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Abstract. Multiphysics systems including dynamic fluid-structure interaction problems have
hardly been studied in several fields of mechanical engineering. Among others, we can cite
the researches in vibrations of submerged structures and the design of poroacoustic absorbing
systems. Structural Topology Optimization can be applied in this class of problems in order
to obtain new materials and structures. In this paper, it is presented the topology optimization
based on volume constraints and natural frequency maximization of fluid-structure interac-
tion problems. The method used in this work is the Bi-directional Evolutionary Structural
Optimization (BESO), which consists in a successive elimination and replacement of elements
in the design domain. This domain is defined initially and through a sensitivity analysis of the
structure’s eigenvalue solution, the evolutionary algorithm remove or add solid elements. The
aim of this work is to propose a new version of the BESO method applied to fluid-structure
interaction systems. We consider the case of free vibration of structures attached to a fixed
fluid domain. Numerical results show that the BESO method can be applied to this kind of
multiphysics problem.
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1. INTRODUCTION

Since its introduction more than two decades ago [1], Structural Topology Optimiza-
tion method for continuum structures [2] has gained in popularity and now is used daily as
a design tool in industry and academy. In contrast to size and shape optimization, topology
optimization can be used to change the topologies inside design domains and to find optimal
layouts without the need for an initial given topology [3]. Furthermore, commercial topol-
ogy optimization tools have been developed based on special Finite Element Method (FEM)
solvers or have been added in standard commercial packages.

The applications of topology optimization methods have been extended to many cases,
e.g. material design [4], microelectromechanical systems (MEMs) design [5], synthesis of
acoustic absorbers [6] and others. The most common problems solved by commercial codes
concern stiffness and natural frequency maximization, both with volume fraction constraints.
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Although these procedures have reached a satisfactory level of maturity, there are still
many topology optimization problems open to research or less-than-satisfactorily resolved
issues [7]. A major group consists of multiphysical problems. Commercial FEM packages
often contain solvers for multiphysics problems, however they do not enable optimization. A
particular class of multiphysics problems involves fluid-structure interaction (FSI), which is
the main topic of this work.

Multiphysical problems with fluid-structure interaction are very common in structural
engineering. Only a few authors have studied the topology optimization of FSI coupled sys-
tems. Between them, we can cite Maute and Allen [8] who presented the topology optimiza-
tion of aeronautic structures considering the aeroelastic coupling with the classical material
interpolation method ’SIMP’ (Solid Isotropic Material with Penalization) [9]. Also, the con-
tribution of Sigmund and Clausen [7] stands out, who proposed a mixed formulation in the
SIMP method to optimize structures under external pressure loads problems.

More recently, Hamidian and Seyedpoor [10] presented the shape optimization of arch
dams considering fluid-structure interaction. Kreissl et. al [11] optimized microfluidic sys-
tems considering non-linearity and the LBM hydrodynamics using topology optimization.
Yoon [3] introduced a monolithic formulation for topology optimization of FSI coupled prob-
lems. Recent publications show the current scientific effort devoted on this topic.

Among the current optimization methods, the Bi-directional Evolutionary Structural
Optimization (BESO) was chosen in this work for FSI problems analysis, since the method is
almost not explored in this area. The technique so called Evolutionary Structural Optimization
(ESO) was first introduced in the 90’s with Xie and Steven [12]. With the finite element anal-
ysis, the ESO method was initially proposed as a gradual removal of inefficient material from
the design domain until the remaining structure converges to the optimum topology. Material
elimination is done after a sensitivity analysis. However, it is questionable that eliminated
elements can never return to the design domain, since the sensitivity analysis is carried out
only for the solid elements in the structure. Thus, a later development of this method was
called Bi-directional ESO (BESO), in which elements are also added in void positions near
to the elements with the highest sensitivity numbers [13]. In this case, the sensitivity num-
ber is a local index and represent the sensitivity of each element with respect to the objective
function. Studies with the BESO method have recently been published presenting convergent
and mesh independent solutions for stiffness maximization [14], for natural frequency maxi-
mization [15] and others. Critical analysis of ESO-based methods are found in [16], while a
later review about the ESO/BESO methods is found in [17] and a book is also available [18].
In multiphysics problems, the ESO/BESO methods lack of methodologies and publications,
especially in fluid-structure coupled systems.

