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Abstract. This paper introduces a computational model for stochastic wave propagation
in long structures of civil and mechanical engineering systems, exemplified as towers and
pipelines, and characterized with one-dimensional waveguide materials inter-connected with
lumped mass. The model can be used for predictive wave response analysis as well as for
system identification and damage diagnosis in structural health monitoring.

In this study, wave response at one location of the structure is derived to an impulsive
motion at another location in time and frequency domains, termed here as wave-based or
generalized impulse and frequency response functions. Not only does this study show vibra-
tion features in wave responses with the hybrid model, typically explainable and usable with
discrete or multi-degree-of-freedom modeling. The model based responses also capture wave
scattering features traditionally comprehensible with continuous modeling. The latter plays
a major role in effectively detecting structural damage crack, stiffness degradation, and/or
material non-linearity.

Two examples are presented with the use of the modeling. One is wave-based charac-
terization of ten-story Millikan Library in Pasadena, California with the recordings of Yorba
Linda earthquake of September 3, 2002. The other is analysis for influence of stochastic
material/geometrical features in wave responses.

Keywords: Wave-based approach, Seismic responses of buildings, System identification.

1. INTRODUCTION

Response analysis and system identification of high-rise buildings with seismic exci-
tation are typically carried out within the framework of vibration theory. In this vibration-
based approach, the building structure is modeled as a discrete or a multi-degree-of-freedom
(MDOF) system, and structural dynamic properties are characterized with modal frequencies
and shapes that are a function of physical parameters such as floor mass and column/wall
stiffness. Subsequently, seismic responses are obtainable for a given excitation, and system
parameters are identifiable if seismic recordings are provided. Furthermore, structural non-
linear analysis and damage diagnosis are achievable by updating the linear MDOF model to
nonlinear one. While this approach is widely used and capable in solving many issues raised in
performance-based design and structural vibration control, it has limitation in characterizing
comprehensive seismic motion in structures, subsequently affecting the broad-based appli-
cations such as effective identification of local system parameters or damage with a limited
number of recordings.
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The limitation of the vibration-based approach resides in the implicit assumption that
seismic responses are synchronous at different locations of the structure. In fact, seismic re-
sponses are the result of wave propagation in large-scale structures such as high rise buildings
or towers and multiply supported pipelines, in which some wave phenomena such as time
delay of traveling waves from one location to the other plays an important role in in-depth
understanding of seismic recordings and effective identification of local structural features
(Kohler et al. 2007; Todorovska et al., 2001).

Recent studies show advantages of wave-based approach over vibration-based one in
some seismic response analysis and damage diagnosis of building structures. In particular,
Iwan (1996) proposed to use one-dimensional (1D) uniform shear-beam model for buildings
and obtained seismic drift spectrum for design. Safak (1999) introduced 1D continuous mod-
eling for structure-soil system with impulsive seismic excitation in bedrock. With the model,
he solved for wave responses with time-domain analysis methodology, compared them with
MDOF structural modeling with ground excitation, and revealed wave propagation features
and influences of soil-structure interaction in seismic structural responses, among others.
Todorovska et al. (2001) modeled 2D anisotropic wave propagation for a real seven-story
building. While developed over the past decade for exploration seismology, ultrasound and
hazard studies, seismic interferometery (SI) was first employed by Snieder et al. (2006a,b)
to extract pure structural responses from seismic recordings. This SI methodology was not
only used well for explaining wave phenomena in buildings, but also easily for system iden-
tification with a 1D uniform shear-beam model. Following Snieders work, Kohler et al.
(2007) studied seismic propagating waves in 3D steel, moment-frame building and verified
with ETABS finite-element modeling. Recently, SI was further applied for damage detection
based on 1D wave traveling times (Todorovska, 2009) and for seismic response analysis with
continuous-discrete building models (Zhang et al., 2010 and 2011), among others.

Building upon the aforementioned work as well as pertinent others (e.g., Cai and Lin,
1991; Zhang, 2000), this study proposes one-dimensional seismic wave motion modeling in
building structures and examines its effectiveness and broad-based applications.

2. MODELING OF WAVE MOTION IN HIGH RISE BUILDINGS

This section introduces a one dimensional (1D) model to describe propagation of seis-
mic waves in high-rise building structures. For this purpose, this study proposes modeling of
an N-story building as a series of shear beams for columns/walls and lumped masses for floors
as shown in Figure 1a. Each shear beam is characterized with shear modulus G, mass density
ρ, hysteretic damping ratio γ, cross sectional area A, and height h. And each lumped mass
is characterized with floor mass mf and hysteretic damping ratio γf . It should be noted that
for floor mass computation, overlapped parts with columns/walls at that floor level should be
excluded.

