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Abstract. Observations are reported on isotactic polypropylene in uniazial tensile cyclic
tests with a mized program (oscillations between maximum strains ey.x and the zero min-
imum stress omin = 0 when €yay increase monotonically with number of cycles n). Ex-
perimental data demonstrate fading memory of deformation history: when tensile strain
€ exceeds maximum strain at the previous cycle, stress-strain curves become identical
for specimens subjected to different loading programs. These observations resemble the
Mullins effect: the stress-strain diagram under tension for a specimen subjected to cyclic
deformation with maximum strain €., rapidly reaches that for a virgin specimen when
strain € exceeds €nax. The difference between our findings and the Mullins phenomenon
1s that the stress—strain diagrams coincide not only under loading, but under retraction
as well, and the coincidence is observed for arbitrary cyclic deformation programs. A
constitutive model is derived in cyclic viscoplasticity of semicrystalline polymers with fi-
nite strains, and adjustable parameters in the stress-strain relations are found by fitting
observations. Ability of the model to predict the mechanical response of polypropylene
in multi-cycle tensile tests and to describe the fading memory phenomenon is confirmed
by numerical simulation.

Keywords: Semicrystalline polymers, Finite viscoplasticity, Cyclic deformation, Mullins
effect, Constitutive modeling.

1 INTRODUCTION

This paper deals with experimental investigation and constitutive modeling of the me-
chanical response of isotactic polypropylene in multi-cycle uniaxial tensile tests with a
mixed deformation program (oscillations between maximum strains €,,, and the zero
minimum stress oy, = 0 when €., increases monotonically with number of cycles n).
Observations reveal the fading memory phenomenon: when strain € exceeds maximum
strain at the previous cycle €,.x, the stress-strain diagram becomes independent of de-
formation history. Unlike the Mullins phenomenon [3] (coincidence of loading paths of
stress-strain curves for virgin and pre-loaded specimens at € > €y, ), our experimental
data demonstrate that unloading paths are identical as well, and the coincidence of



stress-strain diagrams is not affected by deformation program (stress-controlled, strain-
controlled, or mixed), type of loading (tension with a constant strain rate or creep), and
conditions of unloading (total retraction to the zero minimum stress or partial retraction
to a positive stress).

The experimental data provide a challenge for constitutive modeling: on the one
hand, they reveal fading memory of deformation history in cyclic tests with increasing
maximum strains, while on the other, they show that under a cycle of loading-retraction
down to the zero stress, substantial (comparable with maximum strain under stretching)
irreversible strains arise, which means that some memory is preserved in semicrystalline
polymers. This implies that conventional stress—strain relations for the description of
Mullins’ effect [1,2,4,6-9] are inapplicable for the analysis of fading memory, and more
sophisticated constitutive equations are required.

The objective of this work is three-fold: (i) to report experimental data on
polypropylene in multi-cycle uniaxial tensile tests with mixed deformation program at
ambient temperature, (ii) to derive stress—strain relations in cyclic viscoplasticity with
finite deformations and to determine adjustable parameters in the constitutive equa-
tions by fitting the observations, (iii) to validate ability of the model to describe the
fading memory phenomenon and to predict the mechanical behavior of semicrystalline
polymers in multi-step cyclic tests by numerical simulation.

A two-step approach is applied for derivation of constitutive equations. At
the first step, stress—strain relations are developed for an individual cycle of loading—
retraction by means of the Clausius—Duhem inequality. These equations involve several
adjustable parameters that are treated as constants along each cycle of oscillations. At
the other step, some of these quantities are allowed to change with number of cycles,
and phenomenological relations are introduced for their evolution driven by damage
accumulation. As a measure of damage, specific plastic work is employed.

The following features of the constitutive model are worth mentioning:

1. Deformation gradient for plastic deformation is split into two components that
describe irreversible deformations in the amorphous and crystalline phases.

2. Strain energy density is treated as the sum of mechanical energy stored in the
matrix (this energy depends on principal invariants of the Cauchy—Green tensor
for elastic deformation) and the energy of interaction between the matrix and
crystallites (that depends on principal invariants of the Cauchy—Green tensor for
plastic deformation in the matrix).