Herewith it is proposed to combine the evolutionary topology optimization techniques
with multiphysics problems involving fluid-structure interaction. This work focuses on modal
analysis where the aim is to increase the natural frequencies of the coupled system. Frequency
optimization is of great importance in many engineering fields and the modal analysis is ap-
plicable to a wide range of fluid-structure interaction problems. The possibility of removing
and adding material systematically with the evolutionary method might be a helpful proce-
dure to explicitly define the fluid-structure interfaces. However, only cases with immovable



interfaces will be considered in this paper.
The paper is organized as follows: Section 2 presents the governing equations and

the finite element model for the fluid-structure interaction coupled system. In Section 3, the
topology optimization problem for frequency maximization is formulated and the sensitivity
number is derived. Section 4 discusses the implementation matters and the basics of the BESO
method. Section 5 concludes the paper.

2. FLUID-STRUCTURE INTERACTION: GOVERNING EQUATIONS AND FINITE
ELEMENT MODEL

Herein, the analyzed systems are limited to a flexible structure in contact with an
enclosed acoustic fluid, where the responses of the structure are significantly affected by the
fluid. For this fluid-structure system, the structure can be described by the differential equation
of motion for a continuum body assuming small deformations and the fluid by the acoustic
wave equation. For the standard approach, the governing equations for the fluid and structural
domains as well as the coupling boundary conditions are defined as follows.

2.1. Helmholtz equation

In this paper, the fluid is considered inviscid, irrotational and only under small trans-
lations conditions. The governing equation for the pressure in a nonhomogeneous acoustic
medium is described by the Helmholtz equation

∇2pf +
ω2

c2
f

∂2pf
∂t2

= 0

(
k =

ω

cf

)
Ωf (1)

where pf is the pressure in the analysis domain Ωf , cf is the local speed of sound, ω is the
angular frequency and k the wave number. The pressure field is obtained by solving the
Helmholtz equation imposing proper boundary conditions. In this paper, it is considered the
following boundary conditions:

pf = p0 (2)

n∇pf = 0 (3)

representing the pressure boundary condition (Eq. 2) and the hard wall condition (Eq. 3),
where p0 is the pressure input and n is the outward unit normal to the fluid.

2.2. Linear elasticity

The linear structural analysis can be described by the elasticity equation

∇̃Tσs + bs = ρs
∂2us

∂t2
Ωs (4)

where σs is the stress tensor, bs are the body forces and us is the displacements field. Bound-
ary conditions are applied as follows:



nsσ = fSb Sb (5)

us = uSu
s Su (6)

representing the Neumann (Eq. 5) and Dirichlet (Eq. 6) boundary conditions, where fSb is the
surface traction on Sb, uSu

s is the prescribed displacements on Su and ns is the outward unit
normal to the solid medium.

2.3. The coupled fluid-structure system

At the interface ∂Ωsf between the structural and fluid domains, the fluid and the struc-
ture move together in the normal direction of the boundary. The normal vector n = nf = −ns

can be used in order to obtain the displacement boundary condition

usn|∂Ωsf
= ufn|∂Ωsf

(7)

and the continuity in pressure

σs|n = −p (8)

With relations derived from the governing equations and the previous coupling condi-
tions, the interface forces may be obtained. The force acting on the structure provided by the
fluid pressure is

ff =

∫
Ωsf

NT
s nNfdspf (9)

and the force acting on the fluid domain can be expressed in structural acceleration

fs = −ρf
∫

Ωsf

NT
f nNsdsüs (10)

where ρf is the static density of the fluid and N contains the finite element shape functions
for the interface.

