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Abstract. This study performed the sonic boom analysis considering atmospheric uncertain-
ties at low computational costs. Non-intrusive polynomial chaos (NIPC) method was applied
to the sonic boom analysis method solving an augmented Burgers equation. NIPC can approx-
imate statistical behavior under uncertainties from a few samples. The augmented Burgers
equation can consider the rise time of sonic boom unlike the waveform parameter method,
which is commonly used for sonic boom analysis. Compared to Monte Carlo (MC) method,
NIPC offered equivalent accuracy for the present sonic boom analysis even with much smaller
sample size. It is confirmed that this method is adequate for practical use. In addition, the
present simulation results revealed that temperature uncertainty has an impact on the local
rise in sonic boom pressure, and humidity uncertainty has an impact on the entire sonic boom
waveform, while wind uncertainty has almost no impact. This is because temperature uncer-
tainty affects thermal viscosity, and humidity uncertainty affects relaxation, while the present
study assumed that wind direction was uniform within each atmospheric layer.
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1. INTRODUCTION

In the design of low-boom supersonic aircraft, the waveform parameter method [5] is
commonly used to estimate the strength of sonic boom. However this method cannot consider
the rise time of sonic boom, which may psychologically impact on human beings. Instead,
the sonic boom analysis solving an augmented Burgers equation [1] is proposed. Unlike the
waveform parameter method, this approach can consider the rise time of sonic boom because
the augmented Burgers equation accounts for thermal viscosity and relaxation effects.

Furthermore, in order to evaluate sonic boom characteristics under more realistic con-
ditions, atmospheric uncertainties should also be considered. In general, atmospheric tem-
perature, wind velocity, wind direction, etc. are always fluctuating in a real-world situation
where aircrafts are operated. Thus, if a low-boom aircraft is designed at an ideal flight condi-
tion without any uncertainties, its performance in actual flights may be lower than expected.
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Therefore, it is necessary to make the design more robust in an uncertain environment based
on the analysis considering possible uncertainties, which is called uncertainty quantification
(UQ). A simple approach for UQ is to sample performance at a lot of conditions with dif-
ferent environments, and then evaluate the statistics (mean value and standard deviation) of
performance. Monte Carlo (MC) method [2] is a most typical approach to do so; however, the
computational time is too enormous to be allowed for practical use.

In this study, non-intrusive polynomial chaos (NIPC) method [3] was applied to the
sonic boom propagation analysis solving an augmented Burgers equation for efficient evalua-
tion of sonic boom characteristics against atmospheric uncertainties. This paper is organized
as follows: Section 2 introduces the fundamentals of UQ methodologies. Then, Section 3
implements a numerical experiment in a test problem to compare the accuracy of stochas-
tic estimations using MC and NIPC methods. Finally, Section 4 applies these methods to
sonic boom analysis to evaluate the impacts of atmospheric temperature, humidity, and wind
uncertainties on sonic boom signatures.

2. UNCERTAINTY QUANTIFICATION

UQ is the science of quantitative characterization and reduction of uncertainties in
applications. Figure 1 illustrates a comparison of conventional and UQ-coupled simulation
models. A conventional simulation considers the model shown in Fig. 1(a), which outputs a
single value of solution f(x) at fixed values of input parameters x in a deterministic way. On
the other hand, a simulation coupled with UQ considers the model shown in Fig. 1(b), which
assumes that input parameters x are affected by some uncertainties, represented as random
variables ξ, and an output solution f(x) fluctuates under the input uncertainty variables ξ,
i.e., f(x(ξ)) = f(ξ). Using this model in a stochastic manner, UQ helps to provide a solution
in a more realistic environment. The concepts of UQ have been studied and demonstrated in
several problems related to computational fluid dynamics (CFD), such as shock-wave flow,
turbulent flow, and reactive flow (these are well summarized in [7]).

UQ methodologies are categorized into intrusive methods and non-intrusive methods.
Non-intrusive methods only require (multiple) solutions of the original (deterministic) model,
i.e., users do not need to tamper with conventional simulation codes. On the other hand,
intrusive methods require the formulation and solution of a stochastic version of the original
model, i.e., users must be careful in modifying the simulation codes. Therefore, this paper
takes up non-intrusive methods.

