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Abstract. The formulation of macroscopic poroelastic behavior of a cracked rock is investi-
gated within the framework of a micro-macro approach. The micro-cracks are modeled as 
interfaces and their behavior is modeled by means of generalized poroelastic state equations.  
Starting from Hill´s lemma extended for a medium with cracks and extending the concept of 
strain concentration to relate the crack displacement jump to macroscopic strain, the overall 
poroelastic constitutive equations for the cracked rock are formulated. The analysis empha-
sizes the main differences and similarities of the resulting behavior with respect to that char-
acterizing ordinary porous media. It is shown that, unlike ordinary porous media, conditions 
on the poroelastic parameters of cracks are required for the macroscopic drained stiffness to 
entirely define the poroelastic behavior.  This is achieved, for instance, if the crack network is 
characterized by a unique Biot coefficient. Extension of the analysis to non-linear poroelas-
ticity is also outlined.  Finally, the theoretical formulation is applied to a particular case of 
cracked rock for which explicit expressions of the overall poroelastic parameters are derived. 
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1. INTRODUCTION 

Discontinuities are frequently present at different scales in rock masses and represent a 
fundamental component of rock deformation and transport of fluid or contaminants through 
rock masses. Usually referred to as joints, they correspond to zones of small thickness along 
which the mechanical and physical properties of rock matrix degrade. The presence of joints 
constitutes the key weak point for stability and safety of many engineering works, such as 
dam foundations, excavation of tunnels and caverns, oil and gas production, geothermal en-
ergy plants, repositories for toxic waste, etc. From transport properties viewpoint, joints 
within rock masses represent preferential channels for fluid flow and such, may be contribu-
tors to rapid transport of fluid and contaminants through rock masses, particularly when the 
permeability of the rock matrix is low.  

As a consequence, comprehensive constitutive modeling of rocks requires accounting 
for the poromechanics coupling which occurs at the scale of joints and its implication at the 
scale of the rock structure. Primarily focus should be on the behavior modeling of the rock 

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



 
 

material as a porous medium with specific treatment for the coupled hydromechanical cou-
pling governing the joint deformation. 
 

Strength, deformation and permeability coupling of rock joints have been widely inves-
tigated during the previous decades, and a large amount of experimental works and models 
are available in the literature. Representative works include references [2,4,5,11,18,20], to cite 
a few.  
Most research concerning hydromechanical coupling in rock joints has been, however, fo-
cused on the connection between normal and/or shear loading and unloading and their effect 
on joint permeability. As a matter of fact, the classical models, which are based on the cubic 
law and related modified forms, account for the poromechanical coupling only by incorporat-
ing the aperture variation of joints induced by applied stresses in the calculation of permeabil-
ity. The effect of pressure of fluid in the interstitial space of rock joints seems to be tradition-
ally neglected or not properly considered. A fully poromechanical modeling of joints behavior 
is seldom reported in the literature [3,8].  
 
 Several works have recently been devoted to jointed rock deformation in poroelas-
ticity, nevertheless, these works are in their majority macroscopic-scale approaches that con-
sider the joints as particular geometry pores and not as generalized poroelastic media, like it is 
done in the present analysis.  
In this context, the main purpose of this paper is to clarify the formulation of the linear poroe-
lastic behavior of a jointed rock regarded as a homogenized medium. Starting from the local 
behavior of rock matrix and joints modeled as generalized porous media, the upscaling proce-
dure aims at analyzing the effect of fluid pressure in the interstitial space of rock joints on the 
overall behavior of the jointed rock. Emphasis shall be put on the fundamental specificity of 
the homogenized porous medium with respect to ordinary porous media. In particular, the 
question related to connection between the macroscopic drained stiffness and macroscopic 
Biot coefficient and Biot tensor, will be discussed. 

The paper is concerned with the formulation of the macroscopic state equations in 
poroelasticity. In this respect, the non-linear aspects related to the irreversible behavior of 
joints that are fundamental for the analysis of rock masses deformation are disregarded. 