For the jth source-free shear beam bounded with (z−j , z
+
(j−1)), 1D-wave propagation in

vertical direction is governed by

∂2u(z, t)

∂z2
=

1

v2
j

∂2u(z, t)

∂t2
, for j = 1, 2 . . . , N (1)



Figure 1. 1D model of N-story high rise building: (a) geometrical configuration; (b) deformed
shape at the jth floor.

where vj = vcj(1 + iγj sgn(ω)) is the complex velocity of shear waves propagating in the

vertical direction where real shear wave velcoicty is given by vcj =
√

Gj
ρj

. Introducing Fourier
transform pairs of wave motion

u(z, t) =

∫ ∞
−∞

U(z, ω) eiωt dω (2)

U(z, ω) =
1

2π

∫ ∞
−∞

u(z, t) e−iωt dt (3)

one can solve for shear displacement u(z, t) by substituting Equation 2 into Equation 1 and
obtain ∫ ∞

−∞

[
∂2U(z, ω)

∂z2
+

(
ω

vj

)2

U(z, ω)

]
eiωt dω = 0 (4)

Equation 4 can be solved for independent variable z, where general solution can be put in
exponential form as U(z, ω) = eλz in which λ is constant. Then, substituting U(z, ω) and its
derivatives back into Equation 4 yields λ1,2 = ∓iω/vj . Consequently, the general solution of
Equation 4 can be given as

Uz ≡ U(z, ω) = C1 e
−iωz/vj + C2 e

iωz/vj ≡ Uu
z + Ud

z (5)

and shear displacement in time domain can then be obtained by substituting Equation 5 back
into Equation 2 which results in

uz ≡ u(z, t) =

∫ ∞
−∞

(
C1 e

iω(t−z/vj) + C2 e
iω(t+z/vj)

)
dω

= g1 (t− z/vj) + g2 (t+ z/vj) ≡ uuz + udz

(6)

where Uz and uz are used to represent the compact form of U(z, ω) and u(z, t) respectively,
the superscripts u and d correspond to up-going and down-going propagation directions, and
the notation (≡) is used to indicate identical quantities.



Equations 5 and 6 can be interpreted physically as the sum of two constant-shape
displacement waves travelling in opposite vertical directions with the same velocity, i.e.,
C1e

−iωz/vj or g1(t − z/vj) propagating upward in the positive z-direction and C2e
iωzvj or

g2(t+ z/vj) propagating downward in the negative z-direction.
In general, propagating waves are turned into transmitted and reflected waves when-

ever they encounter a boundary of two different media. Amplitudes of transmitted and re-
flected waves to amplitude of propagating wave—incident wave—are respectively determined
by transmission and reflection coefficients, denoted here as T and R correspondingly. At the
jth shear beam bounded with [z−j , z

+
(j−1)]—uniform medium—shown in Figure 2a, propagat-

ing waves continue traveling in the same direction without reflection. Mathematically, this
means that reflection coefficient, in either direction, is equal to zero. Therefore, out-going and
in-going waves can be related through transmission and reflection coefficients and written in
a matrix form as

Figure 2. Transmission and reflection coefficients: (a) through the jth shear beam; (b) through
the jth lumped mass.

{
Uu
j−

Ud
(j−1)+)

}
=

[
Tj−(j−1)+ 0

0 T(j−1)+j−

]{
Uu

(j−1)+

Ud
j−

}
(7)

from which transmission coefficient can be derived with the aid of Equation 5

Tj−(j−1)+ =
Uu
j−

Uu
(j−1)+

= e
−iωhj
vj = T(j−1)+j− (8)

To examine transmission coefficient in time domain, one can perform inverse Fourier
transform by applying Equation 2 to Equation 8, which yields

T̃j−(j+1)+ =

∫ ∞
−∞

e
−iω

hj
vj eiωt dω = Bj δ (t− τj) (9)

Equation 9 shows transmission coefficient in time domain is a delta function, δ(t), with time
delay τj = hj/vcj , meaning that up-going impulsive wave propagates upward with frequency-

dependent attenuation coefficient given by Bj = e
−γj |ω|

hj
vcj .



