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Abstract. The intense research in the development of new constitutive models has faced the 
challenge of devising strategies to determine the corresponding material parameters. The 
literature has shown a steady growth in application of parameter identification based on op-
timization techniques to a wide range of engineering problems. Within this framework, in 
recent years, parameter identification schemes using heuristic approaches have been pro-
posed as possible alternatives to classical identification procedures mainly due to their poten-
tial ability to avoid local minima, insensitivity to the order of magnitude of parameters and 
easy parallelisation. The present work shows that Particle Swarm Optimization, as an exam-
ple of such methods, can also be successfully applied to identification of inelastic parameters 
and presents remarkable characteristics when compared to Genetic Algorithms. 
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1. INTRODUCTION 

The ongoing development of commercial packages contemplating numerical model-
ling of elastic-plastic problems at finite strains has made possible the simulation of a wide 
range of metal forming processes, such as forging, extrusion and deep drawing amongst oth-
ers. Notwithstanding, the success of a simulation is strongly associated with material model-
ling and corresponding parameters. Such pressing need has fostered the development of new 
parameter identification strategies based upon optimization strategies. These identification 
techniques are mostly gradient-based optimization procedures and heuristic approaches. The 
former requires computation of the gradient of the objective function and has been indicated 
to convex problems. However, parameter identification of complex constitutive relations gen-
erally renders non-convex problems causing gradient-based optimization schemes to fail at 
finding the global minimum. Heuristic methods, nevertheless, are able to avoid local minima 
in non-convex optimization and allow easy parallelisation, mitigating their higher computa-
tional cost. 
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The literature shows many works addressing application of gradient-based optimiza-
tion procedures to identification of elastic-plastic material parameters (see Muñoz-Rojas et al. 
[1] and references therein). It is noteworthy that most authors report some convergence diffi-
culties (to the global minimum) when using damage, anisotropic or other complex constitu-
tive relation, giving rise to hybrid strategies or adopting purely heuristic techniques. For in-
stance, Artificial Neural Networks (ANN) was used by Abendroth and Kuna [2] to identifica-
tion of a Gurson-type damage model. Aguir et al. [3], aiming at anisotropic materials, utilised 
also ANN as an alternative to the Finite Element calculations to evaluate the objective func-
tion within the Genetic Algorithm (GA). A combination of Genetic Algorithms and gradient-
based optimization methods was also proposed to solving parameter identification problems 
[4,5]. In a first stage, Genetic Algorithms are applied in order to reduce the search space to a 
region sufficiently close to the minimum. The gradient-based technique is applied next using 
the best individual of the last generation as the initial parameter estimate. The relatively slow 
convergence rate has discouraged sole use of GA to determine the final parameters. In recent 
years, Particle Swarm Optimization (PSO) has been proposed to general optimization prob-
lems [6,7] as an alternative to evolutionary algorithms owing to its high success rate and sta-
bility. This method is based on Swarm Intelligence and attempts to mimic the social behav-
iour of populations, such as bird flocking and fish schooling. Following the route on using 
gradient-free optimization techniques to identification of inelastic parameters, this work, 
based upon previous investigations [8], presents an assessment of the PSO method and a brief 
comparative study between GA and PSO techniques within the framework of a classical von 
Mises material. Apparently simple, the test case makes possible to establish the viability of 
using PSO in this class of problems, providing robustness and accuracy insights. 

2. THE OPTIMIZATION PROBLEM 

In elastoplasticity, parameter identification consists of finding material parameters 
(elastic and/or inelastic) of the constitutive model using techniques of so-called inverse prob-
lems. The approach used in the present work is based on unconstrained optimization, which is 
generally defined as 
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in which p = [ p1   p2 …  pi  … pn ]
T is the design vector containing n design variables (each 

design variable, pi , corresponds to a given material parameter), and pi
sup and pi

inf are the upper 
and lower bounds of the design variables, respectively. The objective function (or fitness), 
g0(p), to be minimized represents an error measure between the experimental and correspond-
ing computed response (the latter is obtained using Finite Elements [9]). This work uses the 
relative quadratic difference between the experimental measure, RExp, and numerical response, 
RFEM.(p),  
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where N is the number of experimental points. 
Parameter identification may yield a non-convex and highly nonlinear optimization 

problem thereby hindering determination of a global minimum, especially when using gradi-
ent-based optimization strategies. In recent years the literature shows increasing application of 
soft computing algorithms to this class of problems owing to their potential capacity to avoid 
local minima and to circumvent possible lack of convergence of the elastic-plastic problem 
itself [8]. Neural Networks algorithms (e.g. Artificial Neural Networks), Evolutionary (e.g. 
Genetic Algorithms), Swarm Intelligence (e.g. Particle Swarm Optimization and Ant Colony 
Optimization) are the most referred soft computing strategies for general engineering prob-
lems. However, there are relatively few attempts to using such methods to identification of 
elastic-plastic material parameters. 

