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Abstract. The objective of this work is to compare topologies resulting from direct BEM 

(Boundary Element Method) with a BEM accelerated by Fast Multipole Method (FMM). A 

formulation of fast multipole boundary element (FMBEM) is introduced in order to turn the 

optimization process more attractive in the point of view of the computational cost. The 

formulation of the fast multipole is briefly summarized.  A topological-shape sensitivity 

approach is used to select the points showing the lowest sensitivities, where material is 

removed by opening a cavity. As the iterative process evolves, the original domain has holes 

progressively removed, until a given stop criteria is achieved. A benchmark is investigated by 

imposing different FMBEM parameters. For effect of comparison the topology resulting from 

an analytical BEM optimization process is used. The topologies resulting due to this set of 

parameters imposed are presented. The CPU time x DOF’s are also investigated. The 

accelerated BEM demonstrated good feasibility in an optimization routine.  

Keywords: Topology optimization, topological derivative, fast multipole method, boundary 

element methods. 

1. INTRODUCTION 

Although the Boundary Element Method (BEM) provides some facilities when 

modeling many problems its efficiency is not suitable for large-scale models. The BEM in 

general produces dense and non-symmetric matrices that, in spite of smaller in sizes, requires 

O(N2) operations to compute the coefficients. In order to solve the resulting system using 

direct solvers another O(N3) operations is also required. In order to overcome this 

inefficiency a coupling between Fast Multipole Method (FMM) and BEM is purposed.  This 

will allow solving problems with several millions of degree of freedom (DOF’s). Generally 

for large scales models the Finite Element Method (FEM) was indicated to solve models with 

several millions of DOF’s, on the other side, the BEM has been limited to solving problems 

with a few thousands DOF’s for many years. In the last years great efforts has been done by 
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scientists to improve the BEM maintaining its all attractive, such as, easy mesh in modeling, 

small matrices of coefficients, no mesh dependency. The next step relies on expand the 

method to solve problems of large-scale. An example of large-scales is the topology 

optimization problem. As it is an iterative problem, a number of elements are always 

increasing because the material is being removed and a significantly number of DOF’s must 

be solved. In the point of view of computational cost it should be a serious problem especially 

when the case under investigated has its statement in 3D optimization. During the last years 

many efforts have been done in order to accelerate the BEM for large-scales problems. As 

pioneers [1,2] presented the FMM which promised the accelerating the solutions of BIE. The 

main goal was to reduce the CPU time in FMM accelerated BEM to O(N). Thereafter this 

new technique was applied for solving elasticity [3] and fluids [4] problems in large-scale. 

Some years after, [5] announced the FMM as one of the top algorithms in scientific 

computing that were developed in the 20th century. In this publication the authors had 

developed a complete tutorial which presents the basic concept and the main procedures in the 

FMM for solving boundary integral equations for 2D potential problems. The author [6] 

extended the FMM formulation for large-scale analysis of two-dimensional (2D) Stokes flow 

problems. For solving the dual Boundary Integral Equation (BIE) formulation, the author had 

employed a linear combination for velocity and the hipersingular BIE for traction to attain a 

better conditioning for the BEM system of equations. Some examples were presented and 

showed a good accuracy and efficiency of the proposed approach. Also [7] published the 

book entitle Fast Multipole Boundary Element Method where many instructions are given in 

order to provide fundamentals for others researches can implement this method. The FMM 

was implemented by [8] for solving the effective thermal conductivity (ETC) of random 

micro-heterogeneous materials using representative elements and FMBEM. The main goal of 

this paper is to implement the FMM in a topology optimization code. The idea relies on 

compare the performance of both methodologies, i.e., optimization with Direct BEM against 

FMBEM in the point of view of CPU time and resulting topologies. This paper is organized 

as follow:  In Section 2 the main idea of TD is discussed and the analytical expressions for 

TD in Poisson problems are presented. In Section 3 and 4 the methods BEM and FMBEM for 

2D potential problem is shown, respectively. In Section 5 some numerical examples and their 

respectively results are presented. Finally, in Section 6 this work is concluded and some 

discussions are carrying on. 