Floor slabs can be assumed infinitely rigid compared to columns/walls at their own
planes. Therefore, one can write shear displacement compatibility and dynamic force equilib-
rium at the jth lumped mass, shown in Figure 2b, as

u(z+
j , t) = u(zj, t) = u(z−j , t) (10)

FS(z+
j , t)− FS(z−j , t)− FD(zj, t) = FI(zj, t) (11)

where the (+,−) sings respectively indicate the up and down sides of the jth lumped mass,
and FS = GA ∂u(zj, t)/∂z is the shear force resulting from shear deformation at (j + 1)th

and jth shear beams, and FD = cf (zj, t)/∂t and FI = mf∂
2u(zj, t)/∂

2t are respectively the
damping and inertia forces due to the jth lumped mass motion. For simplicity, shear wave
components at each level will be indicated by level notation, i.e., Uu

j ≡ Uu
z+j

.
With the aid of Equations 2 and 5, Equations 10 and 11 can be solved in frequency

domain, in which out-going and in-going waves at the jth lumped mass can be related through
transmission and reflection coefficients, as shown in Figure 2b. This can be expressed com-
pactly in matrix form as {

Uu
j+

Ud
j−

}
=

[
Tj+j− Rj−j+

Rj+j− Tj−j+

]{
Uu
j−

Ud
j+

}
(12)

where the transmission and reflection coefficients shown in Equation 12 can explicitly be
described as

Tj+j− =
2

1 + rIj − rDj + irMj

(13a)

Rj+j− =
2

1 + rIj − rDj + irMj

− 1 = Tj+j− − 1 (13b)

Tj−j+ =
2rIj

1 + rIj − rDj + irMj

(14a)

Rj−j+ =
2rIj

1 + rIj − rDj + irMj

− 1 = Tj−j+ − 1 (14b)

where the coefficients: rI , rD, and rM can be expressed in terms of column impedance ρv,
column cross-sectional area A, floor-to-column mass ratio rm = mf/m, and wave travel time
τ = h/v. These coefficients can be determined using the following expressions

rIj =
(ρv)j+1

(ρv)j

Aj+1

Aj
(15a)

rMj
= rmjω

hj
vj

(15b)

rDj = γfj rMj
(15c)



Up-going transmission coefficient through the jth lumped mass, given by Eqaution 13a, can
be expressed as

Tj+j− = Bfje
−iω

hej
vcj (16)

where the transmission amplitudeBfj and equivalent height hej can be expressed respectively
as

Bfj =
2√

(1 + rIj − rDj)2 + (rMj
)2

(17a)

hej =
vj
ω
tan−1 rMj

(1 + rIj − rDj)
(17b)

This indicates that lumped floor mass can be treated as a continuum medium, column-type,
with equivalent height but with non-zero reflection coefficients.

Transmission and reflection coefficients at free-top and fixed-bottom ends can also be
determined using applicable boundary conditions at those levels. The fact that shear forces
are zero at the free surface reveals that Ud

N− = Uu
N− , meaning that propagating waves ap-

proaching the free-surface level will be completely reflected back. Furthermore, considering
displacement compatibility at the free-end level noting that no waves are propagating in the
vacuum, v = 0, one can express upward transmitted wave as Uu

N = 2Uu
N− . This shows that

at the free top end, transmission and reflection coefficients in the vertical direction are given
respectively as TNN− = 2 and RNN− = 1, meaning that up-going waves near the free end
will be transmitted to the free end with double amplitude and reflected back with the same
motion direction.

At the fixed-bottom end of the model, or at referenced level which could arbitrarily be
selected at any level zr in more general sense, a zero-displacement condition is dominant due
to the fact that building’s base is stationary at any time, i.e., Uu

0− = −Ud
0− . This suggests that

down-going waves approaching the model’s base are totally reflected upward with an opposite
polarity, i.e., 180 degrees out of phase with the down-going waves, where relative impedance
at that boundary is equal to infinity, rI0 =∞.

For a composite section bounded with (l, n), as shown in Figure 3a, with intermediate
location (m) such that (l < m < n), or using model notation, ((j − 1)+, j+) with (j−) in
between as shown in Figure 2. Repeating use of Equation 12 for (l,m) and (m,n) will lead
to representation of transmission and reflection coefficients between (l, n) in terms of those in
the two sub-sections, i.e., (l,m) and (m,n).

With the aid of Figure 3b, out-going and in-going waves through the considered sec-
tion bounded by levels (l, n) can be related through equivalent transmission and reflection
coefficients as written in a matrix form, that is{

Uu
n

Ud
l )

}
=

[
Tnl Rln

Rnl Tln

]{
Uu
l

Ud
n

}
(18)

Equivalent transmission and reflection coefficients for the whole section expressed in terms
of sub-sections’ coefficients can be obtained as



Figure 3. Demonstration of composition rule: (a) sub-segments transmission and reflection
coefficients (b) equivalent transmission and reflection coefficients for the whole section.