3. Under multi-cycle tensile deformation with increasing maximum strains €yay(n),
the stress—strain diagram is split into three groups of segments corresponding to (i)
stretching (strain e increases and plastic strain ¢, exceeds maximum plastic strain
at the previous cycle €,max), (ii) unloading (strain decreases), and (iii) reloading
(€ increases, but €, remains lower than € max)-

The exposition is organized as follows. Observations on isotactic polypropylene
in multi-step uniaxial tensile cyclic tests at room temperature are reported in Section
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Figure 1: Stress o versus strain e. Symbols: experimental data in cyclic tests (o — T-01;
* — T-10).

2. Constitutive equations in cyclic viscoplasticity of semicrystalline polymers with finite
strains are derived in Section 3. Adjustable parameters in the stress—strain relations are
found in Section 4 by fitting the experimental data. Results of numerical simulation are
discussed in Section 5. Concluding remarks are formulated in Section 6.

2 EXPERIMENTAL RESULTS

Medical grade of isotactic polypropylene Bormed HD 810 MO (density 0.91 g/cm?, melt
flow rate 10 g/10 min) was purchased from Borealis AG (Austria). Dumbbell specimens
for mechanical tests (ASTM standard D—638) with cross-sectional area 10.1 mmx4.2
mm were molded by using injection-molding machine Arburg 320C.

Uniaxial tensile tests were conducted at room temperature by means of universal
testing machine Instron—5569 equipped with an electro-mechanical sensor for control of
longitudinal strains. Tensile force was measured by 5 kN load cell. The engineering
stress o was determined as the ratio of axial force to cross-sectional area of undeformed
specimens.

The experimental program involved five series of cyclic tests. Each test was
carried out on a new specimen and repeated by twice. Observations revealed good re-
producibility of measurements: deviations between stresses measured on different spec-
imens did not exceed 3%. Tests were carried out with cross-head speed 10 mm/min

—1 This strain rate was selected to

that corresponded to strain rate ¢ = 1.7 - 1073 s
ensure that maximum strains in each cycle of multi-cycle deformation programs were
reproduced with high accuracy (deviations between their real and programmed values
did not exceed 0.002).

The first series involved four tests with N = 1, 3, 5, and 10 cycles, maximum

strains €pax(n) = 0.15n/N, and minimum stress o,;, = 1 MPa. This stress was chosen
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Figure 2: Stress o versus strain e. Symbols: experimental data in cyclic tests (o — T-01;
x — TL-075; x — TL-125).

instead of o, = 0 to avoid buckling of specimens. In each test, a specimen was
stretched up to the first maximum strain €pax (1), unloaded down to the minimum stress
Omin, reloaded up to the second maximum strain €, (2), unloaded down to the minimum
stress omin, etc. These tests are designated as T-01, T-03, T-05, and T-10, where the
last two digits stand for number of cycles.

The second series involved two tests with maximum strains €p,..(1) = 0.05 and
€max(3) = 0.15 (the same as in program T-03), and maximum strains at the second cycle
0.075 and 0.125. Unlike test T-03, after retraction at the third cycle, cyclic deformations
proceeded with increment of maximum strain 0.015 (which means that loadings and
unloadings were carried out with maximum strains €p.x(4) = 0.165, €nax(5) = 0.18,
€max(6) = 0.195, €1ax(7) = 0.21, etc. up to breakage of specimens which occurred after
N = 11 and 12 cycles, respectively). These tests were designated as TL-075 and TL-125,
where the digits denote maximum strains at the second cycle.

Observations in these two series of tests are employed to find material parameters
in the stress—strain relations. Other tests were conducted to reveal characteristic features
of the fading memory phenomenon.

The third series consisted of a test with N = 3 cycles, maximum strains €;,.x(n) =
0.15n/N and minimum stress oy, = 10 MPa. This test was performed to examine the
influence of minimum stress on fading of memory and was designated as T-03-10.