2. TOPOLOGICAL DERIVATIVE 

A topological derivative for Poisson Equation is applied in this work for determining 

the domain sensitivity. A simple example of applicability consists in a case where a small 

hole of radius (ε) is open inside the domain. The concept of topological derivative consists in 

determining the sensitivity of a given function cost (ψ) when this small hole is increased or 

decreased. The local value of TD at a point ( x  ) inside the domain for this case is evaluated 

by: 
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where ψ(Ω) and ψ(ε) are the cost function evaluated for the original and the perturbed 

domain, respectively, and f is a problem dependent regularizing function. By eq (1) it is not 

possible to establish an isomorphism between domains with different topologies. This 

equation was modified introducing a mathematical idea that the creation of a hole can be 

accomplished by single perturbing an existing one whose radius tends to zero. This allows the 

restatement of the problem in such a way that it is possible to establish a mapping between 

each other [9]. 
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where δε is a small perturbation on the holes’s radius. In the case of linear heat 

transfer, the direct problem is stated as: 
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is a function which takes into account the type of boundary condition on the holes to 

be created ( ,
u

u q
n

ε
ε ε

∂
=

∂
are the temperature and flux on the hole boundary, while u

ε
∞

  and 
ch
ε  

are the hole’s internal convection parameters, respectively). After an intensive analytical 

work, it was developed explicit expressions for TD for problems governed by eq (3). Table 1 

summarizes the final expressions for topological derivative, considering the three classical 

cases of boundary conditions on the holes. 

 

Table 1. Topological derivative for the various boundary conditions prescribed on the holes. 

BOUNDARY CONDITION ON THE HOLE TOPOLOGICAL DERIVATIVE EVALUATED AT 

Neumann homogeneous boundary condition 

(α = 0, β =1 , γ = 0) 
( )

T
D x k u u bu= ∇ ∇ −  x ∈ Ω ∪ Γ  

Neumann non-homogeneous boundary condition 

(α = 0, β =1 , γ = 0) 
( )

T
D x q uε= −  x ∈ Ω ∪ Γ  

Robin boundary condition 

(α = 0, β = 0, γ = 1) 
( )( )T cD x h u u

ε
ε ∞= −  x ∈ Ω ∪ Γ  

Dirichlet boundary condition 

(α = 1, β = 0, γ = 0) ( )1
( )

2
T

D x k u uε= − −  x ∈ Ω  

Dirichlet boundary condition 

(α = 1, β = 0, γ = 0) 
( )

T
D x k u u buε= ∇ ∇ −  x ∈ Γ  



 

 

3. BEM 

A brief review on Boundary element method using constant elements is summarized in 

this work. An initial domain is established with boundary conditions prescribed on its 

boundary. Considering a Laplace equation governing a 2D potential problems: 

 

;,0)(2 Ω∈∀=∇ xxu        (6) 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Domain Ω and its boundary Γ. 

 

For a potential problem three kinds of boundary conditions may be imposed, Dirichlet, 

Neumann and/or Robin. For this presentation the first and second boundary conditions are 

imposed, 
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Where u is the potential field in domain (Ω), Γ is the boundary of Ω, n is the outward 

normal. Note that the barred quantities are the values imposed by the boundary conditions on 

the boundary. The solution of eq.(6) under boundary conditions as eq.(7) is: 
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yxu  and ),(*

yxq  are the Green’s function for 2D problems 
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and r represents the distance between the collocation point x and the field point y, as depicted 

in fig.1. Taking x belongs to the Γ the classic BIE formulation of BEM [10] is obtained as: 

;),()(),()(),([)()( ** Γ∈∀−= ∫ xydSyuyxqyqyxuxuxC
S

       (10) 

If the boundary is smooth in the collocation point x, the coefficient C(x) = 1/2. The 

next step consists in discretize the boundary Γ using N constant elements as illustrated by fig. 

2. 
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Figure 2. Discretization of the boundary Γ using constant elements. 

 

 

The discretized equation of BIE is now presented as, 
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Where the uj and qj (j = 1,2,…,N) are the nodal values of the u and q in the element ∆Sj, 

respectively. Applying the boundary conditions (2) at each node and switching the columns 

for grouping the unknowns variables one finds,  

 

BA =λ              (12) 

 

And where A is the coefficients matrix, λ the unknown vector and b the known right-

hand side vector. 