Tnl =
TmlTnm

1−RnmRlm

(19a)

Rnl = Rml +
TmlRnmTlm
1−RnmRlm

(19b)

Tln =
TlmTmn

1−RnmRlm

(20a)

Rln = Rmn +
TnmRlmTmn
1−RnmRlm

(20b)

The above mentioned composition rule can be applied repeatedly to find all transmission and
reflection coefficients between any two levels and ultimately for the whole model.

3. MODEL RESPONSE

Model response in frequency domain can be obtained in non-dimensional form, called
hereafter as motion ratio and denoted as DRr(ω). Particularly, this response can be deter-
mined, at any level, by relating shear displacement at response level, denoted as UR, to shear
displacement at reference level, denoted as Ur. Mathematically the motion ratio can be ex-
pressed as

DRr(ω) =
UR
Ur

=
(1 +RNR) TRr

(1−RrR RNR)(1 +RNr)
(21)

Equation 21 demonstrates that model response is completely dependent on transmission and
reflection coefficients of that part of the model which is bounded by reference and free-end
levels. Moreover, this formulation proves also that the part underneath the reference level has



no effect on model response, i.e., excludes effects of excitation source, which is not known,
as well as soil-structure interaction.

Response representation in time domain can be obtained by applying Fourier trans-
form, given by Equation 2, to model response in frequency domain, given by Equation 21,
namely

dRr(t) =

∫ ∞
−∞

DRr(ω) eiωt dω (22)

To understand model response, input/output concept, one can examine model response
at zR = zr, which leads Equations 21 and 22 to 1 and δ(t) respectively. This means that
DRr(ω) and dRr(t) can be interpreted as shear displacement response at response level due to
displacement impulse at reference level. Consequently, wave-based representation of model
response in terms of shear displacement at zR to input displacement at zr is then found as

u(zR, t) =

∫ ∞
−∞

UR e
iωt dω =

∫ ∞
−∞

DRr(ω) Ur e
iωtdω (23)

u(zR, t) =

∫ ∞
−∞

dRr(t− τ) u(zr, τ) dτ (24)

Equations 23 and 24 have the same mathematical form as the traditional vibration response
representation in frequency domain with DRr as frequency response function and in time
domain with dRr as impulse response function, Duhamel’s or convolution integral.

While the aforementioned derivation is for displacement input at reference level
(ur(t), Ur(ω)), it is straightforward to extend it to velocity input (vr(t) = du/dt, Vr(ω) =

(iω)U(ω)) and acceleration input (ar(t) = d2u/dt2, Ar(ω) = (iω)2U(ω)) with DRr and dRr
remaining the same. For ground acceleration input at zr and displacement response at zR,
which is the typical case for displacement response to earthquake, Equations 23 and 24 can
be modified as

u(zR, t) =

∫ ∞
−∞

HRr Azr e
iωt dω (25)

u(zR, t) =

∫ ∞
−∞

hRr (t− τ) a(zr, τ) dτ (26)

where HRr = −DRr/ω
2 and hRr have the conventional meanings for frequency response

function and impulse response function respectively. Because of the aforementioned dif-
ference, DRr and dRr are respectively referred to as wave-based or generalized frequency
response function, (GFRF) and generalized impulse response function, (GIRF).

4. IDENTIFICATION OF MILLIKAN BUILDING USING THE RECORDINGS OF
YORBA LINDA EARTHQUAKE

This section presents application of parametric identification of Millikan library build-
ing, shown in Figure 4, in California with a few number of seismic recordings after the Yorba
Linda earthquake of September 3, 2002, shown in Figure 5, using simple-to-complicated wave
models.



Figure 4. Vertical cross section of the 10-story Millikan Library, Pasadena, California.

Figure 5. Seismic acceleration recordings of Yorb Linda earthquake in the North-South direc-
tion at different floors (indicated as 0 10), where floor levels 0 and 10 correspond to B and R
respectively in Figure 4.

For system identification, recording-based GFRF/GIRF is required. One can first cal-
culate the recording-based GFRF as

D̃j0(ω) =
ŨjŨ

∗
j

|Ũj|2 + ε
→
ε

Ũj

Ũ0

(27)

where Ũ is the recording in frequency domain, superscript asterisk indicates the complex con-
jugate, and ε is a positive small number implying the added white noise, which is primarily
used to avoid unstable calculation of GFRF at some frequencies near the notches in the spec-
trum |Ũj|. As ε approaches zero, D̃j0(ω) =

Ũj
Ũ0

, which is Fourier spectral ratio or the definition
of GFRF in Equation 21. Note that the tilde over quantities D and U is used to distinguish the
recording-based quantities from those based on modeling or Equation 21.



