Blucher Mechanical Engineering Proceedings
May 2014, vol. 1, num. 1
www.proceedings.blucher.com.br/evento/10wccm

’| O'“ World Congress on
Computational Mechanics
8-13 July 2012 + Séo Paulo * Brazil

POROELASTIC BEHAVIOR OF CRACKED ROCKS AS HOMOGENIZED MEDIA
S. Maghous

Department of Civil Engineering, Federal University of Rio Grande do Sul, Porto Alegre,
Brazil (samir.maghous@ufrgs.br)

Abstract. The formulation of macroscopic poroelastic behavior of a cracked rock is investi-
gated within the framework of a micro-macro approach. The micro-cracks are modeled as
interfaces and their behavior is modeled by means of generalized poroelastic state equations.
Starting from Hill’s lemma extended for a medium with cracks and extending the concept of
strain concentration to relate the crack displacement jump to macroscopic strain, the overall
poroelastic constitutive equations for the cracked rock are formulated. The analysis empha-
sizes the main differences and similarities of the resulting behavior with respect to that char-
acterizing ordinary porous media. It is shown that, unlike ordinary porous media, conditions
on the poroelastic parameters of cracks are required for the macroscopic drained stiffness to
entirely define the poroelastic behavior. This is achieved, for instance, if the crack network is
characterized by a unique Biot coefficient. Extension of the analysis to non-linear poroelas-
ticity is also outlined. Finally, the theoretical formulation is applied to a particular case of
cracked rock for which explicit expressions of the overall poroelastic parameters are derived.
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1. INTRODUCTION

Discontinuities are frequently present at different scales in rock masses and represent a
fundamental component of rock deformation and transport of fluid or contaminants through
rock masses. Usually referred to as joints, they correspond to zones of small thickness along
which the mechanical and physical properties of rock matrix degrade. The presence of joints
constitutes the key weak point for stability and safety of many engineering works, such as
dam foundations, excavation of tunnels and caverns, oil and gas production, geothermal en-
ergy plants, repositories for toxic waste, etc. From transport properties viewpoint, joints
within rock masses represent preferential channels for fluid flow and such, may be contribu-
tors to rapid transport of fluid and contaminants through rock masses, particularly when the
permeability of the rock matrix is low.

As a consequence, comprehensive constitutive modeling of rocks requires accounting
for the poromechanics coupling which occurs at the scale of joints and its implication at the
scale of the rock structure. Primarily focus should be on the behavior modeling of the rock



material as a porous medium with specific treatnf@nthe coupled hydromechanical cou-
pling governing the joint deformation.

Strength, deformation and permeability couplingauk joints have been widely inves-
tigated during the previous decades, and a largaiahof experimental works and models
are available in the literature. Representativekeanclude references [2,4,5,11,18,20], to cite
a few.

Most research concerning hydromechanical couphmgck joints has been, however, fo-
cused on the connection between normal and/or $beding and unloading and their effect
on joint permeability. As a matter of fact, thesdecal models, which are based on the cubic
law and related modified forms, account for thegpeechanical coupling only by incorporat-
ing the aperture variation of joints induced by laggpstresses in the calculation of permeabil-
ity. The effect of pressure of fluid in the intétisi space of rock joints seems to be tradition-
ally neglected or not properly considered. A fydromechanical modeling of joints behavior
is seldom reported in the literature [3,8].

Several works have recently been devoted to jdirdek deformation in poroelas-
ticity, nevertheless, these works are in their migjonacroscopic-scale approaches that con-
sider the joints as particular geometry pores anda generalized poroelastic media, like it is
done in the present analysis.

In this context, the main purpose of this pap¢o iglarify the formulation of the linear poroe-
lastic behavior of a jointed rock regarded as adgenized medium. Starting from the local
behavior of rock matrix and joints modeled as galiwed porous media, the upscaling proce-
dure aims at analyzing the effect of fluid pressarthe interstitial space of rock joints on the
overall behavior of the jointed rock. Emphasis kbalput on the fundamental specificity of
the homogenized porous medium with respect to argliporous media. In particular, the
guestion related to connection between the macpisdoained stiffness and macroscopic
Biot coefficient and Biot tensor, will be discussed

The paper is concerned with the formulation ofrtfecroscopic state equations in
poroelasticity. In this respect, the non-linearexsp related to the irreversible behavior of
joints that are fundamental for the analysis okmoasses deformation are disregarded.