4. FAST MULTIPOLE BOUNDARY ELEMENT 

BEM uses the Green’s functions as the weighting function on its formulation which 

increase the accuracy when compared with another numerical techniques [10].  As a result the 

spatial dimension is reduced by one. Additionally, the computational cost of a traditional 

BEM direct can be reduced by using the FMBEM. The goal of FMM relies on translating 

node-to-node interactions to cell-to-cell interactions. These cells have a hierarchical structure 

called as tree while the small ones are called as leaves. FMM employs iterative equations 

solvers (GMRES) where matrix-vector multiplications are calculated using fast multipole 

expansions. As iterative equations are used some parameters for the FMM, such as, maximum 

number of elements allowed in a leaf (maxl) and in the tree structure (levmax), number of 

terms in multipole expansion (nexp) and local expansion (ntylr), and also the GMRES 

solution convergence (tol) must be set. The expansions used for 2D potential problem for 

FMM are briefly summarized as table 2. Further details about the analytical derivations 

should be attained in [5,7].   
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Table 2. Resume of the M2M, M2L and L2L expansions. 
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The main idea of the fast multipole BEM should be briefly described as: 

 

o Step 1 – Discretization. The domain Ω is discretized as BEM approach conventional 

way.   

o Step 2 - Determine a tree structure of the boundary element mesh. A square covering 

the discretized domain Γ is considered. This square is classified as a cell of level 0. This 

parent cell is divided into four child cells, now classified as level 1. This procedure is 

iteratively done until a stop criteria is achieved. This criteria is achieved when the 

number of elements imposed by the user in that cell is reached. A cell having no child 

cells is call as leaf, which are in grey as fig.1.    

o Step 3 - Compute the moments on all cells. This step is also known as upward pass. The 

moments are computed on all cells. If a leaf is under consideration the moments is 

calculated directly by using 	������ = 	 
��� − ����
���������, where Sc is the set of 

elements contained in the leaf and zc the centroid of the leaf. For the parent cell the 

M2M translation is applied and the moments are summed on its four child cells. The 

M2M equation is presented by tab. 2 and zc is the centroid of the parent cell while the zc 

represents the centroid of a child cell.

 

 

o Step 4 – Specify cells with interactions (M2L), far cells (L2L), adjacent cells and cell C. 

This step was named as Downward pass. In this step a classification is done in order to 

define the distribution of all cell around a defined Cell C. Adjacent cells are those that 

level l have at least one common vertex. Cells well separated at a level l are those who 

are not adjacent at level l but their parents cells are adjacent at level l-1.The interaction 

list of C is a list of all well-separated cells from a level l cell C. Far cells of C are those 

that their parent cells are not adjacent to the parent cell of C. The local expansion 

associated with a cell C is calculated by the use of the M2L translation. The L2L 

translation is calculated for the parent cell of C with the expansion point being shifted 

from the centroid of C’s parent cell to that of C. Considering the cell C at level 2, the 

M2L translation is used to compute the coefficients of the local expansion. 

o Step 5 – Evaluation of the integrals.  

o Step 6 –Iterations of the solutions. The unknown solution vector λ in the system A λ = B 

is update by the iterative solver and continues for all levels to evaluate the subsequent 

matrix and vector multiplication A λ until the solution λ converges to a defined 

tolerance. 

 



 

 

Figure 1 depicts the basic idea of the FMM in steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. FMM Scheme. 

4. NUMERICAL RESULTS 

The high computational effort involved in an optimization process motivates the 

implementation of FMM in order to maintain those attractive characteristics when coupling 

BEM and DT [11].  The topology optimization process is carried out using an Intel Pentium 

Step 4 –  M2M 

 

Step 1 – Initial Domain – level 0 
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Step 3 – Multipole expansion 

Step 4 – M2L and L2L – level 2 
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Step 4 – M2L level 3 Step 5 – Evaluation of all integrals 



 

 

core 2 Duo with 4GB of RAM and 2,93GHz. This section presents one example that 

demonstrates the application of the proposed method. The results obtained for each case are 

compared with Direct BEM versus FMBEM. During the optimization process the 

computational cost, number of DOFs and volume were taken into account. For a specific 

iteration the respective intermediary topology is illustrated. The iterative process was halted 

when a given amount of material was removed from the original domain. In all cases the total 

potential energy was used as the cost function. A regularly-spaced grid of internal points was 

generated automatically, taking into account the radius of the holes created during each 

iteration. The radius was obtained as a fraction of a reference dimension of the domain (r = ω 

lref). In all cases lref = min (height,width) was adopted. The objective in all cases was to 

minimize the material volume. The current volume of the domain (Vf) was checked at the end 

of each iteration until a reference value was achieved (Vf = φ V0, where V0 represents the 

initial volume and φ a defined percentage of material to be removed). 