The fourth series involved two tests with the following program: stretching up
to maximum stress opay, creep flow with this stress for . = 5 min, unloading down to
minimum stress oy, = 1 MPa, reloading up to the same maximum stress oyax, creep
flow with this stress for t. = 5 min, unloading down to minimum stress o,;, = 1 MPa,
reloading up to maximum strain €,,, = 0.15, and retraction down to minimum stress
Omin = 1 MPa. Cyclic tests interrupted by two intervals of creep were performed with
omax = 15 and 20 MPa. These tests were conducted to evaluate the effect of creep on
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Figure 3: Stress o versus strain e. Symbols: experimental data in cyclic tests (o — T-01;
« — T-03; » — T-03-10).

the fading memory phenomenon and were designated as TC-15 and TC-20, where the
last digits stand for tensile stress at which creep was performed.

The fifth series involved two tests in which specimens were subjected to multi-
cycle deformation with mixed (N = 50 cycles of oscillations between maximum strain
€max = 0.05 and minimum stress oy, = 1 MPa) and stress-controlled (N = 100 cycles of
ratcheting between maximum stress op,,x = 20 MPa and minimum stress o,,;, = 1 MPa)
programs. When pre-loading programs were completed, the specimens were immediately
stretched up to maximum strain €,,, = 0.15 and unloaded down to minimum stress
Omin = 1 MPa. These tests were carried out to examine the influence of cyclic pre-
loading on fading of memory and were designated as TP-050 and TP-100, where the
digits denote number of cycles at pre-loading.

The fading memory effect is illustrated in Figures 1-6 where engineering stress o
is plotted versus engineering strain e. Figure 1 shows that loading and unloading paths
of stress—strain curves coincide along the last cycle of oscillations for a virgin specimen
and a sample subjected to 9 cycles of pre-loading with increasing maximum strains.
Figure 2 demonstrates that when specimens are subjected to deformation programs that
differ along the first N; = 2 cycles and coincide afterwards, their stress—strain diagrams
become identical starting from the (N7 4+ 1)th cycle, and this property is independent
of whether cyclic deformation is performed with small or large strains. Figure 3 reveals
that coincidence of loading—unloading curves along the last cycle of oscillations occurs
independently of whether total (down to oy, = 0) or partial (down to a positive stress
omin) retraction was conducted. According to Figure 4, loading and unloading paths of
stress—strain curves become identical along the last cycle of oscillations independently
of which type of loading (stretching or creep) leads to growth of maximum strains under
pre-deformation. Figures 5 and 6 show that cyclic pre-loadings with various programs
(mixed and stress-controlled) do not affect coincidence of stress—strain diagrams along
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Figure 4: Stress o versus strain e. Symbols: experimental data in cyclic tests (o — T-01;
x — TC-15; % — TC-20).

the last cycle of deformation.

Experimental stress—strain diagrams in tests T-01, T-03, T-05, T-10, TL-075,
and TL-125 are depicted in Figures 7-12. These observations are employed in Section
4 for determination of adjustable parameters in constitutive equations.

30.0

MPa

0.0

0.0 € 0.16

Figure 5: Stress o versus strain e. Symbols: experimental data in cyclic tests (o — T-01;
* — TP-050).
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Figure 6: Stress o versus strain e. Symbols: experimental data in cyclic tests (o — T-01;
% — TP-100).

3 CONSTITUTIVE MODEL

Derivation of constitutive equations in cyclic viscoplasticity of semicrystalline polymers
is performed within the framework of finite deformations (the linear theory is inappli-
cable as maximum strains in tests TL-075 and TL-125 reach about 30%). A two-step
approach is applied to develop a constitutive model. At the first step, stress—strain
relations are derived for the mechanical response under an arbitrary three-dimensional
deformation. At the other step, some parameters in the constitutive equations (that are
treated as constants in approximation of a stress—strain diagram for an individual cycle)
are allowed to evolve with number of cycles being driven by damage accumulation.