2. HILL'S LEMMA FOR THE JOINTED MEDIUM

Let Q (resp.Q,) denote the representative elementary volume (REYje current
(resp. initial) configuration of a homogeneous rowdtrix cut by a discrete distribution of
joints w=Uaq. The REV is chosen so as to be statistically sspretive of the rock medium;
in particulér, the characteristic size, shyof the heterogeneities (joints) is supposed to be
small with respect to the dimension, dayf the REV, which in turn is supposed to be small
as compared to the wavelengttof the macroscopic solicitation. Moreovérmust be suffi-
ciently smaller than the characteristic dimensianef the whole rock body. The previous
scale separation conditions may be summarizetl@d <L, < A.



The network of joints present within the rock mediis formed by long joints or short joints.
The adjective ‘long’ characterizes joints crossogtthe REV, while adjective ‘short’ refers
to joints with small extension when compared todize of the REV. More precisely, short
joints are in fact microfractures (or microcrackst are able to transfer stresses.
Regarding the situation of short joints, one ofplieposes of the present paper is to extend
the classical mechanical model of microcracks imnctvimo stresses are transferred across the
microcrack. It is worth noting that the concepREYV implies the scale separation between
its characteristic length and those of joints, nlgrtiee size of short joints or the average spac-
ing between long joints.

The rock matrix fills the domaif2 \ w, where symboh stands for the set difference.
Note that strains and stresses within the rock umedire defined on the rock matrix domain
Q\ wonly, and not on the whole REV. Throughout thegsapymbol(.) denotes the vol-
ume average over the rock matrix:

1
(y=—[ .dV (1)
|Q0| .[Q\w

At the scale of the REV (microscopic scale), eactht jis modeled as an interface, geo-
metrically described by a surfage, whose orientation is defined by a normal unitteec, .

At a smaller scale than the microscopic one, the j@ would be represented by a volume of
finite thickness with distinct upper and lower bdaries (surfaces) located at ande , re-

spectively (Fig. 1). The boundary of the rock nxatomprises that of the REV, i.6Q, as
well as the upper and lower boundaries of each,jp@ 0w = D' .

Letx be the position of a point af) at the scale of the REV. The displacement at poiigt
not defined in a unique way because of the relatisplacement of the surfaces and " .
At the scale below the microscopic onejs replaced by a segment paralleiic= n (%)

whose bounds arg [0 « and x" 0 «'. The displacement jJumiF(X)] is defined as:

[ER=8X) -&x)=£(3-& (3 (@)

The objective of this section is to adapt Hill'swlaa to the situation of a jointed me-
dium. The loading applied to the REV is definedhoynogeneous strain type boundary con-
ditions on the boundagQ, [21]:

&9 =Unx nxnag, 3)

whereDrepresents the macroscopic strain. We introducseédt®of displacement fields
which are kinematically admissible Wi@. By definition, it is the set of displacementdd&
&' continuous and differentiable d\ w and complying with the boundary condition (2).
Likewise,S denotes the set of statically admissible stredddio'. Defined inQ, they sat-
isfy the local momentum balance equattimg' =0 and the cantinuity of stress vectoilh,
when crossing jointaw . B B



Figure 1. REV of a jointed rock and loading coiudtis

For all g' of sets and ¢ of sets, it is readily obtained from integration by part

Qf(gh:en=[ e dv=[ £Toth dve] TIE de @
whereg' is the symmetric part ajrad$ . The stress vectar ' is defined by

T {T =-g'm alongy’ 5)

IT"=g'lh alongaw

Taking (3) into account as well as the continuityhe stress vectoo Th, when crossingy,
Hill's lemma in its classical form shows that

Jofmm av=jo)(gy: 0 ©)
Moreover, one has
[ 1@ ds=[ T'Z ds|[ _TF' ds| _TOE] )
0g™— — « - @ - @ —
Identifying at the scale of the REV the surfagewith &’ (i.e. @ =«"), and introducing the
notationT™ =T" =-T" =g 1h, one may write
J, T& ds=[, 0T o ®)

wheren=n along« . Combination of (4), (6) and (8) leads to thedwling equality:



(

IS}

'>:Q=<g':g'>+ﬁjw1'“q§'] ds ©)

which is the form of Hill's lemma extended to j@dtrocks. It is noted that'=(g") repre-
sents the macroscopic stress equilibrated by tieostopic stress field ' of 5. Hence, the

work of the macroscopic stress in the macroscopic stra@ comprises the contribution of

the internal forces within the rock matrix as wasdlthe work developed by the stress vector
acting on the joint in the relative displacementt®boundaries.
For a given second order symmetric tersahe uniform stress fieldr'= a is obvi-

ously statically admissible, that is, belongstdJse of (9) for any value o yields

Q=<g>+ﬁ [ €100 ds (10)

where symbd]S] stands for the symmetric part of dyadic prodég:ﬁ yj =(yv+yuy)/2.

j
Identity (10) physically means that the macroscspiaing is the sum of two contributions,

namely that of rock matrix strains and that of tispment jump along the joints.