The introduction of a spatial coupling matrix

Lsf =

∫
Ωsf

NT
s nNfds (11)

allows the coupling force to be written as

ff = Lsfpf (12)

and

fs = −ρfLT
sf üs (13)

Thus, the fluid-structure problem can then be described by an unsymmetrical system
of equations



[
Ms 0
ρfL

T
sf Mf

] [
üs

p̈f

]
+

[
Ks −Lsf

0 Kf

] [
us

pf

]
=

[
fs
ff

]
(14)

where fs and ff are the load vectors for both domains.
In the multiphysics coupling analysis, the fluid analysis provides pressure loads to

the structural analysis, and the structural analysis provides accelerations to the fluid analy-
sis. These finite element model has been used to calculate responses of acoustic-structure
interaction problems. For details and the derivations of the coupling integrals as well as the
governing equations, the reader is referred to [19].

3. TOPOLOGY OPTIMIZATION PROBLEM AND THE SENSIVITY ANALYSIS

3.1. Topology optimization problem

In finite element analysis the following eigenproblem is solved to describe the dynamic
behavior in free vibration of a structure:

(K− ω2
i M)Φi = 0 (15)

If fluid-structure interaction is considered, K and M are, respectively, the global stiff-
ness and mass matrices including the structural and fluid elemental matrices and the coupling
integrals described in the previous section. ωi is the ith natural frequency and Φi is the corre-
sponding eigenmode.

Premultiplying equation 15 with the transposed eigenvector, ΦT
i , the eigenvalue ω2

i

can be related with Φi by

ω2
i =

ΦT
i KΦi

ΦT
i MΦi

(16)

which is called the Rayleigh quotient.
In this paper, the topology optimization problem for maximization of the ith natural

frequency of a fluid-structural vibrating system is considered. As pointed out earlier, this work
discusses the analysis of a fluid-structure system with immovable interface. Thus, the design
domain is restricted only to the structural region with responses influenced by the enclosed
fluid. Then, for a solid-void design, the discrete optimization problem is enunciated as

Maximize ωi

Subject to: Vf −
∑n

i=1 Vixi = 0

xi = xmin or 1

(17)

where Vi is the volume of an individual element, Vf the prescribed total structural volume and
n is the total number of elements in the system. The binary design variable xi declares the
presence of a completely solid element (1) or the density of a void element with a small value
of xmin (e.g. 10−4). It is possible to note that maximizing the ith natural frequency is the same
that maximizing the eigenvalue ω2

i .



3.2. Material interpolation scheme and sensitivity numbers

The popular material interpolation function so-called SIMP (Simplified Isotropic Ma-
terial with Penalization) demonstrated to be not viable for vibrating problems since a high
ratio between the penalization on mass and stiffness causes artificial vibration modes in low-
density regions [20]. For the soft-kill BESO method developed by Huang et al. [15], to keep
the ratio between mass and stiffness constant when xi = xmin it is required that

ρ(xmin) = xminρ
1

E(xmin) = xminE
1 (18)

where ρ1 and E1 are the density and Young’s modulus of the solid material. The proposed
material interpolation scheme is expressed by

ρ(xmin) = xiρ
1

E(xi) =
[
xmin−xp

min

1−xp
min

(1− xpi ) + xpi

]
E1 (0 < xmin ≤ xi ≤ 1)

(19)

Thus, the derivatives of the global mass and stiffness matrices may be evaluated by

∂M

∂xi
= M1

i (20)

∂K

∂xi
=

1− xmin

1− xpmin

pxp−1
i K1

i (21)

where M1
i and K1

i are the elemental mass and stiffness matrices of the solid element. It is
reasonable to mention that once the fluid-structure interface does not change in this work, the
coupling matrices are constant and do not appear in the derivatives.