2. HILL’S LEMMA FOR THE JOINTED MEDIUM 

Let Ω  (resp. 0Ω ) denote the representative elementary volume (REV) in the current 
(resp. initial) configuration of a homogeneous rock matrix cut by a discrete distribution of 
joints i

i
ω ω= ∪ . The REV is chosen so as to be statistically representative of the rock medium; 

in particular, the characteristic size, say d  of the heterogeneities (joints) is supposed to be 
small with respect to the dimension, say l , of the REV, which in turn is supposed to be small 
as compared to the wavelength λ of the macroscopic solicitation.  Moreover, l  must be suffi-
ciently smaller than the characteristic dimensions L  of the whole rock body.  The previous 
scale separation conditions may be summarized as ,d l L l λ≪ ≪ ≪ . 



 
 

The network of joints present within the rock medium is formed by long joints or short joints. 
The adjective ‘long’ characterizes joints crosscutting the REV, while adjective ‘short’ refers 
to joints with small extension when compared to the size of the REV. More precisely, short 
joints are in fact microfractures (or microcracks) that are able to transfer stresses. 
Regarding the situation of short joints, one of the purposes of the present paper is to extend 
the classical mechanical model of microcracks in which no stresses are transferred across the 
microcrack. It is worth noting that the concept of REV implies the scale separation between 
its characteristic length and those of joints, namely the size of short joints or the average spac-
ing between long joints. 

The rock matrix fills the domain \ωΩ , where symbol \  stands for the set difference. 
Note that strains and stresses within the rock medium are defined on the rock matrix domain 

\ωΩ only, and not on the whole REV.  Throughout the paper, symbol .〈 〉  denotes the vol-
ume average over the rock matrix: 

 

                                               
\

0

1
. . dV

ωΩ
〈 〉 =

Ω ∫                                                                    (1) 

 

At the scale of the REV (microscopic scale), each joint is modeled as an interface, geo-
metrically described by a surfaceiω , whose orientation is defined by a normal unit vector in . 

At a smaller scale than the microscopic one, the joint iω  would be represented by a volume of 

finite thickness with distinct upper and lower boundaries (surfaces) located at iω + and iω− , re-

spectively (Fig. 1).  The boundary of the rock matrix comprises that of the REV, i.e. ∂Ω , as 
well as the upper and lower boundaries of each joint, i.e. i i iω ω ω+ −∂ = ∪ .  

Let x  be the position of a point of iω  at the scale of the REV. The displacement at point x  is 

not defined in a unique way because of the relative displacement of the surfaces iω−  and iω + . 

At the scale below the microscopic one, x  is replaced by a segment parallel to ( )i in n x=  

whose bounds are ix ω− −∈ and ix ω+ +∈ . The displacement jump [ ( )]xξ  is defined as: 

 

                                        [ ( )] ( ) ( ) ( ) ( )x x x x xξ ξ ξ ξ ξ+ − + −= − = −                                             (2) 

 
The objective of this section is to adapt Hill's lemma to the situation of a jointed me-

dium. The loading applied to the REV is defined by homogeneous strain type boundary con-
ditions on the boundary 0∂Ω [21]: 

                                                            0( )x x xξ = ⋅ ∀ ∈∂Ω∈                                                 (3) 

 
where ∈represents the macroscopic strain. We introduce the set C of displacement fields 
which are kinematically admissible with ∈. By definition, it is the set of displacements fields 

'ξ continuous and differentiable on \ωΩ  and complying with the boundary condition (2). 
Likewise, S denotes the set of statically admissible stress fields 'σ .  Defined in Ω , they sat-
isfy the local momentum balance equation div ' 0σ =  and the continuity of stress vector ' inσ ⋅  
when crossing joint  iω .  