Let us now comment on the assumption related thon@ogeneity of the rock matrix.
The latter should be understood as follows. Issuaned that the scale of the REV (i.e., mi-
croscopic scale) is such that the joints represenonly heterogeneities considered for the
medium. Accordingly, we shall designate by the tesok matrixthe composite material
made of intact rock phase including possible mizeterogeneities whose characteristic size
is smaller than the dimension of joints. Hence,rtick matrix can be regarded at the scale of
the REV, as a homogenized material whose behassuits from a preliminary homogeniza-
tion procedure accounting for the presence of mitacks within the intact rock (see for in-
stance references [7,13).

Remark Even homogeneous strain boundary conditionadapted in the present analysis)
are not in principle equivalent to homogeneousssti®mundary conditions; this equivalence is
implicitly assumed to be so what/ | tends to zero [12,15].

3. FORMULATION OF THE MACROSCOPIC BEHAVIOR IN THE D RY CASE

3.1. Behavior of the jointed rock constituents

We examine in this section the formulation of thecnoscopic elastic behavior in ab-
sence of interstitial fluid. The rock matrix is asged to be linearly elastic with fourth-order
stiffness tensor®. As regards the individual behavior of jointssiissumed that the corre-
sponding elastic domain iR*® does not reduce to vectdr=_0. Inside the latter domain, the
elastic behavior of joints is assumed to remaiedm at least within the range of considered



joint strains.‘The stiffness of joiny , relating the stress vector to the displacemanpjus
denoted byk':

(11)

with n=n andk = k' alongy .

At the scale adopted for the modeling, both long short joints are handled within the
same framework. They are modeled as interfaceshenassociated deformation is described
through a phenomenological latv= k. [¢] linking the stress vector and the displacement

jump. In this context, the joint stiffnegsis traditionally evaluated from laboratory tesésp

formed on rock specimen with a single joint. Byumat this phenomenological approach re-
lates the joint stiffness to the geometry and Elgsbperties of the joint only in a global
manner, which can be considered as a major liraitadf the approach.

Aimed to formulatek explicitly from the geometry and elastic propested the joint, concep-

tual models have been developed in the literafMra. scale smaller than that of the REV,
joints are regarded as rough surfaces in contaxrae locations. Basically, the geometry
characteristics of the joints such as the peakhteigf asperities are described by statistical
distributions and the rock fracture surface istedas rough elastic surface. Hertzian contact
theory is therefore used to analyze the deformatfdhe contacting asperities. The main
limitation of such approaches lies in the diffiguld estimate in practice the joint parameters
involved in the modeling.

Since the early works of Budiansky and O'Conr@ll § number of papers have
been devoted to the micromechanical approach tadganmduced by microcracks. On the
one hand, it enables to predict how the effectnaperties are affected by a set of micro-
cracks, including non linear effects associateth wrogressive cracks closure (see, e.g., [7]).
On the other hand, it also provides a quantitajweroach to the damage evolution related to
the propagation of microcracks (see for instaf8¢ed]). By contrast, macroscopic damage
models can only deal with these two issues in a@menological manner. One of the pur-
poses of the present paper is to extend the césamchanical model of microcracks in
which no stresses are transferred across the maaiacAs stated by the state equation of the
joint, the latter is able to transfer normal ashasltangential stresses. Nonetheless, large
strains in the joint take place and are represemyegidisplacement jump.

