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Abstract. Waves are represented through the superposition of the four fundamental modes of 

the plane areolar strain  theory. This theory was presented at references [10] to [13], with 

application to finite rotations, orthotropic materials and finite element models, but a summary 

review is here presented in order to make this paper self contained and also to disclose the 

areolar strain concept, which although divulged for two decades still faces with poor ac-

ceptance by the scientific community.  It is shown that the areolar strain approach does not 

distinguish finite from infinitesimal strain due to the fact that in addition to the traditional 

“forward” strain it incorporates the “sidelong” strain into its imaginary part. Instead of 

comparing the change in distance between two contiguous points, the areolar strains presents 

the complete state of finite strains on an areola that surrounds a given point. Only first deriv-

atives are used, as expected due to the physical meaning of strain and having in mind that the 

relative displacement between two arbitrary points of the plane should be obtained through a 

single line integration of the strain, along any path of integration joining these points. The 

areolar strain fulfils these conditions. Now, an approach for tackling with equivoluminal 

waves of  finite rotation is presented, assuming that the gain of volume due the mathematical 

finite rotation is neutralized by the mathematical shrinkages due to the complex shear strain. 
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1. INTRODUCTION 

The development of the theory of two-dimensional elasticity hereof used is grounded on 

the concept of areolar strain. This concept was first presented by the writer [11,12,13]. The 

equilibrium equations for finite rotations were presented at Ref. [10]. A summary review of 

the areolar strain concept is provided in order to make this article self contained. In this ap-

proach, the strain is obtained by the division of two complex-valued quantities associated with 

2D vectors. The areolar strain concept allows visualizing the state of strain on an areola that 

surrounds a given point. The real part of the areolar strain is a radial strain while the imagi-

nary part is either a circumferential strain or a rotation, (see Fig.1). Under this concept there is 

no distinction between infinitesimal and finite strain, except for rotations and care should be 

taken to calculate the change of volume. The fundamentals of the method of complex variable 

applied to solution of elastic problems can be found on Refs. [4,7,9]. 
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2. THE AREOLAR STRAIN CONCEPT 

 Let a region in the plane of the variables z x i y   and  z x i y   be mapped in a one-

to-one manner onto the plane of the displacements ( , )u x y  and ( , )v x y  by means of the trans-

formation ( , ) ( , ) ( , )w z z u x y iv x y  . The areolar strain is defined as the gradient of the vec-

tor field ( , )w z z , through the Riemann derivative [14]: 
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The last expression presupposes that z  tends to 0z , maintaining the direction . Equation 
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 Equations (5) and (6) are the Kolosov-Wirtinger derivatives [14]. The areolar strain can 

hence be written in the form 
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When viewed in the polar form, see Fig. 1, the real part of the areolar strain represents a 

radial strain and the imaginary part represents either, a circumferential strain or a rotation. In 

other words, the linear part represents the forward strain, which correspond to the classical linear 

strain and the imaginary part represents a sidelong strain, which in the traditional approach is 

represented by the second order derivatives. The second complex term is the complex shear 

strain.   

 



 

 

 

Figure 1. The four fundamental modes of the plane strain. 

 

  The components of the areolar strain are orthogonal as the quadratic form contained in the 

integrand of the work expression 1/ 2 ij i jU C dV   , can be converted into its canonic form 
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2.1. Compatibility Equations 

       If 0z and z  are two points pertaining to the complex plane, their relative displacement is 

given by 
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       Since 0w w  is independent of the path of integration C, 
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 is a total differential. Consequentially, the displacement field must comply with the condition 

of continuity 
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Separating the real and imaginary parts of this equation, the following compatibility 

equations are obtained: 
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Saint-Venant’s compatibility equation is obtained from these equations through elimina-

tion of the mode  , by applying a cross-differentiation followed by a subtraction. Saint-

Venant’s compatibility equation will then be satisfied for any field of rotations  , which may 

thus violate the compatibility conditions established by Eqs. (12) and (13).  Saint-Venant’s 

mistake was to assume   as a rigid-body rotation instead of a field of rotations. 