The derivative with respect to the design variable xi is the sensitivity of our objective
function (Eq. 16). This derivative is expressed by

dωi

dxi
=

1

2ωiΦT
i MΦi

[
2
∂ΦT

i

∂xi

(
K− ω2

i M
)

Φi + ΦT
i

(
∂K

∂xi
− ω2

i

∂M

∂xi

)
Φi

]
(22)

with the equation 15, the derivative may be simplified as

dωi

dxi
=

1

2ωiΦT
i MΦi

[
ΦT

i

(
∂K

∂xi
− ω2

i

∂M

∂xi

)
Φi

]
(23)

With the derivatives of K and M global matrices from equations 20 and 21 and con-
sidering that the eigenvector is mass-normalized (ΦT

i MΦi = 1), the sensitivity for the ith
natural frequency is

dωi

dxi
=

1

2ωi

ΦT
i

(
1− xmin

1− xpmin

pxp−1
i K1

i − ω2
i M

1
i

)
Φi (24)

For the evolutionary topology optimization, the discrete design variables (xmin and 1)
declare the element state. Again, even though our structure is enclosed to a fluid domain, our
design domain will consist to a solid-void region. Thus, the sensitivity numbers to rank the
elemental sensitivities are identical to the ones proposed by Huang et al. [15] as
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(25)

or when xmin tends to 0

αi = 1
p
dωi

dxi
= 1

2ωi
ΦT

i

(
K1

i −
ω2
i

p
M1

i

)
Φi xi = 1

= −ωi

p
ΦT

i M1
iΦi xi = xmin

(26)

It is important to point out that also when xmin tends to 0, xi = xmin for a void
element, which indicates that the element is not completely eliminated from the design domain
as proposed for the soft-kill BESO method [15,21].

4. IMPLEMENTATION MATTERS

Originally, the evolutionary topology optimization was based on a successive elimi-
nation of material from the initial design domain [12]. One of the last great developments in
the ESO-based methods was the bi-directional version, the BESO method [14]. The BESO
method allows material to be simultaneously removed and added in the domain until the vol-
ume constraint and a convergence criterion are satisfied. To rank all the elements, the sensitiv-
ity numbers from equation 26 are evaluated for each element. A mesh-independency filter is
applied all over the mesh by averaging the elemental sensitivity number with its neighbouring
elements. This filter scheme is similar to that used in [22] and it is a heuristic technique. First
of all, nodal sensivity numbers αn

j are created by averaging the elemental sensitivity numbers
of the jth connected elements. These nodal sensitivity numbers must be converted back into
elemental sensitivities by projecting a sub-domain Ψ with length scale rmin and center in the
ith element. All the nodes inside Ψ must have their nodal sensitivity numbers averaged back
to the ith elemental level as follows:

αi =

∑M
j=1w(rij)α

n
j∑M

j=1w(rij)
(27)

where rij is the distance between the node j and the center of the element i, M is the total
number of nodes in the structure and w(rij) is a weight factor that values rmin− rij for nodes
inside Ψ and 0 for outside nodes. Huang et al. [14] also showed that the above sensitivity
numbers should be averaged with its previous iteration numbers. It demonstrated to be a
effective way to avoid convergence problems.

For each iteration, a target volume Vk+1 is defined as

Vk+1 = Vk(1± ER) (28)

where ER is the evolutionary ratio and k the number of the iteration. ER is the percentage
of the initial design domain volume and increases or decreases Vk+1 towards a desired final
volume Vf . The addition volume is restricted to an addition ratio ARmax, which declares the
maximum allowable addition volume per iteration. Each target volume defines the number of



elements that the structure must have in the iteration k + 1. It designates a threshold where
the elements with higher sensitivity numbers should change from xmin to 1 and from 1 to
xmin for those with lower sensitivity numbers. Hence, the filter scheme plays an important
role. The projection scheme allows void elements (xmin) near highly solicited solid regions
to have a bigger sensitivity number and return to solid (1) condition. It also controls the size
of the members in the structure related to the rmin parameter. It is important to point out that
for all the elements of our fixed fluid domain a big sensitivity number is given. Thus, with
the projection scheme, all the solid elements near the fluid region will have a big averaged
sensitivity number. Therefore, these solid elements will never be eliminated from the domain,
which in practice ensures a constant and immovable fluid-structure interface.

Once the prescribed final volume is achieved, the target volume remains constant as
Vf . The algorithm evolves until a convergence criterion with a predefined tolerance τ is
satisfied. All the details about the BESO implementation may be referred to the paper [14].