2.1. Heat Conductor 

This example refers to a square domain subjected to low temperature boundary 

conditions on its corners and a decentralized high temperature b.c. at the left surface. The 

problem is illustrated as Fig.2, where TH is the high temperature (373 K) and TL is the low 

temperature (273 K).  

 

Figure 2. Heat conductor boundary conditions. 

 

The remaining boundaries and the holes opened during the optimization process are 

insulated. The stop criteria was set until Vf = 0.6 V0 is achieved. In order to evaluate the 

different resulting topologies due to the FMMBEM parameters three cases are under 

investigation. All cases are always compared with the topology resulted by using direct BEM 

namely by case (f). For the case (f) it was used constant elements and all integrations were 
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performed analytically.  Figure 3 depicts these topologies comparatives and also presents the 

parameters used to set the FMBEM for each case. As presented in fig. 3 it is possible to see 

the refined mesh grid of internal points. Instead FMBEM being evaluated only on the 

boundary, the internal points are recovered as the traditional BEM direct. Fortunately, the 

presented code has implemented the facility of generating internal points only near the 

boundaries (offset) or in all domain. Obviously, when dealing with domains with a 

significantly internal sensitivity an evaluation on all domain is required. A good 

recommendation is to use both numerical artifices, i.e. some iterations with an offset of 

internal points and a predefined intermediary iteration which takes in to account a complete 

grid over the domain, see fig. 3. It is also important to notice that this procedure is not 

possible to be done in the finite element method due to its features of mesh domain. This kind 

of numerical implementation also contributes to the characteristics provided from BEM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Internal Points: Evaluation by offset and over all domain. 

 

 

The first four topologies showed a slightly difference when compared with case (f), due 

the parameters of FMBEM employed, see fig.4. From now on, only with case (c) and case (f) 

will be refereed. Case (c) resulted a topology that match perfectly with those resulted by using 

Direct BEM and it is possible to compare temperature of both by fig. 5. Also it is important to 

note that both topologies attained the same volume at the same iteration.   

The CPU time x DOF for case (e) and case (f) are presented as fig.6. During the 

optimization process a number maximum of approximately 3500 elements were evaluated. It 

is possible to verify that the performance of FMBEM is superior when an elevate number of 

elements are being integrated. An interesting evaluation relies on determining the intersection 

between the curves. 
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FMBEM - Case (a) FMBEM - Case (b) FMBEM - Case (c) 
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tol=1e-8, maxit = 10,  
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# iteration 975 
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Volume = 60.0087 % 
 

Volume = 60.0087 % 

tol=1e-8, maxit = 10,  

maxl = 12, levmx=20, 

nexp=10, ntylr=10 

# iteration 1022 

tol= 1e-8, maxit 100,  

maxl 20, levmax 30,  

nexp = 15, nytlr =15 

# iteration 911 

BEM analitic 

# iteration 911 

Figure 4. Comparative between topologies with approximately 60% of volume. 

 

 
FMM BEM – case (e) Direct BEM – case (f) 

  

Figure 5. Color map for case (e) and case (f). 
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Figure 6. A comparative: CPU time x DOF. 

5. CONCLUSIONS 

In the numerical analysis the computational cost is an important issue. Regardless of 

many attractive the boundary element method is not widely released in the commercial codes 

because the traditional method is not recommended for solving large-scale problems. This 

argument is increased when considering the iterative optimization process where the problem 

must be evaluated several times. In order to overcome this issue the FMBEM was 

implemented in the topological optimization code. The resulting topology of a benchmark 

using FMBEM was compared with the final topology obtained by using direct BEM. The 

CPU times for both cases were compared until the final topologies have been reached. The 

final topologies for case (e) and (f) have shown good agreement once the FMBEM parameters 

were adjusted. The results suggest that BEM is more efficient for problem with a low 

discretization, i.e., low DOF’s. As the iterative process evolves the number of elements 

increases significantly and the FMBEM takes advantage over the BEM direct. Some remarks 

must be taken in account, such as; while the iterative process doesn’t reach about 3500 DOF’s 

the BEM directly is recommended. When this number of DOF’s is exceeded a flag 

(previously implemented in the code) must be turned on and the process be carry on using 

FMBEM. Another interesting remark relies on the fact that the final shape of the resulting 

topology depends significantly on the parameters set for the FMBEM. Finally, with FMBEM 

topologies very well refined must be attained with a simple CPU without needing parallel 

computation. 
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