2.2 Equilibrium Equations 

For isotropic material, 11 12
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the work expression given by Eq. (8)  reduces  to  
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where   and   are Lame’s elastic material constants for the plane strain state. The Euler 

equations for this functional are 
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Taking into account that  
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where the symbol 2  stands for the Laplacian operator,  Lamé’s homogeneous equilibrium 

equations can be presented in the following complex form: 
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2.3 Boundary Conditions 

Applying Green’s formula in the complex form [2],  
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and the traction vector on boundary C results  
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where  points towards the tangent to the contour curve C. Observe that if n is the unit out-

ward vector, normal to the element of arc | |ds dz , then 1nds idz dz
i

   . The real part of 

T is the normal stress while the imaginary part of T is the shear stress pointing at a direction 

rotated 
2

  counterclockwise with respect to the normal stress. The real part of T is hence 

normal to the curve C. The compatibility equations (12) and (13) can be rewritten in the fol-

lowing complex form 
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3. PLANE WAVES IN INFINITE MEDIA 

 

         Plane waves in homogeneous infinite media are shortly commented, using the ap-

proach of superimposing the fundamental strain modes shown in Fig 1.The addition of the 

inertial term to Lame’s Eq. (16), gives  
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Substitution of the second term of the equilibrium equation above by the second term 

of the compatibility Eq. (19), gives the equilibrium equation in the form 

2

2

( )
( 2 )2 4 0

u i v
i

z z t

 
   

   
   

   .

           (21) 

Derivative in z results 
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tain the irrotational and the equivoluminal wave equations 
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As the two other fundamental modes   
and   must vibrate together with either 

mode   or mode  , in order to comply with the compatibility equation, similar wave 



 

 

equations governs those modes. It is easy to prove that by taking from the compatibility 

equation 
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And after grafting 0  for the irrotational wave case, the substitution of 
z
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the equilibrium equation gives  
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 Taking the derivative in z   , as 
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Now starting with the condition 0  for the equivoluminal wave and following the 

same procedures, we get 
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On a plane wave displacing in the X direction, the strain in the Y direction must be con-

stant in order to avoid wave spreading in this direction. Looking at Fig. 1, we see that the am-

plitude of vibration of mode must be neutralized by the amplitude of mode  . Grafting 

2
   into Eq. (2) and equating to zero, will result 
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This would be a Beltrami’s equation, if the Beltrami coefficient could be equal to 1. For 
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, Eq. (7) will give    and 2  . Actually these equations simply mean that 
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first condition gives zero radial strain in the Y direction while the second condition gives zero 

circumferential strain in that same direction as it implies that the amplitude / 2  of the rota-

tion with respect to the X-axis, resulting from the   shear mode, is neutralized by the ampli-

tude of the rotation  . Observe that although the strain in the Y direction is null, the dis-

placement is not due to rotation  . As a result, the strain amplitudes in the radial Y direction 

and circumferential Y direction remain zero while the strain amplitude in the radial X direc-



 

 

tion will be  
2

1
2

1  and the strain amplitude in the circumferential X direction reach-
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irrotational wave equation while the condition 2   gives rise to the equivoluminal wave 
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For an irrotational wave, as 0 , results 
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and for an equivoluminal wave, as 0 , 
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Equations (33) and (34) are the in-plane waveguide equations for plane waves. 

4. FINITE ROTATIONS 

The gain of area during a plane deformation is given by 
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which is obtained from the determinant 
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The symbol J standsfor the Jacobian of the mapping ( , ) ( , ) ( , )w z z u x y iv x y  . Observ-

ing fig. 1, it can be seen that a finite “rotation”   has a significant influence into the change 

of area of a plane elastic body. In some bending and buckling problems, it is admitted to dis-

regard squared strain terms,  except 2 , reducing dA to 
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A rigid body rotation in this case can be approximated by the mathematical condition  
2 0   .  However this is not a physical description of the phenomena involved but just a 

consequence of the use of Cartesian coordinates.  Then, for a point to describe a circular path 

of arc 1tan     it is required that the expansion produced by the mode   be neutralized 

by the shrinkage 2   . For the condition given by eqn. (37), the work expression in the 

undeformed  reference frame, assumes the form 
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The factor ie  is applied to the second term because the ellipses   and  rotate an angle 

 . The first term is axis-symmetric and therefore is not affected by the rotation. The Euler 

equations for the functional given by Eq. (38), are 
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This system of equations can be casted into the complex form 
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Applying Green’s formula in the complex form, as given by Eq. (17), the traction vector 

on a closed curve C, in the undeformed reference frame, results 
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The traction will be represented in complex form T i   , with the imaginary part al-

ways rotated counterclockwise / 2  with respect to the real part. 