2.1. Particle Swarm Optimization 

Particle Swarm Optimization was introduced by Eberhart and Kennedy [6,7] using 
concepts of social behaviour of populations. The technique proved to be successful in many 
engineering problems, such as design and optimization of communication / electricity net-
works, economic load dispatching and electric motors; robotics, supply chain management, 
job and resource allocation, and system identification amongst many other applications [10-
12]. In spite of such wide usage spectrum, application of PSO techniques to identification of 
material parameters is relatively new (see, for instance, references [13-15] for identification of 
thermal parameters).   

In PSO techniques, the population comprises particles to which are applied velocity 
operators in an attempt to simulate a combination of individual cognitive abilities and social 
interactions. In a first step, the initial population is randomly defined within the parameter 
lower and upper limits. The scheme attributes velocities to each particle taking into account 
(i) its inertia, (ii) personal history and (iii) neighbourhood effect.  

(i) Inertia: represents the tendency of a particle to follow its previous direction;  
(ii) Personal history: the location in the search space which results its best fitness – the 

cognitive effect; 
(iii) Neighbourhood effect: effect of the best fitness of neighbouring individuals – the so-

cial effect. 

It is relevant to mention that several different variants of the method have been proposed, 
most of which defining new rules of particle interactions and neighbourhood conditions [16]. 
This work addresses the classical implementation of the PSO technique, described as follows:  

Initially, a random population and corresponding initial velocities are generated  
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in which np is the population size and 
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where pi is the particle coordinate in the search space (a material parameter), vi is the corre-
sponding velocity component, and n is the total number of material parameters. The method 
establishes subsequent computation of new velocities and locations according to pre-defined 
rules and operators. The most widely used PSO operators define the new particle velocity, 
v(k+1), and location, p(k+1), as 
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where the superscript (k) indicates time step, pib and pgb are the individual and global best 
locations, respectively, w is the inertia parameter, and U(0,ϕ1) and U(0,ϕ2)  represent vectors 
of random numbers defined in the interval [0,ϕ1] and [0,ϕ2], where ϕ1 and ϕ2 are the cognitive 
and social parameters, respectively. The operation 〈 ⋅ 〉 ⊗ 〈 ⋅ 〉 indicates a component-wise 
multiplication.  

In addition to Equations (5), velocity and boundary control are required in order to avoid 
excessive particle dispersion and boundary violation. In the present work, velocity compo-
nents are restricted to a fraction of ( pi

sup – pi
inf ) for each parameter, so that  
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is the maximum velocity component, where |vi
(k+1)| is the absolute value of the velocity com-

ponent, and wi ∈ [0 , 0.5] is the velocity restriction parameter. Noticeably, there are other ve-
locity control schemes, amongst which Clerc and Kennedy’s [17] constriction parameter is 
the most referred. However, this strategy was not sufficient to waive using boundary control 
in the present identification problem. 

The random character of the velocity operators allied to an eventual proximity of a parti-
cle to the search space boundary may cause an individual to violate the pre-defined lower or 
upper bounds, pi

sup and pi
inf. The present scheme enforces a boundary control borrowed from 

GA, which imposes component-wise limits, i.e., an individual component, pi , is reset at the 
boundary,  
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2.2. Convergence and accuracy measures 

Convergence and accuracy measures in heuristic algorithms have prompted a healthy 
discussion in recent years. Gradient-based optimization schemes can naturally use the norm of 



