BFGS 15.5248 0.8818130684 x 10°
n, =20 471.2%16 BFGS BFGS 15.5238 0.8818130662 x 10°
n, =30 471.253 BFGS BFGS 15.5240 0.8818130664x 10
n, =40 471.253 BFGS BFGS 15.5241 0.8818130664x 10

3.2. Influence of number of parameters

The previous results indicate that the nature sihgle material parameter affects the
convergence process, thereby suggesting an ensiginigicant influence of number of pa-
rameters upon the optimization procedure. Therethis example presents the convergence
evolution of the PSO method when identifying par@re () [0, ], (i) [co I 1,

(i) [0 ¢ O]" and (V) [0 G { I]. In casesi{)—(iii), parametersr, andJ were selected
owing to their higher influence on the optimizatiprocedure. The remaining parameters in
casesi|—(iii) are those computed by the BFGS method.

The behavioural dynamics of particle interactioasdmes evident in this example. As
the dimension of the optimization hyperspace ineesathe tendency of particles to converge
towards a sub-optimal solution also increases. €ffesct can be counter-balanced by larger
population sizes, which cause the global explonatapacity of the algorithm to grow. The
obvious drawback is the increase of the computatioost (larger number of fithess evalua-
tions), as highlighted in Figure 5. It is interegtito note that, when determining all 4 parame-
ters, 160 particles is able to avoid sub-optim&litsmns, achieving convergence after almost
30,000 fitness computation.

Table 4. Final converged parameters@ases (i) — (V).

Parameter
Case a[MPa]  o.[MPa] {[MPa] o go(P)
BFGS 471.2533 678.1928 218.13045.52408 0.8818130661% 107>

(i) 1 Parameter n,=5 471.2533 BFGS BFGS BFGS 0.8818130661% 10°
(ii) 2 Parameters n,=20 471.2%6 BFGS BFGS 15.5238 0.8818130662 x 10°
(iii) 3 Parameters n,=40  471.253 BFGS 218.1305 15.524Q0 0.8818130661% 107
(iv) 4 Parameters n, = 160 471.2355 678.1868 218488 15.5530 0.881813@186 x 107

The population sizesy, indicated in Table 4 fozases (i)-(iii) guarantee convergence
to the optimal solutions with very good accuracijfédences in the 8 significant digit of the
parameters). The solution for 4 parameters pregbetdargest differences, however, one



should notice that the PSO fitnesscase (iv) is slightly smaller than the BFGS solution (i.e.
PSO solution is actually slightly more accuratentB&GS by providing a better minimum).
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Figure 5. Computational cost: influence of the nemitif parameters.

Table 5. Mean equivalent number of bif§j,, at convergence.

Parameter Mean
Case ng. n; n; n; Ny
(i) 1 Parameter np=5 23.120 - - - 23.120
(i) 2 Parameters  n,=20 24.374 - - 23.505 23.939
(iii) 3 Parameters  n,=40 24.196 - 24.189 23.388 23.924

(iv) 4 Parameters

no=160 23.771 25170 24.413 24.016 24.342

An alternative accuracy measure can be establisii¢le mean equivalent number of
bits, N, , which represents a parametric mean differencpasdmeters with respect to the
their lower and upper limits. Theoretically, if thgerage difference of an individual coordi-
nate of the hyperspac@p, , approaches zero (i.e., the individual parametesents the same
value for all particles), the corresponding equewalnumber of bitsn’ - o . The conver-
gence criterion based on the normalised fitness irsethis test caseg™" = 10°, corre-
sponds to a mean equivalent number of hfts= 23. Table 5 shows the equivalent number of
bits for each parameter at convergencs, {n; ,n;, ng}, and the corresponding mean
value. It is remarkable that convergence takeseplaith similar accuracy in those cases
whichn > 2, especially when the order of magnitude idiffierent as 1®and 10 for parame-
tersg, andd, respectively.