5. NUMERICAL RESULTS

5.1. Beam with clamped ends

In this first example, we want to investigate the influence of a fluid domain in the
eigenmodes of a structure and in the topology optimization. A beam with clamped ends was
chosen as the design domain for natural frequencies maximization in a fluid-structure model,
as seen in Fig. 1. Hard-wall condition and a pressure input were imposed to the fluid part.

Fluid

Solid

pf = 0

n   pf = 0 n   pf = 0

 3000 mm 

 5
0
0
 m

m
 

 5
0

0
 m

m
 

Figure 1. Fluid-structure model.

The beam with dimensions 3000 × 500 mm is equally divided into 120 × 20 four-
node plane stress elements. The material is considered with Young’s modulus E = 70 GPa,
Poisson’s ratio ν = 0.3 and mass density ρs = 2700 kg/m3. The fluid domain has the same
dimensions and discretization of the solid domain, considering its mass density ρf = 1000

kg/m3 and the speed of sound in the fluid c = 1450 m/s. The whole model has unitary
thickness.

In order to analyze the eigenmodes of both solid and fluid domain and the interaction
between them, the eigenproblem was solved separated for only the solid domain, only the fluid
domain and the complete coupled system. Table 1 presents the first four natural frequencies
and eigenmodes for these models.



Table 1. First four natural frequencies and eigenmodes for the solid domain, the fluid domain
and the coupled fluid-structure model.

Solid domain Fluid domain Coupled system
ω (Hz) Eigenmode ω (Hz) Eigenmode ω (Hz) Eigenmode

1st 249.43 725.19 213.85

2nd 593.33 764.40 498.67

3rd 851.46 871.53 727.13

4th 1012.27 1025.57 819.94

Generally, the presence of a fluid field attached to a solid domain diminishes the struc-
ture’s eigenvalues. Thus, the coupled system has lower natural frequencies, which can be seen
in Tab. 1. Also, it is possible to observe that the fluid-structural eigenmodes are composed
by a combination of the solid and the fluid eigensolutions. Comparing them, we might con-
clude that, for this fluid-structure model, the first two coupled eigenmodes are predominantly
composed by the 1st and the 2nd structure’s eigensolutions. The 3rd and the 4th coupled eigen-
modes are predominantly composed by the first two fluid eigensolutions. This analysis is very
related to our objective function. It is reasonable that if we chose just the structural field as
our design domain, a coupled eigenmode with structural predominance must be chosen as
objective function.

For this fluid-structure model, the sensitivity numbers were calculated according to
Eq. 26. A sensitivity analysis of the initial design domain was carried out. Figure 2 presents
the sensitivity numbers distributions for the design domain’s elements for ω1 maximization
(a), for both ω1 and ω2 maximization (b) and for ω1 maximization of the structural model
without the fluid domain.

(a) (b)

(c)

Figure 2. Sensitivity numbers distributions for: (a) first natural frequency ω1 maximization,
(b) both first and second natural frequencies ω1 and ω2 maximization and (c) ω1 maximization
for the structural model without a fluid domain.



These sensitivity numbers indicate the relative elemental efficiency with respect to the
objective function. In Fig. 2, the elements with blue color have the lowest sensitivity numbers
and those red have the highest numbers. If we want to maximize ω2

n, it is reasonable to remove
the elements with the lowest sensitivy numbers. It implies an increase in Rayleigh’s quotient
(Eq. 16), where elements with lower compliance (ΦT

i KΦi) and higher significative modal
mass (ΦT

i MΦi) are eliminated (void condition) from the finite element model. As expected,
the sensitivity numbers for the fluid-structure model only demonstrated symmetry about the
vertical-axis, differently from the model without a fluid domain. This is most evident in Fig.
2(b).

For the solid design domain, a bi-directional topology optimization was carried out.
BESO started from the initial full design with an evolutionary ratio ER = 1% until a pre-
scribed volume Vf = 80%. The filter radius used was rmin = 75 mm and the penalty factor
was p = 1.5. The other parameters were set as xmin = 0.0001, ARmax = 5% and τ = 0.001.
Figure 3 presents the topologies obtained for two different analysis: (a) for ω1 maximization
and (b) for multiple ω1 and ω2 maximization. For these cases, Fig. 4 and 5 presents the
evolutionary history of the algorithm.