 
 

the gradient of the objective function to evaluate convergence. However, GA and PSO meth-
ods do not demand computation of the gradient and, therefore, require alternative conver-
gence assessment (or simply stopping criteria). In general, the (a) total number of generations, 
kmax, (b) the difference between the best and worst individuals or else (c) the difference be-
tween the best fitness of consecutive generations have been largely used in conjunction with 
Genetic Algorithms. Similarly, a normalised fitness convergence index, φg , computed using 
the worst and best particles can also be defined as 
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The characteristics of PSO algorithms make possible to define stopping / convergence 
criteria based upon dispersion of particles or corresponding velocities. As the optimization 
process evolves, particles tend to cluster together, reducing velocity and dispersion, so that  
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where | 〈 ⋅ 〉 |  indicates the Euclidean norm and psb
(k) is the best particle of time step (k). The 

dispersion index, φd, represents the relative mean distance between particles and the best indi-
vidual of the step k. Convergence in GA and PSO schemes can also be measured based on a 
fraction of the total population, ns, defined in order to exclude non-physical individuals from 
computation of convergence indices (although defined within predefined limits, some combi-
nation of parameters may render unrealistic individuals or particles, hampering convergence 
of the direct elastic-plastic problem, especially in early optimization stages). 

An alternative convergence indicator can be expressed in terms of the mean equivalent 
number of bits, e

bn , of the algorithm, which measures the average resolution in each time step 
or generation, k. Although the present PSO implementation does not use a binary approach, 

e
bn has proved to be a good quality indicator of the final parameters. In GA algorithms, the 

relation of the resolution, ∆pi, upper and lower limits of a parameter, pi
sup and pi

inf, and num-
ber of bits, nb, is well established [18]. Similarly, a mean equivalent number of bits can be 
computed in each step/generation using the average resolution of parameters, e

ip∆ , as 
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in which ni
e is the equivalent number of bits of a parameter, and pi

max and pi
min are, respec-

tively, the maximum and minimum values of each parameter in a given generation k . As the 
optimization evolves, GA individuals group closer to the minimum, progressively narrowing 
pi

max and pi
min. The mean equivalent number of bits accounts for such narrowing effect and 



 
 

represents the effective resolution of the algorithm at certain stage of the identification proce-
dure. Early in the process, the population presents large dispersion, reflected also in large val-
ues of e

ip∆  and small equivalent number of bits. In later generations, e
bn  approaches the theo-

retical resolution, i.e. b
e
b nn → . Therefore, such assessment makes possible to objectively 

determine how close the algorithm is able to achieve the theoretical number of bits, i.e. it 
gives an alternative indication of the rate of convergence and quality of parameters. In addi-
tion, the mean equivalent number of bits can also be used to compare GA/PSO techniques.    

3. NUMERICAL EXAMPLES 

The present work addresses the classical von Mises material in an attempt to gain fur-
ther insights on this class of identification problems and to establish eventual advantages or 
disadvantages of the PSO algorithm when compared to GA. This work emphasises some as-
pects of convergence assessment and presents comparative results against GA using the ten-
sile test data presented by Ponthot and Kleinermann [19], corresponding to a special steel 
used in piping manufacture for the nuclear industry (Steel A-533, Grade B, Class 1). The 
gauge length and initial radius of the specimen are r = 6.413 mm and 34.532 0 =× l 2 mm. 
The Finite Element mesh assumes revolution symmetry and contains 400 elements and 451 
nodes with refinement at the necking region (similar to reference [19]). Modified Voce’s [20] 
yield stress curve is also used in the present simulations, 

 ( ) ( )[ ]ppY δεσσζεσσ −−−++= ∞ exp100 , (11) 

where σ∞, σo, ζ and δ are the parameters to be determined. The Young modulus and Poisson’s 
ratio are assumed E = 206.9 GPa and ν = 0.29, respectively.  
 

Table 1.  GA / PSO lower and upper limits, and BFGS initial estimate and final parameters. 

 Parameters  

 σ0 [MPa] σ ∞ [MPa] ζ [MPa] δ g0(p) 

Lower limit, pi
inf  200 300 100 10 0.53981608642 x 100 

Upper limit, pi
sup 800 1000 700 50 0.55331814228 x 100 

Initial 500 700 400 30 0.88655939242 x 10-1 
BFGS 

Final 471.2533 678.1928 218.1305 15.52408 0.88181306615 x 10-2 

 
The present test case was also solved using the BFGS gradient-based method [21] in 

order to obtain a reference solution. This strategy provides verification grounds for the PSO 
and GA methods, making possible to determine the final fitness and inelastic parameters with 
verifiable accuracy ( =conv

BFGSφ |∇g0(p
(k))| / |∇g0(p

(0))| < 1 x 10–5 ). It is worthy to highlight that 
the BFGS method was able to solve successfully the proposed inverse problem provided the 
initial parameter estimates fall within a given envelope. This behaviour is typical of gradient-
based optimization procedures which require initial estimates sufficiently close to the final 
parameters. Table 1 presents the PSO / GA upper and lower limits and the initial estimates for 



 
 

the BFGS scheme – noticeably, the BFGS method fails to converge when using the upper / 
lower limits as initial estimates. Figure 1 illustrates the load – elongation curve computed us-
ing the material parameters presented in Table 1. 