4.1. Parametric Identification with Uniform Shear Beam Model

To capture fundamental dynamic features of the Millikan library, the building can
be modeled as uniform shear beam, one-layer, characterized with average properties of the
building distributed along the building height. For this case, the model-based GFRF, given by
Equation 21, can be written as

DRr(ω) =

(
1 + e−iω

(2Hr−2zR)

vc
e
−γ|ω| (2Hr−2zR)

vc

)
e−iω

zR
vc e−γ|ω|

zR
vc

1 + e−iω
2Hr
vc e−γ|ω|

2Hr
vc

(28)

where Hr = H − zr denotes the height of the building portion bounded by (zr, zN). The
GIRF can then be found by substituting GFRF of Equation 28 into Equation 22, where the
integration can be evaluated with the method of residue. In particular, the integrand for dRr,
a function of the real variable ω, is treated as a function of variable y, which has an infinite
number of poles yj(j = 1, 2, . . . ) in the upper half complex plane, namely

1 + e−iyj
2Hr
vc e−γ|yj |

2Hr
vc = 0⇒ yj = (±1 + iγ)ωj (29)

ωj = ω0 (2j − 1) ; ω0 =
πv

2Hr

; for j = 1, 2, 3, ...∞ (30)

from which the GIRF is obtained as

dRr = 8ω0

∞∑
j=1

(−1)j+1e−γωjtcos

(
ωj

(Hr − zR)

vc

)
sin(ωjt) (31)

Equation 31 shows that dRr consists of infinite number of motion modes, each of which has
exponentially decaying damping factor, modal shape with cosine factor, and sinusoidal motion
with modal frequency ωj . Fundamental or first mode with j = 1 has period time given as

T1 =
2π

ω1

= 4
Hr

vc
= 4τ (32)

where τ is the elapsed time for the wave to travel from referenced level to the free-top end.
Equation 32 suggests that fundamental period of uniform model equals time elapsed for waves
to propagate up and down the height Hr twice.

For parametric identification with a set of three recordings selected at the basement,
3rd, and 8th floors, recordings-based GFRF can be established and fundamental frequency can
be determined. With the aid of Equation 30b and the total height of the building, H = Hr =

48.20 m, one can find shear wave velocity. Then, hysteretic damping ratio can be determined
by applying curve fit optimization with minimizing mean squared error between recordings-
based and model-based GFRF which is given by Equation 28 as shown in Figure 6.

With the aid of just obtained model parameters, shear wave velocity and hysteretic
damping ratio, one can then get model response in time domain, GIRF, using Equation 31 as
shown in Figure 7, which shows model-based GIRF at the 3rd and 8th floors with respect to
the basement floor. Obviously, wave features are shown clearly in the early part, t = 0 ∼



Figure 6. Recording-based GFRF of Yorba Linda EQ at the basement, 3rd and 8th floors with
respected to the basement and 3rd floors

1sec, exemplified by time shift and amplitude decay as waves propagating up and down the
considered levels. At the latter part, vibration features dominant the response, i.e., t > 1sec.

Figure 7. Model-based GIRF at the selected floors: GIRFs at the 3rd and 8th floors with
respect to the basement motion using the identified parameters: H = 48.2 m, v = 326 m/s,
and η = 0.028

4.2. Parametric Identification with Piecewise Model

It has been shown that uniform shear-beam model can capture fundamental features of
high-rise buildings. However, modeling high-rise buildings as piecewise shear beams could,
in principle, more general in characterizing the changing-properties of the structure along
the height. To show representation of piecewise model response in frequency domain and
time domain, one can examine a simple, two-layer model without floor masses, which leads
Equation 21 to

DR0(ω) =

[
1 + α

(
e−2iω(τ1−τ2)) + e−2iωτ2

)
+ e−2iω(τ−τ2

]
e−iωτz

1 + [e−2iωτ1 + e−2iωτ2 ] + e−2iωτ

for 0 ≤ z ≤ h1 , τz =
z

v1

(33)

DR0(ω) =
2[1 + e−2iω(τ−τz)] e

−iωτz

[1+rI1 ]

(1 + α[e−2iωτ1 + e−2iωτ2 ] + e−2iωτ )

for h1 ≤ z ≤ h1 + h2 , τz =
h1

v1

+
z − h1

v2

(34)

where τz is the wave travel time between referenced and response levels. the other parameters
are defined as



τ1 =
h1

v1

, τ2 =
h2

v2

, τ = τ1 + τ2

α =
(1− rI1)
(1 + rI1)

, rI1 =
(ρv)2

(ρv)1

A2

A1

(35)

GIRF, can be found by substituting GFRF of Equations 33 and 34 into Equation 22,
where the integration can be obtained in closed form with the method of residues for some spe-
cial cases and numerically for general cases. Below are presented some special cases, which
could help understand the characteristics of wave propagation in buildings and subsequently
aid in system identification for general cases.