To reduce the number of experimental constants, a semicrystalline polymer is
treated as an isotropic, incompressible, viscoplastic medium. With reference to the
multiplicative decomposition formula, the deformation gradient for macro-deformation
F is presented in the form

F=F. F,, (1)

where F, and F,, are deformation gradients for elastic and plastic deformation, and
the dot stands for scalar product. Differentiating Eq. (1) with respect to time ¢ and
introducing velocity gradients

L=F-F! L=F, F! 1,=F, F! (2)
we arrive at the formula
L=L.+L,, Lp:Fe-lp-Ffl. (3)

Tensor 1, stands for velocity gradient for plastic deformation in the unloaded configura-
tion, and L, denotes the same velocity gradient in the actual configuration. Introducing
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Figure 7: Stress o versus strain €. Circles: experimental data in test T-01. Solid line:
results of numerical simulation.

rate-of-strain tensors for macro-deformation D, elastic deformation D,, and plastic de-
formation Dy,

1 1 1
D= (L+L7), D.= (L+L]), Dy= (I, +L) (4
where T stands for transpose, we find from Eq. (3) that
D =D, +D,, (5)

where 1
5(Fe 1, FOU+FOTAL-FD). (6)

To account for inhomogeneity of a semicrystalline polymer (where spherulites

D, =

are randomly distributed in an amorphous matrix), the deformation gradient for plastic
deformation F, should be split into two components, F, and F., that characterize
plastic flow in the amorphous and crystalline phases, respectively. When one of these
phases governs plastic deformation in the other, this can be easily done by setting
F, = F,, - Fyc or F, = F,. - F,,, following Eq. (1). As no experimental data are
available for semicrystalline polymers confirming subordination of plastic deformation
in one phase with respect to that in the other, plastic flows in these phases are treated
as independent. To express F, in terms of F,,, and F,, it is postulated that the velocity
gradient 1, equals the sum of velocity gradients for corresponding plastic deformations

1, =L + 1. (7)
Under the conventional hypothesis that the plastic spins vanish,

lpa - lga = dpa’ IPC - 111—0 = dpc’ (8)
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Figure 8: Stress o versus strain €. Circles: experimental data in test T-03. Solid line:
results of numerical simulation.

we find from Eq. (7) that

Combination of Eqgs. (6)—(9) implies that
Dy, = Dpa + Dy, (10)
where
2Dy, =F.-dp. -F,'+F."-d.-F!, 2D, =F.-d,. - F.'+F,"-d,.-F!. (11)
Introducing the Cauchy—Green tensors for elastic deformation
B.=F.-F/, C.=F/.F, (12)
we find from Eq. (11) that
Co-dpa+dpa-Ce=2F! -D,,-F,, C.-dpc+dp-Ceo=2F! D, -F.. (13)

Given a velocity gradient 1,,, the corresponding deformation gradient F, is defined as
a solution of the differential equation
Fpo =L - Fpa (14)

pa pa

with the initial condition F,,(0) = I, where I stands for the unit tensor. Setting

By, =F,. F/| (15)

pa’

and differentiating Eqgs. (12) and (15) with respect to time, we find from Egs. (2), (8),
(14) that
B.=L.-B.+B. L], B, =dp B+Bp-d (16)
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Figure 9: Stress o versus strain e. Circles: experimental data in test T-05. Solid line:
results of numerical simulation.

The first principal invariants of the Cauchy-Green tensors B, and By, read
Jie =B 1, Jipa = Bpa 1 I, (17)

where the colon denotes convolution. Differentiating Eq. (17) with respect to time and
using Egs. (5), (10), (13), (16), we arrive at the formulas

Jie=2B.: (D —Dpo) —2Cc i dpay,  Jipa = 2Bt dpa (18)
The following hypotheses are introduced:

1. Strain energy density W equals the sum of strain energy density of the amorphous
matrix (that depends on the first principal invariant Jj, of the Cauchy—Green ten-
sor for elastic deformation) and the energy of interaction between polymer chains
and crystallites (that depends on the first principal invariant Jyp, of the Cauchy—
Green tensor for plastic deformation in the matrix). Adopting neo-Hookean ex-
pressions for both functions, we write

—_

1 _
W = §M(<]1e - 3) + EN(lea - 3)7 (19)
where p and fi stand for elastic moduli.

2. The rate-of-strain tensor for plastic deformation in crystallites D, is proportional
to that for macro-deformation D

D,. = ¢D, (20)

where ¢ is a non-negative scalar function.
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Figure 10: Stress o versus strain e. Circles: experimental data in test T-10. Solid line:
results of numerical simulation.