Figure 1. Experimental and numerical load curves for the tensile test. 
 
The PSO technique requires definition of the inertia, w, cognitive, 1ϕ , and social pa-

rameters, 2ϕ . In a previous study, the authors investigated the influence of the PSO control 
parameters in the identification process, concluding that excessively smaller values lead to 
sub-optimal solutions and larger values cause swarm instability and convergence failure [8]. 
The recommended control parameters were ]8.0,4.0[∈w  and ]8.1,7.0[21 ∈= ϕϕ . In the 
present study the weight parameters are assumed 5.0=w  and 0.121 == ϕϕ . Moreover, con-
vergence of the PSO method is assumed for %80=sn  when the fitness convergence and par-
ticle dispersion indices reach  φg

conv = 10–10 and  φd
conv = 10–6, respectively . 

3.1. Influence of parameters on the identification process 

The success of an identification process is reflected by determination of accurate pa-
rameters combined with smaller number of fitness computation. Although no sensitivity 
analysis is required by PSO schemes, a single or combination of material parameters can sub-
stantially affect the identification process. This example illustrates this issue by determining 
two out of a 4 parameter set (the parameters obtained using the BFGS method are used to 
complete the set), as indicated in Table 2, using a population size 10=pn . The simulations 
show that all cases, except Case (3), present very similar convergence behaviour, with accu-
racy for parameters and fitness in the 7th and 10th significant digits, respectively, when com-
pared against the BFGS solution.  
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Table 2.  Influence of parameters: population 10=pn . 

 Parameter  

Case σ0 [MPa] σ ∞ [MPa] ζ [MPa] δ g0(p) 

BFGS 471.2533 678.1928 218.1305 15.52408 0.88181306615 x 10-2 

Case (1) 471.2533 678.1927 BFGS BFGS 0.88181306654 x 10-2 

Case (2) 471.2533 BFGS 218.1305 BFGS 0.88181306616 x 10-2 

Case (3) 471.2521 BFGS BFGS 15.52418 0.88181306624 x 10-2 

Case (4) BFGS 678.1927 BFGS 15.52407 0.88181306629 x 10-2 

Case (5) BFGS BFGS 218.1306 15.52409 0.88181306664 x 10-2 

Case (6) BFGS 678.1929 218.1303 BFGS 0.88181306622 x 10-2 

Figure 2. Convergence process evaluated using the normalised fitness index, φg. 
 

Figures 2 and 3 present the convergence process based on the normalised fitness and 
dispersion indices. The results show that the combined effect of parameters σo and δ               
– Case (3) – yields higher influence on the identification evolution, requiring larger popula-
tion sizes to guarantee higher accuracy (to match the other cases, as illustrated in Table 2). 
Such behaviour indicates that, in this case, the population size np = 10 represents the accuracy 
threshold, under which one would obtain convergence to sub-optimal parameters. It is also 
interesting to note that the higher influence of the parameters σo and δ  are not due to the dif-
ference in the order of magnitude of parameters (σo ∼ 108 and δ ∼ 101), since the combination 
[σ∞  δ ]T and [ζ  δ ]T  presents similar magnitude differences but the expected convergence 
behaviour. Therefore, the higher influence of the combination [σo  δ ]T can be credited to ef-
fect of such parameters on the physics of the plastic deformation process.  
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Figure 3. Convergence process evaluated using the dispersion index, φd. 
 

Figure 4. Effect of the population size to obtaining [σo  δ ]T. 
 

The aforementioned influence of the population size is illustrated in Figure 4 and Ta-
ble 3, which show, respectively, the convergence process and final parameters for Case (3). 
As the population size increases, evolution of the optimization process approximates the ex-
pected behaviour (see Figure 4). However, it is important to emphasise that in all cases con-
vergence was achieved with acceptable accuracy.  
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Table 3. Influence of the population size to identification of [σo  δ ]T. 