The denominator of Equations 33 and 34, a function of the real variable ω, is treated
as a function of variable y, which has an infinite number of poles yj(j = 1, 2 . . . ) in the upper
half complex plane, namely

1 + α[e−2iyjτ1 + e−2iyjτ2 ] + e−2iyjτ = 0 (36)

which can be solved for the variable yj in a general form as

yj = (1 + iγeq) ωj ; j = 1, 2, . . . ,∞ (37)

For the case of γ1 = γ2 and τ1 = τ2, one can solve the denominator of Equations 33 and 34
for resonant frequencies as

ω2j−1 =
[(2j − 1)π − β]

τ
(38a)

ω2j =
[(2j − 1)π + β]

τ
(38b)

α = ±cos(β) (38c)

γeq = γ1 = γ2 (38d)

and for the case of rI1 = 1, which could be, but not necessarily, the uniform or one-layer
model, GIRF can be found in the form of

dRr =
4π

τ

∞∑
j=1

(−1)j+1 e−γeq ωj(t−τz) cos(ωj(τ − τz)) sin(ωjt) (39)

which is consist with Equation 31.
For a set of recordings available at the basement, 4th, and 7th floors, the recording-

based GFRF of D̃40 and D̃70 with ε = 5% of the total power spectrum of the basement
motion is obtained as shown in Figure 8 by the solid line. In principal, all the frequencies
corresponding to the spectral peaks, can be regarded as modal frequencies and then used for
system identification. For simplicity and in practice as well as for illustration with the use of
a two-layer model without floor masses, parametric identification is carried out here based on
two modal frequencies identified from Figure 8: ω1 = 10.62 rad/s and ω2 = 14.22 rad/s.
With the use of Equations 38a ∼ c, the following parameters are found as



Figure 8. Comparison of GFRF amplitudes at the 4th and 7th floors with respect to impulsive
basement acceleration obtained from seismic recordings and model Equation 33.

τ =
2π

(ω1 + ω2)
= 0.253 sec

β =
π(ω2 − ω1)

(ω1 + ω2)
= 0.455 rad

α = Cos(β) = 0.898

with this in mind, the other model parameters can be determined as:
rI1 = 0.053, v1 = 361.85 m/s, v2 = 19.18 m/s, h1 = 45.77 m, h2 = 2.43 m.

Model-based GFRF with identified parameters and using Equation 33 is indicated in
Figure 8 with dashed line. It should be noted that the aforementioned identification is carried
out under the special condition of γ1 = γ2 and τ1 = τ2. In general, the parameters rI1 , v1,
v2, h1 and h2, together with γ1 and γ2, can be found by minimizing mean squared error of
the model-based GFRF from recording-based GFRF in certain frequency range (say 5 ∼
22 rad/s), among many other identification algorithms. Figure 9 shows the comparison of
recording-based GIRF at the 7th floor with respect to band-limited (ε = 5%) impulsive motion
at the basement against model-based counterparts with respect to pure (ε = 0%) impulsive
motion at the basement.

Figure 9. Comparison of GIRF at the 7th floor with respect to basement acceleration motion
obtained from seismic recordings and model.



4.3. Parametric Identification with Continuous-Discrete Model

In general, the more number of degrees of freedom used for the building system, the
more robust the model is. For the Millikan library building, it can be modeled as continuous-
discrete system, where floor heights are obtained from the vertical cross section shown in
Figure 4. Model parameters are estimated based on seismic recordings provided at the base-
ment and 8th floors. System identification in this case is carried out based on numerically
minimizing the mean squared difference of recorded-based GFRF from model-based GFRF.
For instance, two sets of modal frequency are considered here for system identification, i.e.,
(10.62, 11.82) rad/s and (10.62, 13.46, 14.21) rad/s, which are shown graphically in Fig-
ures 10 and 11 respectively.

Figure 10. System identification using seismic recordings at the basement and 8th floors with
continuous-discrete model matching two modal frequencies at 10.62 and 11.82 rad/sec.