3.2. Behavior of the jointed rock constituents

Q being prescribed, we consider the elastic proldefmed on the REV subjected to

the loading defined by the boundary conditions T8 solution to this problem is the couple
(g,i‘) in 5x¢ and complying with (11). Clearly enough, and ¢ linearly depend on the

loading paramet@. This property is usually expressed through thecept of strain concen-



tration tensor, denoted here by the fourth-ordesdeA . By definition, the termA (x) :Q
represents the strain tengoat pointx corresponding to the load defined by (3). In other
words, A (X) is the link be_tween the local strasgx) in the rock matrix to the macroscopic
straing applied to the REV. Besides, the strain conceptrdensor also relates the local
stressé to the macroscopic strain:

g=c: A :Q (12)
The macroscopic stress being defined as the average), (12) yields :

s=cr:L] with  CM™=(c%:A) (13)

Likewise, concentration tensors are introduceithefollowing way to relate the com-
ponents of the displacement jump to the Ioa@g If the couple of vectorégi 1, ) consti-

tute an orthonormal frame of the plane tangent@t pointx (Fig. 2), the normal and tan-
gential components of are expressed as:

[€] =(an; D)n+(a‘:D)_t+(=a{':Q)_t alongw (14)

with n=n, t=t, andt'=t,' alongw . Tensor&g“, gt and gt'are respectively the concen-
tration tensors for normal and tangential displagetnumps of¢ .

Figure 2. Local frame for joind .

Due to the presence of the joints the average@ﬂé(@ is not valid in the jointed
REV as indicated by (10). Accordingly, the averdde) of the strain concentration tensor

over the rock matrix is not equal to the fourthesritlentity tensoil and thusC"™™ is not
equal to matrix stiffness of rock matriX. More precisely, using (14), we first obtain



[ﬂﬁQ:(QDDDQ" +_tESJ_nD=é+_tDS_rD=éj: [] (15)

Then, combining the average rule (10) and (15)de¢adhe equality

1

(A)=I-
9

[[nonOa #1000 d+t0 0 4] d (16)

As emphasized by (16), the discrepancy betw&eand I is due to the fraction of the macro-
scopic strain which localizes in the joints. Timesatropy of the elastic properties of a jointed
rock is directly taken into account through thenfsiorientation.

4. MACROSCOPIC STATE EQUATIONS IN THE CASE OF SATURATED JOINT
NETWORK

We now consider the situation where the connedid network is saturated by a fluid
at pressurep which is assumed to be uniform in the REV. Withpexg to the dry case, the
elastic behavior of the rock matrix is the sameefsre:g =c® ¢ in Q\w. The behavior
of the joints is replaced by a poroelastic formolain order to account for the effect of the
fluid pressure on the relationship between thesstuector acting on the joint and the corre-
sponding relative displacement. The poroelastite stquations for the joints are written in the
following form [3,8]

alongw=Uq (17)

where
a=a,, m=m , T =-g pn alongw (18)

Scalara, has the significance of a Biot coefficient for jbeit «w modeled as a generalized
porous medium. This means that the displacemerp jdihwhich represents the joint defor-

mation is controlled by the effective stress vedibra p n. As regards the second state
equation in (17) of the joint, it relates the joptre change per unit joint surfageo the fluid
pressurg and the joint displacement jurfg] . Scalarm represents the Biot modulus for

joint & . Physical interpretation as well as identificatfwrocedures of the above parameters
from appropriate laboratory tests are outlinedin [

The loading is now characterized by two parametes)ely the macroscopic stra@
and the fluid pressune. The solution inQ\ w to this problem defined by the loading mode

(g , p) and denoted by (P), is the stress figldn 5 and the displacement fielfl in € re-



lated by the state equations of the medium caestiso =c* £ in Q\w and (17). Due to

the linearity of the material behavior expressethie form, the superposition principle can
be used to decompose problem (P) into two elemgptablems (P1) and (P2) respectively

defined by the Ioadin#] y P= 0) and (Q:O , p) as shown in Figure 3. (P1) corresponds

to the dry case analyzed in sect®)mwhereas (P2) corresponds to pressurized joimtarkt
and prevented macroscopic strain.

&=Lx &=Lx .
\/ { -
- T
(P) (P1) (P2)

Figure 3. Decomposition of problem (P) into twerakntary problems (P1) and (P2).

Let us designate bgl, £ and g, the displacement, strain and stress fields irRIBY
corresponding to problem (P1) and @/, g, and g, the displacement, strain and stress

fields in the REV corresponding to problem (P2)he fields solution to problem (P) can
simply be obtained a§:§1+§2, E=€ t€E, and g=0+0,.