 Parameter  

Population σ0 [MPa] σ ∞ [MPa] ζ [MPa] δ g0(p) 

BFGS 471.2533 678.1928 218.1305 15.52408 0.88181306615 x 10-2 

10=pn  471.2521 BFGS BFGS 15.52418 0.88181306624 x 10-2 

20=pn  471.2546 BFGS BFGS 15.52398 0.88181306642 x 10-2 

30=pn  471.2530 BFGS BFGS 15.52410 0.88181306614 x 10-2 

40=pn  471.2531 BFGS BFGS 15.52411 0.88181306614 x 10-2 

3.2. Influence of number of parameters 

The previous results indicate that the nature of a single material parameter affects the 
convergence process, thereby suggesting an ensuing significant influence of number of pa-
rameters upon the optimization procedure. Therefore, this example presents the convergence 
evolution of the PSO method when identifying parameters (i) [σo ], (ii) [σo δ ]T,                   
(iii) [σo  ζ  δ ]T and (iv) [σo  σ∞  ζ  δ ]T. In cases (ii)–(iii), parameters σo and δ  were selected 
owing to their higher influence on the optimization procedure. The remaining parameters in 
cases (i)–(iii) are those computed by the BFGS method.  

 
The behavioural dynamics of particle interactions becomes evident in this example. As 

the dimension of the optimization hyperspace increases, the tendency of particles to converge 
towards a sub-optimal solution also increases. This effect can be counter-balanced by larger 
population sizes, which cause the global exploration capacity of the algorithm to grow. The 
obvious drawback is the increase of the computational cost (larger number of fitness evalua-
tions), as highlighted in Figure 5. It is interesting to note that, when determining all 4 parame-
ters, 160 particles is able to avoid sub-optimal solutions, achieving convergence after almost 
30,000 fitness computation. 

 
Table 4.  Final converged parameters for Cases (i) – (iv). 

  Parameter  

Case σ0 [MPa] σ ∞ [MPa] ζ [MPa] δ g0(p) 

BFGS 471.2533 678.1928 218.1305 15.52408 0.88181306615 x 10-2 

(i) 1 Parameter np = 5 471.2533 BFGS BFGS BFGS 0.88181306615 x 10-2 

(ii) 2 Parameters np = 20 471.2546 BFGS BFGS 15.52398 0.88181306642 x 10-2 

(iii) 3 Parameters np = 40 471.2534 BFGS 218.1305 15.52407 0.88181306615 x 10-2 

(iv) 4 Parameters np = 160 471.2355 678.1868 218.1488 15.52630 0.88181304186 x 10-2 

 
The population sizes, np, indicated in Table 4 for cases (i)-(iii) guarantee convergence 

to the optimal solutions with very good accuracy (differences in the 6th significant digit of the 
parameters). The solution for 4 parameters presents the largest differences, however, one 



 
 

should notice that the PSO fitness in case (iv) is slightly smaller than the BFGS solution (i.e. 
PSO solution is actually slightly more accurate than BFGS by providing a better minimum). 

 

Figure 5. Computational cost: influence of the number of parameters. 
 

Table 5.  Mean equivalent number of bits, e
bn , at convergence. 

  Parameter Mean 

Case en
0σ  en

∞σ  enζ  enδ  
e

bn  

(i) 1 Parameter np = 5 23.120 – – – 23.120 

(ii) 2 Parameters np = 20 24.374 – – 23.505 23.939 

(iii) 3 Parameters np = 40 24.196 – 24.189 23.388 23.924 

(iv) 4 Parameters np = 160 23.771 25.170 24.413 24.016 24.342 

 
An alternative accuracy measure can be established by the mean equivalent number of 

bits, e
bn , which represents a parametric mean difference of parameters with respect to the 

their lower and upper limits. Theoretically, if the average difference of an individual coordi-
nate of the hyperspace, ip∆ , approaches zero (i.e., the individual parameter presents the same 
value for all particles), the corresponding equivalent number of bits ∞→e

in . The conver-
gence criterion based on the normalised fitness used in this test case, φg

conv = 10–9, corre-
sponds to a mean equivalent number of bits 23≈e

bn . Table 5 shows the equivalent number of 
bits for each parameter at convergence, {en

0σ , en
∞σ , enζ , enδ }, and the corresponding mean 

value. It is remarkable that convergence takes place with similar accuracy in those cases 
which n > 2, especially when the order of magnitude is as different as 108 and 101 for parame-
ters σo and δ , respectively. 
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3.3. PSO / GA comparative assessment 