Figure 11. System identification using seismic recordings at the basement and 8th floors
with continuous-discrete model matching three modal frequencies at 10.62, 13.46, and 14.21
rad/sec.

Model parameters identified from the the above system identification are summarized
in the table below

5. STOCHASTIC ANALYSIS OF MATERIAL/GEOMETRICAL INFLUENCE ON WAVE-
BASED RESPONSE

This section presents analysis of influence of model parameters on wave-based re-
sponse. Among the important factors to be analyzed and discussed are mass ratio, rm and
impedance ratio, rI . Equations 13a and 14a show that as mass ratio increases, the amplitude



Table 1. Modal parameters identified using recordings

of up-going and down-going of propagating waves through lumped mass decreases, for the
given relative and hysteretic damping ratios. This suggests that waves will reach to the higher
levels of the building with small amplitudes, or less energy. For cases of small mass ratios,
however, one can simplify the continuous-discrete model to a piecewise/uniform model which
can be explained as detailed below.

For most ordinary and regular high-rise buildings, one can consider that wave-based
model characteristics, such as shear wave velocity v, shear area A, column impedance v, and
column height h, are not changed significantly from floor to floor. Practical design consider-
ation of high-rise buildings subjected to earthquake-related excitation motion regards that the
largest dominant frequency of interest, ω̃max is typically less than nω1 with n < N . Mathe-
matically, this can be put in the form below

rMj
= rmj

hj
vj
ω̃max < rmj

hj
vj
nω0 (40)

with the Equation 31b and assuming that H = Nhj , Equation 40 can be written as

rMj
< rmj

π

2

n

N
� 1 (41)

Based on Equation 41, the quantities rMj
and rDj can practically be approximated

to zero. Consequently, one can conclude that transmission and reflection coefficients, given
by Equations 13 and 14, in this case are functions only of impedance ratio. This clearly
shows that under the considered condition of small floor-to-column mass ratio, the continuous-
discrete mass model can be degenerated to piecewise model. To examine effect of mentioned
simplification on dynamic features of the reduced model, one can apply small-angle approxi-
mation to Equation 17b, that is

hej ≈
vj
ω

rMj

(1 + rIj)
≈

rmj
(1 + rIj)

hj (42)



Equation 42 demonstrates that lumped mass at the jth level functions like an extended height
over the column segment. Consequently, upward transmission coefficient through the jth

column connected to floor mass can be viewed as equivalent to either transmission coefficient
in pure column without floor mass but with increased height, or transmission coefficient in
pure column with reduced velocity, this can be expressed mathematically as

Tj+j− ≈
2

(1 + rIj)
e
−iω

hej
vj ≈ 2

(1 + rIj)
e
−iω

hj
vej (43)

where vej = vj/(1 + rmj/2). In this case, the impedance ratio given by Equation 15a can be
approximated to one for j = 1, 2 . . . , N − 1. Consequently, upward and downward transmis-
sion coefficients given by Equations 13a and 14a can be written in the following form

Tj+j− ≈ Tj−j+ ≈ e
−iω

hej
vj , j = 1, 2, N − 1 (44)

which suggests that upward and downward propagating waves through thejth floor are trans-
mitted with constant amplitude and zero reflection.

Accordingly, the fundamental frequency and fundamental period of continuous-discrete-
mass model, denoted as Ω0 and T1, are respectively less than and higher than the fundamental
frequency and fundamental period of the same model without lumped masses, uniform model,
ω1 and τ0.

For high-order mode motion (j > 1), the modal frequencies Ωj of the building with
floor masses will be reduced proportionally and the corresponding amplitude will be increased
in general. The mean µ and standard variation σ of modal frequency Ωj can be found as

µΩj = ωj(1− 0.5 µrm) (45a)

σ2
Ωj

= 0.25 µ2
Ωj
σ2
rm (45b)

where µrm and σrm are the mean and standard deviation of random floor-to-column mass ra-
tio. It can be proved that if rmj , (j = 1, 2, ..., N), is constant and floor height hj is random,
Equations 45 remains the same except µrm and σrm replaced by µh and σh respectively. The
other statistical responses such as mean and standard deviation of frequency response ampli-
tudes at corresponding modal frequencies can be found numerically based on Equations 28,
32, and 45.

For large floor-to-column mass ratio or other random system parameters, the statistical
analysis for GIRF/GFRF must be carried out numerically or with Monte Carlo simulation.
While not presented here, this paper shows influences of some system parameters in frequency
responses. In particular, Figure 12 shows the influences of large floor-to-column mass ratio
(rmj = 1) in GFRF, revealing similar phenomena observed with small rmj before. Figure 13
indicates that modal frequencies are insensitive to the change of column impedance ratio rI ,
while the corresponding amplitudes are reduced significantly with decreased rI .