4.1. First state equation

(P1) being the problem analyzed in secBprthe following relationships thus holds

z =(g)=c":[] with  C™"=(c%:A) (19)
where the strain concentration tenAt.oreIatesg‘1 to the loading paramet@ in problem (P)

g,=a00:L (20)

Regarding problem (P2}, =( g, ) represents the macroscopic stress associategoivith
interstitial fluid pressur@ which is required to prevent the appearance ofraagroscopic



strain. In order to evaluagg , Hill's lemma (9) is used twice. First, it is aigpl with the cou-

ple(glzgz’ é':{l);

(0,:0%(g, e0+ g i) { kg) +17) o @y
5 0

=2

Hill's lemma is then applied with the coué)lg' =g, §'=¢, ) :
0=(g, g>+ j[g][kmq ds (22)

since the displacement fieQ_Lfi2 in problem (P2) is kinematically admissible wittetmacro-
scopic straingz 0.

It follows from the state equation of the rock mathat g.= <c5:£1 and g, = cs:gz, which in
turn ensure equality

(g,:£)=(g,’¢) (23)

Combination of (21), (22) and (23) yield

5, TP1E) dS 24
z:U=pyll

Recalling thafT * = -a pn alongw, and substituting into (21) the displacem[s@l] in the
dry problem (P1) by its expression (14), one olstain

M

=2 =

D:—pﬁjwagn dS:Q (25)

and since the macroscopic stress in problem (HBYependent o@, (25) finally reads

=-pB (26)
with

B=_[ ad ds 27

The first macroscopic state equation is obtainechf(19) and (26), by superposition

z =3 +z =c™:L]-pB (28)



Similarly to ordinary porous media, the macrosccmiaing is controlled in poroelasticity
by an effective Biot stress + p B. The tensoB defined in Eqg. (27) can be interpreted as the

tensor of Biot coefficients for the jointed mediufie anisotropy introduced by the joint ori-
entation is captured through that of the normakeoitration tensog”.

The limit case of closed joints can be charactdrlzgexpressing that the normal component
of the relative displacemeff] vanishes, which implies thg1 - 0. In such a situation, the

joint fluid pressure has no effect (i.B. - 0) on the relationship between the macroscopic

strain and stress within the elastic domain.

The fundamental difference between the jointed @uk an ordinary porous medium arises
when examining how the Biot tend®ris connected to the macroscopic elastic tensor of

drained moduliC"™™.
For an ordinary porous medium, the classical metatiip B = }:( I-(1-¢) ¢S Chom )
where @ is the porosity of the medium [40], shows thatriecroscopic Biot tensor is en-

tirely defined once the macroscopic tensor of elasbduli is determined.
As regards the jointed medium, it readily followsrh (16)

ﬁng” dS= 1: (I-(A)) (29)

Recalling that the concentration tengbrcan be related t€ ™" and c® as in (19), the above
equality (29) takes the alternative form

ﬁ wg“ ds = 1: (]I —cs_l:C“"m) (30)

Hence, two possibilities are to be considered:

Case 1. All the joints have the same Biot coefficieng.ilJi a; =a . In this situation, com-
parison of equalities (27) and (30) provides thHm¥ang identity

B=al(1-cic™) 31§

which extends to the case of a jointed medium kasscal relationship relating the tensor of
Biot coefficients to the elastic tensors of thequs medium and solid matrix.

Case 2. There exists at least two joints having distiBidt coefficients, i.e.[(i,j) | a #a,.
Unlike the situation of ordinary porous medium,réhes no direct connection betweén

C"™™ and the poroelastic properties of the rock mathixthis rather general case, the deter-
mination of B defined by (27) would requir@ priori the knowledge of the normal concentra-

tion tensora”.



4.2. Second state equation

The complete formulation of the overall poroelasiéhavior for the jointed medium is
achieved by providing the second macroscopic stgt@tion. The second state equation for
the macroscopic poroelastic behavior classicalbtes the pore volume change to the fluid

pressurgp and the macroscopic stra@. In the particular case under consideration, thre p

volume change is exclusively due to the joint vaduchange. For this purpose, we introduce
a dimensionless variable called lagrangian porasignge defined as:

1
b=—F| ¢ dS (32)
|QO| .[w
which reads by virtue of (17)
1 p
¢ = —+a [{] Dﬂj ds (33)
|QO| .[w(m —

Referring to the decomposition éf as {1 +§2 , (33) takes the form

1. p 1 1
= —| —dS+ — a[{l]E_h dS+ —| a[&]0On d (34)
oY Jom Q, Joat¢ Q, Joaté]