Moreover, the non-intrusive methods are categorized into sampling methods and poly-
nomial chaos (PC) method. The details of these methods are described below.

2.1. Sampling methods

Sampling methods, shown in Fig. 2, are the most popular ways to estimate the stochas-
tic features (mean, standard deviation, etc.) of solution straightforward by sampling and in-
tegrating output solutions given at many different points in the space of input uncertainty
variables ξ. MC [2] shown in Fig. 2(a) samples all points randomly, and it requires so many
sample points as to ensure the accuracy and convergency of stochastic estimations.
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Figure 1. Comparison of simulation models.

To reduce computational cost for sampling, Latin hypercube sampling (LHS) [4] shown
in Fig. 2(b) has been proposed. LHS samples a point in each equi-probability partition ran-
domly while it does not allow overlapping partitions to be sampled for all dimensions (so-
called orthogonality condition). Therefore, LHS can comprehend the whole space of ξ even
with a smaller sample size than MC.
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Figure 2. Comparison of sampling methods.



2.2. Polynomial chaos method

PC method [3] approximates the behavior of an output solution f(ξ) against input
uncertainty variables ξ as a superposition of orthogonal polynomials:

f(ξ) =

N∑
i=0

φiΨi(ξ) (1)

where φi and Ψi(ξ) (i = 0, 1, · · · , N) are the coefficient and orthogonal polynomial, which
correspond to deterministic and stochastic components, respectively, for i-th mode. φi are
obtained by sampling f(ξ) at N + 1 points with different ξ and substituting these values into
the system of Eq. 1. The number of samples N + 1 is given as

N + 1 =
(p + d)!

p!d!
(2)

where p is the maximum order of polynomials Ψi(ξ) and d is the number of the dimensions
of input uncertainty variables ξ (also shown in Fig. 3). A choice of polynomial Ψi(ξ) is
determined by a choice of the probability distribution function of input uncertainty variables
ξ, as listed in Table 1.
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Figure 3. Number of samples required in polynomial chaos method.

For f(ξ) represented as Eq. 1, the mean μf and standard deviation σf are calculated
as

E[f(ξ)] = μf = φ0 (3a)

V ar[f(ξ)] = σf
2 =

N∑
i=1

φi
2
〈
Ψi

2
〉

(3b)



Table 1. List of polynomials corresponding to different probability distribution functions of
input uncertainty variables

Distribution ξ Polynomial Ψi(ξ)
Uniform Legendre
Normal Hermite
Gamma Laguerre
Beta Jacobi

where the inner product of orthogonal polynomial is given as

〈ΨiΨj〉 =
〈
Ψi

2
〉
δij

=

∫ ∞

−∞
Ψi(ξ)Ψj(ξ)PDF(ξ)dξ (4)

where PDF(ξ) is the probability distribution function of ξ. μf and σf can be promptly es-
timated by substituting φi into Eqs. 3a and 3b without integrating f(ξ) with respect to ξ.
Therefore, PC method is expected to estimate the stochastic features of solution even with a
smaller sample size than the sampling methods.

3. NUMERICAL EXPERIMENT

To check the accuracy of stochastic estimations using different UQmethodologies, the
present numerical experiment solves the following one-dimensional Burgers equation [6]:

ut + uux = νuxx, x ∈ [−1, 1] (5)

where the initial conditions are given as

u(x, 0) =

{
1 (x ≤ 0)

−1 (x > 0)
(6)

and the boundary conditions are given as

u(−1, t) = 1 + δ (7a)

u(1, t) = −1 (7b)

Now, δ is assumed to contain uncertainty, which is represented as a normally-distributed ran-
dom variable with its mean and standard deviation of 0.05 and 0.025, respectively. Under this
uncertainty, the present experiment estimates the stochastic features of solution x|u=0.

Figure 6 shows the statistical values (mean and standard deviation) of solution (x|u=0)
against uncertainty (δ), which are estimated byMC and NIPC methods with different numbers
of samples. MC statistics almost converge using 10,000 samples. NIPC statistics with more
than 11 samples agree with the MC converged statistics. This result indicates that NIPC can
drastically reduce the number of samples to 1/1,000 while ruining the accuracy of stochastic
estimations.
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Figure 4. Statistical values of solution against uncertainty with different numbers of samples
in numerical example.