For ground motion characterized by stationary stochastic process (Lin and Cai, 1995)

a(z0, t) =

∫ ∞
−∞

eiωtdZ(ω) (46)



Figure 12. GFRFs (D8b) at the 8th floor of a 11-story building with respect to bottom motion
with vj = 300 m/sec, hj = 4.25 m, γj = γfj = 0.03, rIj = 1, and rm11 = 0.5rmj , for
j = 1, 2 . . . , 11.

Figure 13. GFRFs (D8b) at the 8th floor of a 11-story building with respect to bottom motion
with vj = 300 m/sec, hj = 4.25 m, γj = γfj = 0.03, rmj = 0.50 and rm11 = 0.5rmj , with
different values of impedance ratio, for j = 1, 2 . . . , 11.

where Z is a stochastic process with orthogonal increment in frequency, the mean square
acceleration response with deterministic building parameters can be found as

E[a2(z, t)] =

∫ ∞
−∞

Φ(ω) d(ω) (47a)

Φ(ω) = D2
R0(ω) G(ω) (47b)

where E denotes ensemble average, and G and Φ are spectral densities of ground acceleration
and response respectively. For Kanai-Tajimi spectrum selected for the stochastic ground mo-
tion characterization, i.e.,G(ω) = G0(1 + 4ξ2ω2/ω2

g)/[(1−ω2/ω2
g)

2 + 4ξ2ω2/ω2
g ], Figure 14a

shows the spectral densities of acceleration at the 8th floor with seismic input at alluvium and
rock sites. Since the rock predominant frequency (ωg = 27 rad/s) is closer to the second
modal frequency (ω2 ∼ 22rad/s) than the alluvium one (18.4 rad/s), the peak with rock
at the second modal frequency is larger than that with alluvium. This can also be seen with
mean square accelerations 0.0076 and 0.026 m2/s4 for rock and alluvium respectively. Fig-
ure 14b shows the response spectral densities with different floor-to-column mass ratio, with
corresponding mean squares 0.0188, 0.0102, and 0.0076 m2/s4 respectively for rmj= 0, 0.1,
and 1.

While the aforementioned approach to calculate statistical responses to stochastic
ground motion is widely used for seismic design and analysis, it is of interest to note some
differences from the conventional one. First, the response calculated in this study is absolute



acceleration, not the relative displacement in traditional approach, although they are obtain-
able from one to the other. More important, the traditional approach assumes that the building
is fixed on the ground and subsequently shakes under seismic free-field ground motion, the
latter of which is typically characterized by KanaiTajimi model with predominant frequency
(ωg) and damping (γg) for site amplification. In fact, for a building fixed on the ground, the
seismic input at the fixed bottom of a building is the response of soilstructure interaction,
not simply the free-field motion. The Fourier spectrum of basement motion showing that the
motion has no clear predominate frequency. This suggests that either the seismic input in
traditional approach needs modified as other type such as band-limited white noise for this
case, or the fixed boundary condition is inappropriate. By contrast, this model shows that as
long as a motion recording at given location (either at ground or one height) is provided, the
statistical response at other location can be obtained.

(a) (ωgrock = 27, ωgallivium
= 18.4) rad/sec, rmj = 1.0 (b) ωgallivium

= 18.4, rmj = 0, 0.50, 1.0

Figure 14. Spectral density of acceleration at the 8th floor to ground acceleration spectral
density with Kanai-Tajimi power spectra (G0=1), site predominant frequency ωg, site damping
(ξg = 0.34), with the same building parameters as indicated in Figure 12

6. CONCLUSION

This study proposes a wave-based approach to model and analyze seismic building
motion. It first derives the generalized impulse and frequency response functions (GIRF
and GFRF) which are fundamentally important in constructing response to the motion in-
put to a system, not the traditional force input. The deterministic and stochastic features of
GIRF and GFRF as well as seismic response are also examined in detail, revealing not only
well-observed vibration features of building structures, but also some perspective of seis-
mic wave behaviors of structures which traditional vibration-based approach does not show
clearly. While this study focuses on one-dimensional wave propagation with specific shear-
beam model for columns/walls and lumped mass for floor, it can be extended to sophisticated
modeling such as bending-moment beam model for columns with one extra dimensional wave
motion, or another dimension in rocking. While this extension will make the modeling more
robust and useful in broad-based applications, the analysis and fundamental features of wave
propagation will remain the same as revealed in this study.
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