The first term of the right hand side in the abegeality writes

1
20

[ Pas=P (35)
@ m m

where the average Biot modulas is given by

3|+

1 1 1

—ds = 5— 36
o lom 8= X%, (36)
S represents the specific area of joint

From definition (14) relating the displacement jufgp] _in the dry problem to the con-
centration tensorég”,g,ﬁ') and macroscopic strain tensaf, it can readily be shown that
the second term of the right hand side in (34) sead

ﬁj{ua [£]1m ds = B[ 713

Finally, the last integral of the right hand sidg34) can be evaluated by invoking line-
arity arguments. Indeed, the respo@zaeand consequently the corresponding jL{@j ,



associated with the Ioadir(@: o, p) in problem (P2) is proportional to fluid presspre

Thus, a scalamexists such that
[ alg)mds= P 813
|QO| @ m

Finally, the conjunction of Equations (34), (337) and (38) yields

® = (39)

I
=

P,
M

Relationship (39) is the second state equatiojofated porous medium. It constitutes with
(28) a set of two equations governing the respohdee jointed porous medium.
The expression of the macroscopic Biot modulusvsrgby

21,2 (40)
M m m

As regards the connection between the overall Biodulus M and the elastic properties of
jointed mediumC"™™, once again one should examine as in sedtibwhether the value of

the Biot coefficient is the same for all jointsraot.

Case 1. All the joints have the same Biot coefficieng.ilJi a; =a . As shown by relation-
ship (31) established in section 4.1, the macrasdepsorB of coefficients is determined
from the knowledge of2"™ and the poroelastic propertie_s of the jointed medconstitu-
ents. To provide the expressionMf defined in (40), it is first observed that is simply
obtained by (36) from the specific areas and Boaficients of the individual joints.

On the other hand, the displacement fléldln problem (P2) is kinematically admissible with
the macroscopic stradﬂ2 —0, which Ieads by virtue of (10) to

(£,) + ﬁjw (€10 nds=0 (41)

which implies that

[h dS = -1:(¢, 42
o e (£,) I
The above equality simply expresses that the valuogtrain associated with the joint nor-
mal displacement jump is balanced by the volumeagbaf the rock matrix, resulting in zero
volume change of the REV.
The state equation of the rock matrix rea=11|2$ <c5:£2, thus

-1

1(g,) = 1:(F) (g,) 43



Recalling that in the present situation definedaby a Ui, the stress average given by (26)
is 2, =( g,)=-pB, the following identity is therefore deduced fr¢42) and (43)

ﬁjw”[fz]@ dS=a f: (CS)_1:=E (44)

Comparison of (38) and (44) yields

Loau(e) B (45)
m = =
Hence,
1 1 1: 1 [ s\L
M m Zi 5 mm}'(c) = o

Relationships (31) and (46) show that the ovenalpprtiesM and B are entirely known

once the macroscopic tensor of elastic moduli leeh lwletermined. These relationships ex-
tend to the situation of jointed rock medium thassical relationships providing the Biot ten-
sor and Biot modulus as functions of solid mattastcity c®and dry porous medium elastic-
ity C™™ [1].

Case 2. There exist at least two joints having distinattRoefficients, i.e.[(i, j) | a#a,.
As already mentioned in sectidrl, there is no direct connection betwen C"™ and the

poroelastic properties of the rock matrix. The saemark holds for the scaléarand conse-
quently for the macroscopic Biot modulMs. Actually, the determination d8 defined by

(27) would requirea priori the knowledge of the normal concentration terg;”qrand that of
m defined by (38) would require priori the knowledge of the displacement fieilg solu-

tion of problem (P2) .

5. APPLICATION TO CRACKED ROCK MEDIUM

We deal herein with the situation of a cracked rddke only heterogeneities considered
for the rock medium are short joints (i.e., craskth load transfer). The analysis presented in
the sequel is intended as an extension of claggsalts established in poroelasticity for
cracks which do not transfer stresses.