4. SONIC BOOM ANALYSIS

The present sonic boom analysis solves the following augmented Burgers equation [1]:

∂p

∂x
=

β

2ρ0c0
3

∂p2

∂t′
− 1
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where p is the sound pressure, x is the ray path distance, t′ = t − ∫ x

0
c0

−1dx is the retarded
time, A is the ray tube area, c0 is the equilibrium small-signal sound velocity, ρ0 is the am-
bient density, β is the coefficient of nonlinearity, and δ is the diffusivity of sound. The first,
second, third, forth, and last terms in the right-hand side of Eq. 8 consider nonlinearity effect,
geometric damping effect, stratification effect (atmospheric conditions change according to
altitude), thermal viscosity effect, and relaxation effect, respectively. Each relaxation process
i is characterized by a relaxation time τi and a small-signal sound velocity increment (Δc)i.

The near-field pressure wave created by the D-SEND#2 model (S3CM: S-cube con-
cept model) produced in the JAXA D-SEND (drop test for simplified evaluation of non-
symmetrically distributed sonic boom) project, shown in Fig. 5, is used to analyze sonic boom
propagation. The flight altitude, Mach number, and flight path angle were set to be 8000 [m],
1.3, and -50 [deg], respectively, and the near-field pressure wave was obtained at the loca-
tion twice length of the model away from the model axis. The present analysis considers the
uncertainties included in atmospheric temperature, wind (speed and direction), and humidity
in August from 2000 to 2009 at the Esrange Space Center. Atmospheric temperature and
wind are distributed in 17 atmospheric layers corresponding to different altitudes from 100 to
30000 [m], and atmospheric humidity is distributed in 8 layers. The mean value μ and stan-
dard deviation σ of atmospheric properties are given in each layer separately, and the uncertain
behaviors of these properties are represented as μ+ ξσ, where ξ is a normally-distributed ran-
dom variable with its mean value and standard deviation of 0 and 1, respectively. Here the
present study applies a common value of ξ to all layers.
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Figure 5. JAXA D-SEND#2 project.

Figure 6 shows the statistical values (mean and standard deviation) of solution (sonic
boom strength at t = 0.034 [ms]) against uncertainty (atmospheric temperature), which are
estimated by MC and NIPC methods with different numbers of samples. MC statistics almost
converge using 30,000 samples. NIPC statistics with more than 11 samples agree with the
MC converged statistics. This result indicates that NIPC can drastically reduce the number of
samples to 1/3,000 while ruining the accuracy of stochastic estimations.

(a) Monte Carlo (b) Non-intrusive polynomial chaos

Figure 6. Statistical values of solution against uncertainty with different numbers of samples
in sonic boom analysis.

Sonic boom waveforms considering atmospheric temperature uncertainty, humidity
uncertainty, and wind uncertainty, which are obtained by NIPC with 11 samples, are shown in
Fig. 7. The lines represent the mean values and the error bars represent the standard deviations
of sonic boom waveforms. It is confirmed that the humidity uncertainty, shown in Fig. 7(b),
has a largest impact on sonic boom. This is because atmospheric humidity significantly affects
an atmospheric absorption coefficient. Next, the temperature uncertainty, shown in Fig. 7(a),
has an impact on the peak pressure. This is because atmospheric temperature affects thermal



viscosity and relaxation attenuation, which have effects on pressure gradient. Finally, the
atmospheric wind uncertainty, shown in Fig. 7(c), has no effect on sonic boom. This is because
the present study assumes that the wind direction is uniform within all atmospheric layers.
Therefore, if the wind direction is allowed to change according to the atmospheric layers, the
atmospheric wind uncertainty may have a certain effect on sonic boom.

5. CONCLUSION

In this study, NIPC method which can consider uncertainties at low computational
cost was applied to the sonic boom analysis solving an augmented Burgers equation. It was
demonstrated that, compared to MCmethod, NIPC could estimate the statistics of sonic boom
strength with equivalent accuracy and smaller sample size. In addition, the present simulation
results revealed the impacts of different atmospheric uncertainties on sonic boom signatures;
temperature uncertainty has an impact on the local rise in sonic boom pressure, and humidity
uncertainty has an impact on entire sonic boom waveform, while wind uncertainty has almost
no impact.
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Figure 7. Comparison of sonic boom waveforms condiresing different atmospheric uncertain-
ties.