 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  REV of a jointed rock and loading conditions 

 
For all 'σ  of set S and 'ξ of set S, it is readily obtained from integration by part  

 

                        0 \
' : ' ' : ' ' ' ' 'dV n dV T dS

ω ω
σ ε σ ε ξ σ ξ

Ω ∂Ω ∂
Ω 〈 〉 = = ⋅ ⋅ + ⋅∫ ∫ ∫                        (4) 

 
where 'ε  is the symmetric part of grad 'ξ . The stress vector 'T  is defined by 
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'
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σ ω
σ ω

+ +

− −

 = − ⋅=  = ⋅
                                                    (5) 

 
Taking (3) into account as well as the continuity of the stress vector ' inσ ⋅  when crossing iω , 

Hill's lemma in its classical form shows that 
 

                                                 0' ' ' :n dVξ σ σ
∂Ω

⋅ ⋅ = Ω 〈 〉∫ ∈                                              (6) 

 
Moreover, one has 
 
                        ' ' ' ' ' ' ' [ ']

i i i i

T dS T dS T dS T dS
ω ω ω ω

ξ ξ ξ ξ
+ − +

+ − +

∂
⋅ = ⋅ + ⋅ = ⋅∫ ∫ ∫ ∫                    (7) 

 
Identifying at the scale of the REV the surface iω  with iω +  (i.e. i iω ω +≡ ), and introducing the 

notation ' ' ' 'in
iT T T nσ− += = − = ⋅ , one may write 

 

                                              ' ' ' [ ']nT dS T dS
ω ω

ξ ξ
∂

⋅ = ⋅∫ ∫                                                    (8) 

 
where in n=  along iω . Combination of (4), (6) and (8) leads to the following equality: 
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in  

Ω  
∂Ω  

xξ = ⋅∈  

x+  

• 

• 

x−  

iω +
 

iω−
 



 
 

 

                                   
0

1
' : ' : ' ' [ ']nT dS

ω
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Ω
= ∫∈                                         (9) 

which is the form of Hill's lemma extended to jointed rocks. It is noted that ' 'σΣ = 〈 〉 repre-

sents the macroscopic stress equilibrated by the microscopic stress field 'σ of S. Hence, the 

work of the macroscopic stress 'σ in the macroscopic strain ∈comprises the contribution of 

the internal forces within the rock matrix as well as the work developed by the stress vector 
acting on the joint in the relative displacement of its boundaries. 

For a given second order symmetric tensora , the uniform stress field ' aσ =  is obvi-

ously statically admissible, that is, belongs to S. Use of (9) for any value of a  yields 

 

                                           
0

1
' [ ']

s

n dS
ω

ε ξ〈 〉 + ⊗
Ω

= ∫∈                                               (10) 

 

where symbol
s

⊗ stands for the symmetric part of dyadic product: ( ) / 2
s

i j i j
ij

u v u v v u ⊗ = + 
 

.  

Identity (10) physically means that the macroscopic strain ∈ is the sum of two contributions, 

namely that of rock matrix strains and that of displacement jump along the joints. 
Let us now comment on the assumption related to the homogeneity of the rock matrix. 

The latter should be understood as follows. It is assumed that the scale of the REV (i.e., mi-
croscopic scale) is such that the joints represent the only heterogeneities considered for the 
medium. Accordingly, we shall designate by the term rock matrix the composite material 
made of intact rock phase including possible micro-heterogeneities whose characteristic size 
is smaller than the dimension of joints.  Hence, the rock matrix can be regarded at the scale of 
the REV, as a homogenized material whose behavior results from a preliminary homogeniza-
tion procedure accounting for the presence of micro-cracks within the intact rock (see for in-
stance references [7,13).  
 
Remark.  Even homogeneous strain boundary conditions (as adopted in the present analysis) 
are not in principle equivalent to homogeneous stress boundary conditions; this equivalence is 
implicitly assumed to be so when /d l tends to zero [12,15]. 

3. FORMULATION OF THE MACROSCOPIC BEHAVIOR IN THE D RY CASE  

3.1. Behavior of the jointed rock constituents 

We examine in this section the formulation of the macroscopic elastic behavior in ab-
sence of interstitial fluid. The rock matrix is assumed to be linearly elastic with fourth-order 
stiffness tensor s

C�. As regards the individual behavior of joints, it is assumed that the corre-
sponding elastic domain in 3ℝ  does not reduce to vector 0T = . Inside the latter domain, the 
elastic behavior of joints is assumed to remain linear, at least within the range of considered 



 
 

joint strains. The stiffness of joint iω , relating the stress vector to the displacement jump, is 
denoted by ik : 

 

                                           
: in \

: [ ] along

s
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σ ε ω
σ ξ ω

 = Ω
 = ⋅ =

C�
                                                      (11) 

 

with in n=  and ik k=  along iω .  