A convenient way to represent cracks is in the fofrablate spheroids [10]. As made
in section 3.1, we introduce for a crack an ortharad frame('g 0 g), in which n denotes

the normal to the crack plane (Fig. 4). The geoynetithis oblate spheroid is defined by the
crack radiusa and the half opening of the crack The aspect ratiX =c/ a of such a
penny-shaped crack is subjected to the condi¥o& 1. In the continuum micromechanics
approach employed herein, a crack represents amiogeneity embedded within the rock
matrix. We assume for simplicity that the latteeiastically isotropic:



c*= KT+ u°K (47)

wherek® is the bulk modulus ang® is the shear modulus. The fourth-order ten$arsd
K are defined as

Jz%;m; ; K=1-]J (48)
The crack modeled as a short joint (crack withsstiteansfer) has a stiffness in the form
k=k nOn+ k(0 t+ tOt) (49)
wherek, andk, denote respectively the normal stiffness andrsstéféness.

We consider the situation of a homogeneous rock patrallel cracks defined by the
same radius and crack aspect rat®0. The volume fraction of cracks present in the me-
dium is denoted by :

= i31 TEX (50)

where g = NV a* is the crack density parameter of the considesedfsparallel cracks intro-
duced by Budiansky and O’Connel [6) being the number of cracks by unit volume.

1>

<
| =+

Figure 4. Crack as oblate spheroid.

Using a Mori-Tanaka scheme, the estimate of thseaeof drained modulC """ reads:

C™™=lim
X -0

whereP=P (X, n) is the Hill tensor associated with the considemedk family. It depends
on the aspect ratid of the oblate spheroid and its orientation The components of the Hill

tensor of an oblate spheroid can be found in Haokib§l6,17]. Tensot! is related to the
crack stiffness

I+f (I+P: (c~c J‘))‘l)_l (51)

cS+fck (]I+]P’: (c®=c J'))_l




c'=3Xa(k -4/3k) J+2X akK 152

The components of the Mori-Tanaka estimat€8f" given by (51) are expressed analyti-
cally. Since all the cracks have the same poroelasticemiep(g, a, m) , the Mori-Tanaka

estimate of the Biot tensor reads

B=alm f:l.:(]I+]P:(cs—cj))_l : ]I+f(]1+]I”:(cs—cj))_l)_l (53)

and the Biot modulus estimate can therefore bduckd from that oi=3
+a 1 (cs)_l B (54)

The components dth"m, B andM are given below.

K, +m(1+16/3¢ )k, (I-«,)

3k, + 3k, (1-k, )+ 4rre
K, + K, (1-K,)

3k, + 3k, (- K, )+ drte

K, + 1k, +8/3&)(1-k,)

3k, + 3k, (- K, )+ 4rte (55)
K, +7TK1(1_K1)

3k, +3mk, (1-k,)+ 4me

s 4ks + 1 (1-k, )1+ %)

4k, +16/3me -k, (- %, ) (F«k, |

Crin = Cpppp= (3K +41%)

Ciazs = (3K° +41°)

Crizo = Cpoy= (3K —21°)

Crizs = Cygp= (3K — 21°)

Coap3= Capzn= 2U
Clorp = 1°
Only diagonal components of Biot tensBrare not equal to zero:

(4/3k, -1k, - 8/9(t«, §
3k, +3mk, (-« )+ 4rre

B,=B,=4arme

(56)
B, = darme
3k, + 3k, (1K, )+ 4rte
Finally, the Biot modulus estimate reads
2
1_1 N 120° 1€ (57)
M m (3K +4u®) (3, + 3k, (-« 1 47e)

where the non-dimensional parametgys «, and x; are defined by



K_3k+,u . K_Bka 3k a

n . —_—

= : = : =—1° 65
1 3ks+4ﬂs 2 a(s+4ljs 3 3(5_'_415 ( )

6. CONCLUSION

The micromechanical analysis of the behavior oksawith fluid saturated joint net-
work has been presented. Extending the conceptaoh £oncentration tensor to jointed me-
dia, the reasoning relies upon the formulation ifleimma for such materials and the intro-
duction of strain concentration tensors for th@lkdisement jump along the joints, modeled as
interfaces. The two state equations for the rocllioma with a fluid saturated connected joint
network have been formulated. They can be vieweathasxtension of the poroelasticity Biot
theory to such materials. The particular role pthlgg the Biot coefficientr of joints is dis-

cussed in detail. In the situation when all that®iare characterized by the same Biot coeffi-
cient, it is established that the homogenized Boeffficient B and Biot modulusM are re-

lated to the homogenized tensor of drained mo@dil" by Egs. (31) and (46), extending to
the case of jointed rocks the classical relatigrshvailable for ordinary porous media. From
a practical viewpoint, this means that the deteatnim of poroelastic properties reduces to
elastic homogenization in the dry case.
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