Differentiating Eq. (19) with respect to time and using Eqgs. (18), (20), we find
that
W= u[(l — ¢)B.:D — (C. — BB,,) : dpa] (21)

with R = i/p.
The Clausius—-Duhem inequality for isothermal deformation of an incompressible
medium reads
Q=-W+X':D>0, (22)
where () stands for internal dissipation per unit volume and unit time, 3 is the Cauchy
stress tensor, and the prime stands for the deviatoric component of a tensor. Inserting
Eq. (21) into Eq. (22) and bearing in mind that D and d,, are traceless tensors, we
find that Eq. (22) is satisfied for an arbitrary deformation program, provided that (i)
the Cauchy stress tensor reads
% = —pL+ (1 — 6)B., (23)
where p denotes an unknown pressure, and (ii) the rate of strain tensor in the matrix
dp. obeys the equation
1

1
dpu = 5P [Ce ~ RBp— < (Jie = Rlea)I], (24)

where P is an arbitrary non-negative function.
Insertion of Eq. (24) into Eq. (16) yields

. 1 1
Bpa = P[§(Ce ’ Bpa + Bpa ’ Ce) - g(‘]le - RJQPa)BPa o RBIQJa} : (25>

Differentiating Eq. (12) with respect to time and using Egs. (2), (4), (5), (10), (13),
(20), (24), we find that

. 1 1
Co=2(1=9)F] -D-Fo+ P|SR(By.- Cot Ce- Byu) + 5 (1o = RI1pu)Ce— C2|. (26)
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Figure 11: Stress o versus strain e. Circles: experimental data in test TL-075. Solid
line: results of numerical simulation.

For an arbitrary three-dimensional deformation, Eqs. (23), (25), and (26) should
be accompanied by kinematic equations for tensors F, and B.. For deformations with-
out rotation (in particular, for uniaxial tension, which is the subject of experimental
investigation), these equations form a closed set of stress—strain relations.

Uniaxial tension of an incompressible medium is described by the formulas

r1 = kX, Ty = /f%XQ, T3 = ki%Xfﬂa (27)

where { X} and {z;} are Cartesian coordinates in the reference and actual states, and
k = k(t) stands for elongation ratio. It follows from Eq. (27) that

F = k:elel — k’_%(egeg + 6383),
B = C= ]6‘29181 — ]{7_1(8262 + 8363),
k 1
D = E[elel — 5(6262 + 6383)], (28)

where e,,, (m = 1,2,3) are base vectors of the Cartesian frame in the reference state.
Assuming tensors F. and F,, to be determined by Eq. (28) with coefficients k. and
kpa, respectively, and inserting these relations into Eqs. (25) and (26), we arrive at the

equations
_ Pkpa 3 3
kpa = g[k—e(ke—l)—R(kpa—l)]>
. -k Pk, rk
ke = (1—@)kb— — =2 |22k —1)—R(E, —1)]. 2
(1= ks = 75 [0 = 1) = R, — 1) (29)

Substituting Eq. (28) for B, into Eq. (23) and taking into account that under uniaxial
tension, the Cauchy stress tensor reads ¥ = Ye;e;, we find that the engineering stress
o = X/k is given by

k-1

o=pu(l—9) T

(30)
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Figure 12: Stress o versus strain e. Circles: experimental data in test TL-125. Solid
line: results of numerical simulation.

Equations (29) and (30) provide stress—strain relations for uniaxial tension of semicrys-
talline polymers with an arbitrary program k(t). These equations involve one material
parameter ;1 and three adjustable functions, ¢, P, and R. The following difference be-
tween these function is to be mentioned: (i) P is included into kinematic equations (29)
only, which means that it can accept arbitrary values when k is positive or negative, (ii)
¢ is also included into Eq. (30), which implies that it ought to be a continuous function
of elongation ratio k, (iii) in the derivation of the constitutive equations, coefficient R
was treated as a constant, which means that it can adopt different, but constant values
along tension and retraction paths.

To introduce kinetic equations for the material functions, the entire stress—strain
diagram for cyclic deformation is split into three groups of intervals corresponding to (i)
stretching (k increases and elongation ratio for plastic deformation k, = k/k. exceeds
its maximum value kpmax(n — 1) at the previous cycle of oscillations), (ii) unloading (k
decreases), and (iii) reloading (k increases, but k, remains lower than kpmax(n — 1)).
According to this approach, the first cycle of deformation involves only stretching up to
the first maximum elongation ratio kpax(1). The other cycle consists of unloading down
t0 Opmin, reloading from o, up to the point where k, = kymax(1), and stretching up to
kmax(2). Unloading, reloading, and stretching for subsequent cycles of deformation are
defined in a similar manner.