 
Fig.2. Traction vectors at the faces of an infinitesimal element. 

 

Grafting 
2
   for the traction given by Eq. (42), at an undeformed  X=constant plane, 

results 
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Now grafting   for the traction at a Y=constant plane, 
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The equilibrium equations are then, (see Fig. 2): 
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Letting   be finite but small and then making the following substitutions: 
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the equilibrium equations in terms of stresses, in the undeformed reference frame, become 
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These are exactly equilibrium equations (II.49) given by Novozhilov, [8]. The homoge-

neous equilibrium equations (45) can be written in the form 
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Therefore, if body forces and singularities are not present, the Cauchy-Riemann equation 

for the tensor field T is just a condition of equilibrium. Observe that for these conditions, 

Morera’s theorem also holds true. 

 

5. CANONICAL FORM OF EQUILIBRIUM EQUATIONS 

Substitution of the compatibility equation (19) reduces the equilibrium equation to the 

following Cauchy-Riemann equation [6],  
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writer succeeded in getting the equilibrium equation in another form that proved to be easily 

solvable. The elimination of the derivatives of   between the compatibility equation (19) and 

Eq. (51) gives 
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Now, equilibrium equations (15) give 
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Combination of  Eqs. (52) and (53) yields: 
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, 

or 
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 ,                                (54) 

where
3 


 





, for plane strain and 

3 


 
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
, for plane stress,  observing 

that
2
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


 
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

. 

5.1 General solution 

Differentiation of Eq. (11) in z results 
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Since 
2

4
z z



 
 is the Laplacian operator and   is a harmonic function, this equation reduces to 
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2
2 ( ) 0i

z
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

 


                          (56) 

and after substitution of Eq. (6),  to 
2

2 ( ) 0
w

z z z

 


  
.  (57) 

Integration in z gives 
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w
z

z z





 

 
 ,    (58) 

where ''( )z  is the conjugate of an analytic function. 

Integrating Eq. (58) in z, results 
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i z z z
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Equations (54) and  (58) furnish 
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2
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w
z

z


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



,  (60) 

which after integration in z, results 

'( ) '( )
2

w
z z

z


 




 


.    (61) 

Differentiation of this equation with respect to z yields 
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z
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.  (62) 

Comparison with Eq. (31), results 
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 and hence 

1
'( ) '( )

2
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
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where c is a complex constant. Substitution into Eq. (61) yields  

0 0

1 1 1
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
 .    (65) 

Using Eqs. (65) and (59), the integration of the total differential, Eq. (10), gives Kolosov-

Muskhelishvili’s general solution, [4,7,9]: 

0 0 0

1 1
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2 2
w w i z z z z z    


      .        (66) 

This linear integral can be easily verified through its derivatives in z  and z . The addi-

tion of Eq. (65) with its conjugate gives 
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The subtraction of Eq. (65) from its conjugate gives 
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From Eqs. (67) and (65), the following Kolosov´s formulas, for stresses are obtained:  
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xyi z z z
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  
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     .                (70) 

The traction T i   , see Fig.2, in terms of analytic functions, results 
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The integration of the traction over any boundary C, enclosing a domain, gives the re-

sultant of all forces acting in that domain 
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or 

( ) '( ) ( )X iY t t t t C        ,                         (73) 

where C is a complex constant. 

6. FINITE ROTATION WAVES IN INCOMPRESSIBLE MEDIA 

Let us look for an exact equation of a plane equivoluminal wave.  Accordingly with Eq. 

(35) we must have 

 
2

2 2 21
( ) 0

4 4


              (74) 

with 0  . Hence besides the compatibility equations (12) and (13), the following condition 

must be accomplished:  

2 2 21
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4
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and in addition, the equilibrium equation (15), in the undeformed reference frame, reduces to  
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From 0  and Eq. (75) we get  
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Substitution of these relations into Eq. (76), results in the following uncoupled nonlinear 

partial differential equations: 
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The solution of these equations will probably require procedures of computational 

analysis. 
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