 At the scale adopted for the modeling, both long and short joints are handled within the 
same framework. They are modeled as interfaces and the associated deformation is described 
through a phenomenological law . [ ]T k ξ=  linking the stress vector and the displacement 

jump. In this context, the joint stiffness k  is traditionally evaluated from laboratory tests per-

formed on rock specimen with a single joint. By nature, this phenomenological approach re-
lates the joint stiffness to the geometry and elastic properties of the joint only in a global 
manner, which can be considered as a major limitation of the approach. 
Aimed to formulate k  explicitly from the geometry and elastic properties of the joint, concep-

tual models have been developed in the literature. At a scale smaller than that of the REV, 
joints are regarded as rough surfaces in contact at some locations.  Basically, the geometry 
characteristics of the joints such as the peak heights of asperities are described by statistical 
distributions and the rock fracture surface is treated as rough elastic surface. Hertzian contact 
theory is therefore used to analyze the deformation of the contacting asperities. The main 
limitation of such approaches lies in the difficulty to estimate in practice the joint parameters 
involved in the modeling. 
 Since the early works of Budiansky and O'Connell [6], a number of papers have 
been devoted to the micromechanical approach to damage induced by microcracks. On the 
one hand, it enables to predict how the effective properties are affected by a set of micro-
cracks, including non linear effects associated with progressive cracks closure (see, e.g., [7]). 
On the other hand, it also provides a quantitative approach to the damage evolution related to 
the propagation of  microcracks (see for instance [9,19]). By contrast, macroscopic damage 
models can only deal with these two issues in a phenomenological manner. One of the pur-
poses of the present paper is to extend the classical mechanical model of microcracks in 
which no stresses are transferred across the microcrack. As stated by the state equation of the 
joint, the latter is able to transfer normal as well as tangential stresses. Nonetheless, large 
strains in the joint take place and are represented by a displacement jump. 

3.2. Behavior of the jointed rock constituents 

∈ being prescribed, we consider the elastic problem defined on the REV subjected to 

the loading defined by the boundary conditions (3). The solution to this problem is the couple 

( ),σ ξ  in S×C  and complying with (11). Clearly enough, σ  and ξ  linearly depend on the 

loading parameter∈. This property is usually expressed through the concept of strain concen-



 
 

tration tensor, denoted here by the fourth-order tensorA . By definition, the term ( ) :x ∈A  

represents the strain tensorε  at point x  corresponding to the load defined by (3). In other 

words, ( )xA  is the link between the local strain ( )xε  in the rock matrix to the macroscopic 

strain ∈ applied to the REV. Besides, the strain concentration tensor also relates the local 

stress σ  to the macroscopic strain: 

 

                                                             : :sσ = ∈C� �A                                                             (12) 

 
The macroscopic stress Σ  being defined as the average σ〈 〉 , (12) yields : 

 

                                        hom hom: :swithΣ= = 〈 〉∈ C�C� C� ��A�                                 (13) 

 
  Likewise, concentration tensors are introduced in the following way to relate the com-

ponents of the displacement jump to the loading ∈.   If the couple of vectors ( )',i it t  consti-

tute an orthonormal frame of the plane tangent to iω  at pointx  (Fig. 2), the normal and tan-

gential components of ξ  are expressed as: 

 

                              ( ) ( ) ( )'[ ] : : : ' alongn t ta n a t a tξ ω= + +∈ ∈ ∈                                (14) 

 

with in n= , it t=  and ' 'it t=  along iω . Tensors na , ta  and 'ta are respectively the concen-

tration tensors for normal and tangential displacement jumps of ξ . 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Local frame for joint iω . 