Confining ourselves to the analysis of cyclic tests with a constant cross-head
speed (|k| remains constant) and introducing the notation S = P/|k|, we present Egs.
(29) in the form

dkpa STkpa,, 3 3
dk - :l:?) [ ke (ke 1) R(kpa 1)]7
dk ke S ke rk ‘
© — (l—g)e 2 e T3 1y R(KS 1 1
% = 0-0F T [P0 -n - RO - 1), (31)
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where the sign “+” corresponds to intervals with k > 0, the sign corresponds to
intervals with k < 0, and the coefficients R and S adopt non-negative values R, Ry, R3
and 51, Sy, S3 under stretching, unloading, and reloading, respectively.

Evolution of the function ¢ is governed by the differential equation
6= A(l—¢) (32)

with the initial condition ¢(0) = 0. The coefficient A in Eq. (32) adopts non-negative
values Ay, Ay, A3 along intervals of stretching, unloading, and reloading. To reduce the

number of material constants, we suppose that changes in ¢ occur under stretching only
(A = A3 = 0), which implies that Eq. (32) is presented in the form

d d

ﬁ =a;(1—¢)* (stretching), d_i =0 (unloading and reloading) (33)
Stress—strain relations for cyclic tensile deformation with finite strains (30), (31),

(33) involve eight parameters: pu, aj, Ry, Si (stretching), Rs, So (unloading), and Rj,

S (reloading). To minimize the number of experimental constants, we presume that

1. Coefficients p, ai, S; are material constants (these quantities accept the same
values for each cycle of oscillations).

2. Coefficients Ry, Ry, R3 and Sy, S3 are uniquely determined by specific plastic
work W}, at the instants when corresponding intervals of stretching, unloading
and reloading start.

0.0 W, MPa 12.0

Figure 13: Parameters R;, Rs, Rs versus plastic work W,. Symbols: treatment of
observations in cyclic tests (o — T-10; e — T-05; * — T-03; x — T-01; A — TL-075; V —
TL-125). Solid lines: approximation of the data by Eq. (35).
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Figure 14: Parameters Sy, S3 versus plastic work W,,. Symbols: treatment of observa-
tions in cyclic tests (o — T-10; @ — T-05; * — T-03; » — T-01; A — TL-075; v — TL-125).
Solid lines: approximation of the data by Eq. (36).

For an arbitrary three-dimensional deformation, the specific plastic work W), is
defined as a solution of the differential equation

W,=%":D,
with the initial condition W},(0) = 0. Under uniaxial tension, this equation is simplified

).

pa

W, = a(qsl;; + (34)

The effect of W}, on parameters R; and S; is described by the phenomenological relations

R, = R)+ RIW,,
Ry = R)+ Rjexp(—apW/i™),
Ry = R}+ Ryexp(—agsW/i™) + R3W, (35)
and
Sy =S89+ 5, exp(—aSQWpﬁSQ), Ss =S89+ 53 exp(—ag;ngS?’), (36)

Equations (35) and (36) imply that Ry, Sz, and S3 decrease with number of cycles.
This decay is attributed to damage accumulation in the amorphous phase (nucleation
and growth of micro-voids and micro-cracks). On the contrary, parameters R; and Rg3
increase with number of cycles (at least, after an initial period of decay). This increase is
associated with damage growth in the crystalline phase (fragmentation of weak lamellae
and alignment of broken lamellar pieces along the loading direction [5]).

4 FITTING OF OBSERVATIONS

To find adjustable parameters in the constitutive equations, we approximate the exper-
imental data depicted in Figures 7-12. Each set of observations is matched separately.
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Figure 15: Stress o versus strain €. Solid lines: results of numerical simulation for cyclic
tests with €pax(n) = 0.2n/N. A: N =10; B: N = 20.