3.3. PSO / GA compar ative assessment

Genetic Algorithms are a subset of so-called evaatry algorithms, in which each
potential solutioniqdividual) is represented by a vector of design variabbbso(nosome)
and each design variablgefie) is described by an information encoding syster. @nary
encoding). The classical literature [22] indicates that @A potentially able to avoid local
minima, leading to trustworthy results in non-caxyeoblems. However, their well-known
low convergence rate is a clear disadvantage. Begpidespread use in general optimization
problems, application of GA to identification ofelastic parameters is relatively recent, as
shows references [3-5]. More importantly, most vgoalssociate GA with other optimization
strategies (e.g. gradient-based schemes) aimimgdating the search space and providing
initial estimates close to optimum. The presentknamopts the GA method described in ref-
erence [8] with the following control definition&5 bits, 5 % mutation rate, one-point cross-
over with a probability of 80 % and full elitisrihe results are summarised in Figure 6 and
Table 6, which present GA / PSO fitness evolutiod aorresponding parameters after 400
generations. The GA / PSO population size useklisnetxample is, = 160.

5 £02 90(P)
Genetic Algorithm
[ ——— Particle Sw arm Optimization
4802 & BFGS fitness

3.E02
2.602

1.E02

0.E+00 |

100 1000 10000 100000
Fitness computation

Figure 6. Fitness evolution for GA and PSO metradafpopulation size, = 160.

Figure 6 shows that GA provides a higher convergaate in the first few genera-
tions. However, as the optimization progressesyexence rate decreases substantially so
that, even for 400 generations, material paramstérpresent relevant differences with those
determined by the BFGS and PSO techniques, asatedi¢n Table 6. Interestingly, the mean
equivalent number of bits at this stageﬁﬁG = 7, significantly smaller than its PSO coun-
terpart, ﬁbe‘m = 23, at convergence. The authors performed sevetaturs for the present
example, but the slow convergence has rendere@Ahscheme inappropriate to be used with
the objective of finding the final parameters whilgher accuracyin spite of such differences,
the corresponding GA load — elongation curve shgaml approximation to the experimental




data, as exhibited in Figure 7. The PSO final clame differencesg = R™® - R™™ , are also
indicated in Figure 7.

Table 6. Parameters and fitness for GA and PSOadstatstep / generation 400.

Parameter
Method oK [MPa]  o0.,[MPa] { [MPa] o do(p)

BFGS 471.2533 678.1928 218.1305 15.52408).8818130661% 10>
PSO 471.2359 678.1867 218.1493 15.52628).8818130417% 102
GA 427.7568  665.9593 261.7742 20.84847.9850785861% 10°

Load [kN] Differences [kN]
80.0 2.0
700 Differences 110

~ pso
60.0 [-—————- [ NC N AR B N A Y
50.0 . — -1.0
Experimental

: —0—GA Differences

|l —e— PSO GA ]
40.0 e -2.0

0.00 0.05 0.10 0.15 0.20 0.25

Elongation

Figure 7. Load — elongation curve: final PSO and $&Autions and respective,
¢ =R>* -R™, differences.

4. CONCLUDING REMARKS

In recent years, identification of material paraengtusing optimization techniques has
been suggested as a viable complement to expeahmaeasurements. The literature shows
that most parameter identification strategies uskele gradient-based optimization ap-
proaches (e.g. the BFGS method) or heuristic tectes (e.g. Genetic Algorithms). Despite
the reported success in applicationRafrticle Svarm Optimization to several engineering
problems, very few works approach identificationredterial parameters using this technique.
This study addresses application of the PSO scherties class of problems. Assessment of
the PSO method uses the experimental tensile adstpdovided by Ponthot and Kleinermann
[19], from which four hardening parameters of thedified Voce’s [20] yield stress curve is
determined. A reference BFGS solution for the teste is also presented. The simulations



show that the final material parameters determimgdhe PSO technique are very accurate
when compared against the BFGS method. The stuslyalsa determined that identification

of larger number of parameter requires larger patparis to avoid sub-optimal solutions. In

the present case, a population of 160 particles atsdes to determine the optimum material

parameters. A brief comparison of GA and PSO sckemmdicates that, despite good ap-
proximation of the load — elongation curve, therfer was not capable to converge with the
same level of accuracy of the PSO method.

Acknowledgements

The first author acknowledges the research gramtiged by CNPqg (National Council for
Scientific and Technological Development — Proj@@1991/2009-0). The authors also thank
J. Stahlschmidt for his role in implementing theG@Fmethod.