Genetic Algorithms are a subset of so-called evolutionary algorithms, in which each 
potential solution (individual) is represented by a vector of design variables (chromosome) 
and each design variable (gene) is described by an information encoding system (e.g. binary 
encoding). The classical literature [22] indicates that GA are potentially able to avoid local 
minima, leading to trustworthy results in non-convex problems. However, their well-known 
low convergence rate is a clear disadvantage. Despite widespread use in general optimization 
problems, application of GA to identification of inelastic parameters is relatively recent, as 
shows references [3-5]. More importantly, most works associate GA with other optimization 
strategies (e.g. gradient-based schemes) aiming at reducing the search space and providing 
initial estimates close to optimum. The present work adopts the GA method described in ref-
erence [8] with the following control definitions: 25 bits, 5 % mutation rate, one-point cross-
over with a probability of  80 % and full elitism. The results are summarised in Figure 6 and 
Table 6, which present GA / PSO fitness evolution and corresponding parameters after 400 
generations. The GA / PSO population size used in this example is np = 160.  

Figure 6. Fitness evolution for GA and PSO method for a population size np = 160. 
 

Figure 6 shows that GA provides a higher convergence rate in the first few genera-
tions. However, as the optimization progresses, convergence rate decreases substantially so 
that, even for 400 generations, material parameters still present relevant differences with those 
determined by the BFGS and PSO techniques, as indicated in Table 6. Interestingly, the mean 
equivalent number of bits at this stage is 7≈

GAe
bn , significantly smaller than its PSO coun-

terpart, 23≈
PSOe

bn , at convergence. The authors performed several test runs for the present 
example, but the slow convergence has rendered the GA scheme inappropriate to be used with 
the objective of finding the final parameters with higher accuracy. In spite of such differences, 
the corresponding GA load – elongation curve shows good approximation to the experimental 
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data, as exhibited in Figure 7. The PSO final curve and differences, FEM
q

Exp
q RR −=ϕ , are also 

indicated in Figure 7. 
 

Table 6. Parameters and fitness for GA and PSO methods at step / generation 400. 

 Parameter  

Method σ0 [MPa] σ ∞ [MPa] ζ [MPa] δ g0(p) 

BFGS 471.2533 678.1928 218.1305 15.52408 0.88181306615 x 10-2 

PSO 471.2359 678.1867 218.1493 15.52628 0.88181304177 x 10-2 

GA 427.7568 665.9593 261.7742 20.84847 0.98507858615 x 10-2 

 

Figure 7. Load – elongation curve: final PSO and GA solutions and respective, 
FEM
q

Exp
q RR −=ϕ , differences. 

4. CONCLUDING REMARKS 

In recent years, identification of material parameters using optimization techniques has 
been suggested as a viable complement to experimental measurements. The literature shows 
that most parameter identification strategies use either gradient-based optimization ap-
proaches (e.g. the BFGS method) or heuristic techniques (e.g. Genetic Algorithms). Despite 
the reported success in application of Particle Swarm Optimization to several engineering 
problems, very few works approach identification of material parameters using this technique. 
This study addresses application of the PSO scheme to this class of problems. Assessment of 
the PSO method uses the experimental tensile test data provided by Ponthot and Kleinermann 
[19], from which four hardening parameters of the modified Voce’s [20] yield stress curve is 
determined. A reference BFGS solution for the test case is also presented. The simulations 
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show that the final material parameters determined by the PSO technique are very accurate 
when compared against the BFGS method. The study has also determined that identification 
of larger number of parameter requires larger populations to avoid sub-optimal solutions. In 
the present case, a population of 160 particles was able to determine the optimum material 
parameters. A brief comparison of GA and PSO schemes indicates that, despite good ap-
proximation of the load – elongation curve, the former was not capable to converge with the 
same level of accuracy of the PSO method. 

 
Acknowledgements 
The first author acknowledges the research grant provided by CNPq (National Council for 
Scientific and Technological Development – Project 301991/2009-0). The authors also thank 
J. Stahlschmidt for his role in implementing the BFGS method. 

5. REFERENCES 

[1] Muñoz-Rojas, P.A., da Cunda, L.A.B.,  Cardoso, E.L.,  Vaz Jr., M. and Creus, G.J., “A 
mixed optimization approach for parameter identification applied to the Gurson damage 
model”, in Vaz Jr., M., de Souza Neto, E.A. and Muñoz-Rojas, P.A. (Eds.), Advanced 
Computational Materials Modeling: from Classical to Multi-scale Techniques, Wiley-
VCH, pp.165-204, 2011. 