We begin with fitting the stress—strain diagram under stretching depicted in
Figure 7. We fix some intervals [0, a°], [0, R°], [0, S°], where a;, R; and S are located,
and divide each of these intervals into J = 10 sub-intervals by the points a(¥ = iAa,
RY) = jAR, SO = IAS with Aa = a°/J, AR = R°/J, AS = S°/J (i,5,l =0,1,...,J—
1). For each triplet {a®, RY) SO} Egs. (31), (33) are integrated numerically by the
Runge-Kutta method with step Ak = 10~*. The modulus p is calculated by the least-
squares technique from the condition of minimum of the function

F =3[ — ]

where summation is performed over all elongation ratios k,, at which observations are

num

reported, 0P is the engineering stress measured in the test, and o is given by Eq.
(30). Coefficients a;, Ry and S are found from the condition of minimum of F on
the set {a®, RU), SO} Afterwards, the initial intervals are replaced with new intervals
[a; — Aa,a; + Aal, [R1 — AR, Ry + AR], [S1 — AS, S; + AS], and the calculations are
repeated. The best-fit values of u, a;, and Sy read p = 0.57 GPa, a; = 8.0, S; = 84.0.

The experimental stress—strain curves depicted in Figures 7-12 are matched by
means of the above algorithm. Each path (stretching, unloading, and reloading) is fitted
separately with the help of Eqgs. (30), (31), (33). The best-fit adjustable parameters
Ry, Ry, R3 and S, S3 are plotted versus specific plastic work W, in Figures 13 and 14
(W, is determined by integration of Eq. (34) together with the stress—strain relations).
The data are approximated by Egs. (35) and (36) with coefficients calculated by the
method of nonlinear regression.

Results of numerical simulation are presented in Figures 7-12 together with the
experimental stress—strain diagrams. These figures demonstrate that the constitutive
model correctly describes the viscoplastic behavior of polypropylene in cyclic tests with
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Figure 16: Stress o versus strain €. Solid lines: results of numerical simulation for cyclic
tests with €pax(n) = 0.3n/N. A: N =30; B: N =20; C: N = 15.

increasing maximum elongation ratios.

5 NUMERICAL SIMULATION

To demonstrate ability of the model to predict the fading memory effect, integration
of constitutive equations (30), (31), (33) is performed for uniaxial cyclic tests with
increasing maximum strains and minimum stress o,;, = 1 MPa. Simulation is conducted
for tests with the following deformation programs (i) €max(n) = 0.2n/N with N = 10
and 20, and (ii) €pax(n) = 0.3n/N with N = 15, 20, and 30. Results of numerical
analysis are depicted in Figures 15 and 16. These figures show that the model (i)
predicts reasonably (without overshoots and undershoots) the stress—strain diagrams,
(ii) describes adequately fading memory of deformation history (the last unloading paths
of the stress—strain curves practically coincide).

6 CONCLUSIONS

Experimental stress—strain diagrams are reported for isotactic polypropylene in multi-
step cyclic tensile tests with monotonically increasing maximum strains. Observations
demonstrate fading memory of deformation history: when specimens are subjected to
two deformation programs that differ along the first n—1 cycles and coincide afterwards,
the corresponding stress—strain curves become identical starting from the nth cycle.

A constitutive model is developed in cyclic viscoplasticity of semicrystalline poly-
mers with finite deformations. Derivation of the constitutive equations is based on
the following assumptions: (i) plastic deformation of a semicrystalline polymer is split



into two components reflecting inelastic deformations in the crystalline and amorphous
phases, (ii) strain energy density of a polymer equals the sum of mechanical energies
stored in chains and the energy of their interaction, (iii) the rate-of-strain tensor for
plastic flow in crystallites is proportional to that for macro-deformation, (iv) a flow rule
for plastic deformation of the amorphous matrix is deduced from the Clausius—Duhem
inequality.

The stress—strain relations involve eight adjustable parameters that are found
by fitting the experimental data. It is demonstrated that the specific plastic work
accounts adequately for the effect of damage accumulation on the mechanical response
of semicrystalline polymers.

Ability of the model to describe the viscoplastic behavior of semicrystalline poly-
mers in multi-step cyclic tests with various deformation programs and to predict the
fading memory phenomenon is confirmed by numerical simulation.
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