5. REFERENCES

[1] Mufoz-Rojas, P.A., da Cunda, L.A.B., Cardoso, EXaz Jr., M. and Creus, G.J., “A
mixed optimization approach for parameter iderdtfien applied to the Gurson damage
model”, in Vaz Jr., M., de Souza Neto, E.A. and Mz+Rojas, P.A. (Eds.Advanced
Computational Materials Modeling: from Classical to Multi-scale Techniques, Wiley-
VCH, pp.165-204, 2011.

[2] Abendroth, M., Kuna, M., “ldentification of ductildamage and fracture parameters
from the small punch test using neural networksigineering Fracture Mechanics, 73,
710-725, 2006.

[3] Aguir, H., Belhadjsalah, H., Hambli, R., “Parameigentification of an elasto-plastic
behaviour using artificial neural networks-genatigorithm method”,Materials and
Design, 32, 48-53, 2011.

[4] Chaparro, B.M., Thuillier, S., Menezes, L.F., Mamak.Y., Fernandes, J.V., “Material
parameters identification: gradient-based, gereatt hybrid optimization algorithms”,
Computational Materials Science, 44, 339-346, 2008.

[5] Muhoz-Rojas, P.A., Cardoso, E.L., Vaz Jr., M., ‘@uaeter identification of damage
models using genetic algorithm&xperimental Mechanics, 50, 627-634, 2010.

[6] Eberhart, R.C., Kennedy, J., “A new optimizer uspagticle swarm theory”, inPro-
ceedings of the Sxth International Symposium on Micro Machine and Human Science,
IEEE Press, 39-43, 1995.

[7] Kennedy, J., Eberhart, R.C., “Particle Swarm Opation”, in: Proceedings of the
|EEE International Conference on Neural Networks, IEEE Press, 1942-1948, 1995.

[8] Vaz Jr., M., Cardoso E.L., Stahlschmidt, J., “RéetiSwarm Optimization and identifi-
cation of inelastic material parameters”, Submiftadoublication, 2011.

[9] de Souza Neto, E.A., PériD., Owen, D.R.J.Computational Methods for Plasticity.
Theory and Applications, Wiley, 2008.

[10] Poli, R., Kennedy, J., Blackwell, T., “Particle swaoptimization - An overview”,
Swarm Intelligence, 1, 33-57, 2007.

[11] Blum, C., Li, X., “Swarm intelligence in optimizan”, in: Blum, C. and Merkle, D.
(Eds.),Svarm Intelligence - Introduction and Applications, Springer, 43-85, 2008.

[12] Sedighizadeh, D., Masehian, E., “Particle swarmnapation methods, taxonomy and



[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]
[22]

applications”, International Journal of Computer Theory and Engineering, 1, 1793-
8201, 2009.

Ardakani, M.D., Khodadad, M., “Identification oféhmal conductivity and the shape of
an inclusion using the boundary elements methodtla@garticle swarm optimization
algorithm”, Inverse Problemsin Science and Engineering, 17, 855-870, 2009.

Cortes, O., Urquiza, G., Hernandez, J.A., “Invehsat transfer using Levenberg-
Marquardt and particle swarm optimization methoais Heat source estimationAp-
plied Mechanics and Materials, 15, 35-40, 2009.

Tian, N., Sun, J., Xu, W, Lai, C.-H., “Quantum-beéd particle swarm optimization
with ring topology and its application in estimaitemperature-dependent thermal
conductivity”, Numerical Heat Transfer, Part B, 60, 73-95, 2011.

Schutte, J.F., Groenwold, A.A., “A study of glolmgdtimization using particle swarms”,
Journal of Global Optimization, 31, 93-108, 2005.

Clerc, M., Kennedy, J., “The particle swarm-expbosistability, and convergence in a
multidimensional complex spacdEEE Transaction on Evolutionary Computation, 6,
58-73, 2002.

Rao, S.S.Engineering Optimization. Theory and Practice, fourth ed., Wiley, 2009.
Ponthot, J.-P., Kleinermann, J.-P., “A cascadenuipaition methodology for automatic
parameter identification and shape/process optimoizan metal forming simulation”,
Computer Methods in Applied Mechanics and Engineering, 195, 5472-5508, 2006.
Voce, E., “The relationship between stress andnsfta homogeneous deformation”,
Journal of Institute of Metals, 74, 537-562, 1948.

Arora, J.S.|ntroduction to Optimum Design, second ed., Elsevier, 2004.

Goldberg, D., Sastry, K.Genetic Algorithms. The Design of Innovation, Springer,
2011.