[2] Abendroth, M., Kuna, M., “Identification of ductile damage and fracture parameters 
from the small punch test using neural networks”, Engineering Fracture Mechanics, 73, 
710-725, 2006. 

[3] Aguir, H., Belhadjsalah, H., Hambli, R., “Parameter identification of an elasto-plastic 
behaviour using artificial neural networks-genetic algorithm method”, Materials and 
Design, 32, 48-53, 2011. 

[4] Chaparro, B.M., Thuillier, S., Menezes, L.F., Manach, P.Y., Fernandes, J.V., “Material 
parameters identification: gradient-based, genetic and hybrid optimization algorithms”, 
Computational Materials Science, 44, 339-346, 2008. 

[5] Muñoz-Rojas, P.A., Cardoso, E.L., Vaz Jr., M., “Parameter identification of damage 
models using genetic algorithms”, Experimental Mechanics, 50, 627-634, 2010. 

[6] Eberhart, R.C., Kennedy, J., “A new optimizer using particle swarm theory”, in: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human Science, 
IEEE Press, 39-43, 1995. 

[7] Kennedy, J., Eberhart, R.C., “Particle Swarm Optimization”, in: Proceedings of the 
IEEE International Conference on Neural Networks, IEEE Press, 1942-1948, 1995. 

[8] Vaz Jr., M., Cardoso E.L., Stahlschmidt, J., “Particle Swarm Optimization and identifi-
cation of inelastic material parameters”, Submitted for publication, 2011. 

[9] de Souza Neto, E.A., Perić, D., Owen, D.R.J., Computational Methods for Plasticity. 
Theory and Applications, Wiley, 2008. 

[10] Poli, R., Kennedy, J., Blackwell, T., “Particle swarm optimization - An overview”, 
Swarm Intelligence, 1, 33-57, 2007. 

[11] Blum, C., Li, X., “Swarm intelligence in optimization”, in: Blum, C. and Merkle, D. 
(Eds.), Swarm Intelligence - Introduction and Applications, Springer, 43-85, 2008. 

[12] Sedighizadeh, D., Masehian, E., “Particle swarm optimization methods, taxonomy and 



 
 

applications”, International Journal of Computer Theory and Engineering, 1, 1793-
8201, 2009. 

[13] Ardakani, M.D., Khodadad, M., “Identification of thermal conductivity and the shape of 
an inclusion using the boundary elements method and the particle swarm optimization 
algorithm”, Inverse Problems in Science and Engineering, 17, 855-870, 2009. 

[14] Cortes, O., Urquiza, G., Hernandez, J.A., “Inverse heat transfer using Levenberg-
Marquardt and particle swarm optimization methods for heat source estimation”, Ap-
plied Mechanics and Materials, 15, 35-40, 2009. 

[15] Tian, N., Sun, J., Xu, W, Lai, C.-H., “Quantum-behaved particle swarm optimization 
with ring topology and its application in estimating temperature-dependent thermal 
conductivity”, Numerical Heat Transfer, Part B, 60, 73-95, 2011. 

[16] Schutte, J.F., Groenwold, A.A., “A study of global optimization using particle swarms”, 
Journal of Global Optimization, 31, 93-108, 2005. 

[17] Clerc, M., Kennedy, J., “The particle swarm-explosion, stability, and convergence in a 
multidimensional complex space”, IEEE Transaction on Evolutionary Computation, 6, 
58-73, 2002. 

[18] Rao, S.S., Engineering Optimization. Theory and Practice, fourth ed., Wiley, 2009. 
[19] Ponthot, J.-P., Kleinermann, J.-P., “A cascade optimization methodology for automatic 

parameter identification and shape/process optimization in metal forming simulation”, 
Computer Methods in Applied Mechanics and Engineering, 195, 5472-5508, 2006. 

[20] Voce, E., “The relationship between stress and strain for homogeneous deformation”, 
Journal of Institute of Metals, 74, 537-562, 1948. 

[21] Arora, J.S., Introduction to Optimum Design, second ed., Elsevier, 2004. 
[22] Goldberg, D., Sastry, K., Genetic Algorithms: The Design of Innovation, Springer, 

2011. 
 

 