(a) (b)

Figure 3. Topologies with volume constraint 80% for: (a) first natural frequency ω1 maxi-
mization and (b) both first and second natural frequencies ω1 and ω2 maximization.
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Figure 4. Evolutionary history for ω1 maximization.

In general, for ω1 maximization, the first natural frequency increases and the second
and third natural frequencies decrease with material removal. The optimal design (given in
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Figure 5. Evolutionary history for both ω1 and ω2 maximization.

Fig. 3(a)) has a fundamental frequency ω1 = 239.36 Hz, which indicates an increase of
almost 12% from the initial full design. It is possible to notice that ω1 is convergent to an
almost constant value when the final volume fraction Vf is reached. It is also observed that the
second natural frequency becomes closer to the first one after some iterations (Fig. 4). It does
not happen when the maximization of both multiple ω1 and ω2 is considered, as can bee seen in
Fig. 5. In this case, the second natural frequency does not approach to the first one. However,
the increase in the fundamental frequency ω1 becomes only 7%. Figure 3(b) presents the
topology obtained for this multiple frequencies maximization. The first two eigenmodes of
each optimal design case are illustrated in Fig. 6.

(a) (b)

(c) (d)

Figure 6. Eigenmodes for the optimal design cases: (a) first and (b) second eigenmodes
for ω1 maximization and (c) first and (d) second eigenmodes for both multiple ω1 and ω2

maximization.

5.2. Water duct cross section

In this example, a simplified model of a water duct cross section was chosen. The
aim here is to explore a possible application of the BESO method including fluid-structure



interaction. A material with Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.3 and mass
density ρs = 2700 kg/m3 must hold a fluid domain with mass density ρf = 1000 kg/m3 and
speed of sound in the fluid c = 1450 m/s. This system is under free vibration. The model is
illustrated in Fig. 7.
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Figure 7. Fluid-structure model of a water duct cross section.

The BESO method was applied with an evolutionary ratio ER = 1% and a prescribed
final volume fraction Vf = 50%. The penalty factor used was p = 3 and the filter radius
rmin = 100 mm. The other BESO parameters were xmin = 0.001, ARmax = 5% and τ =

0.001. The model was discretized with square elements of size 25 mm and a total number of
elements of 10240. The aim here is to maximizae the fundamental frequency ω1. Figure 8
presents the rank of the sensitivity numbers and the topology obtained for this case.

(a) (b)

Figure 8. Sensitivity analysis (a) and topology for fundamental frequency ω1 maximization
(b) of a water duct cross section with volue fraction Vf = 50% of the initial design domain.

The optimal design has a fundamental frequency ω1 = 327.29 Hz. Figure 9 presents



the evolutionary history of the algorithm applied. It is noticed that when a fluid-structure
model with a fixed fluid domain is under frequency maximization, the value of the frequency
reaches a maximum value and then starts decreasing as showed in Fig. 9. This is directly
related with the properties of the solid material and the fluid as well the design volume frac-
tion, where the Rayleigh’s quotient is modified each iteration by removing solid elements and
keeping the fluid domain fixed.

Figure 9. Evolutionary history for ω1 maximization.

6. Conclusions

In this paper we have presented the BESO method applied to a class of fluid-structure
systems under free vibration. For this kind of problem, the sensitivity numbers were derived.
The objective function was the maximization of natural frequencies in structures interacting
with a fixed fluid domain. The fluid-structural system’s eigensolutions were discussed for both
solid and fluid domain separated and for the coupled model as well. It was pointed out that
if the design domain is only the solid field, the objective eigenvalue must be correspondent
to a fluid-structure eigenvalue with structural predominance. Also, it was noticed that for
topology optimization of structures interacting with a fixed fluid domain, the value of the
objective frequency reaches a maximum value and then starts decreasing due to relations
between the solid material and the fluid as well as the design volume fraction. In general, the
BESO method can be applied to this class of problems with good efficiency. For future works,
movable interfaces will be considered.
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