 
 

Due to the presence of the joints the average rule ε〈 〉=∈  is not valid in the jointed 

REV as indicated by (10). Accordingly, the average 〈 〉A� of the strain concentration tensor 

over the rock matrix is not equal to the fourth order identity tensor I  and thus, hom
C�  is not 

equal to matrix stiffness of rock matrix sC�. More precisely, using (14), we first obtain 
 

iω  

in  

it  
'it  



 
 

                               '[ ] ' :
s s s

n t tn n n a t n a t n aξ  ⊗ = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗ 
 

∈                               (15) 

 
Then, combining the average rule (10) and (15) leads to the equality  
 

                          '

0

1
'[ ]

s s
n t tn n a t n a t n a dS

ω
〈 〉 = − ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

Ω ∫A I�                       (16) 

 
As emphasized by (16), the discrepancy between A  and I  is due to the fraction of the macro-
scopic strain which localizes in the joints.  The anisotropy of the elastic properties of a jointed 
rock is directly taken into account through the joints orientation. 
 

4. MACROSCOPIC STATE EQUATIONS IN THE CASE OF SATURATED JOINT 
NETWORK   

We now consider the situation where the connected joint network is saturated by a fluid 
at pressure p which is assumed to be uniform in the REV. With respect to the dry case, the 
elastic behavior of the rock matrix is the same as before: : in \sσ ε ω= ΩC� . The behavior  
of the joints is replaced by a poroelastic formulation in order to account for the effect of the 
fluid pressure on the relationship between the stress vector acting on the joint and the corre-
sponding relative displacement. The poroelastic state equations for the joints are written in the 
following form [3,8] 
 

                                     
[ ]

along
[ ]

n p

i
i

T n k T

p
n

m

σ ξ
ω ω

ϕ α ξ

 = ⋅ = ⋅ +
 =

= + ⋅


∪                                        (17) 

where 

                                   , , alongp
ii i i im m T p nα α α ω= = = −                                    (18) 

 
Scalar iα  has the significance of a Biot coefficient for the joint iω  modeled as a generalized 

porous medium. This means that the displacement jump [ ]ξ  which represents the joint defor-

mation is controlled by the effective stress vector nT p nα+ .  As regards the second state 
equation in (17) of the joint, it relates the joint pore change per unit joint surfaceϕ  to the fluid 

pressurep and the joint displacement jump[ ]ξ . Scalar im  represents the Biot modulus for 

joint iω .  Physical interpretation as well as identification procedures of the above parameters 

from appropriate laboratory tests are outlined in [3]. 
 

The loading is now characterized by two parameters, namely the macroscopic strain ∈ 

and the fluid pressurep . The solution in \ωΩ  to this problem defined by the loading mode 

( ), p∈  and denoted by (P), is the stress field σ  in S and the displacement field ξ  in C  re-



 
 

lated by the state equations of  the medium constituents : in \sσ ε ω= ΩC�  and (17). Due to 

the linearity of the material behavior expressed in rate form, the superposition principle can 
be used to decompose problem (P) into two elementary problems (P1) and (P2) respectively 

defined by the loading ( )0, p =∈  and  ( )0 , p=∈  as shown in Figure 3.  (P1) corresponds 

to the dry case analyzed in section 3, whereas (P2) corresponds to pressurized joint network 
and prevented macroscopic strain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Decomposition of problem (P) into two elementary problems (P1) and (P2). 

 
Let us designate by 

1
ξ , 

1
ε  and 

1
σ  the displacement, strain and stress fields in the REV  

corresponding to problem (P1) and by 
2

ξ , 
2

ε  and 
2

σ  the displacement, strain and stress 

fields in the REV corresponding to problem (P2).   The fields solution to problem (P) can 
simply be obtained as 

1 2
ξ ξ ξ= + ,  

1 2
ε ε ε= +  and  

1 2
σ σ σ= + . 

4.1. First state equation 

(P1) being the problem analyzed in section 3,  the following relationships thus holds 
 

                                  hom hom

1 1
: :swithσΣ = 〈 〉 = = 〈 〉∈ C� �� C� C� ��A�                         (19) 

 

where the strain concentration tensorA  relates 
1

ε  to the loading parameter ∈ in problem (P)  

 

                                                                
1

( ) :xε = ∈A                                                          (20) 

  
Regarding problem (P2), 

2 2
σΣ = 〈 〉� �� represents the macroscopic stress associated with joint 

interstitial fluid pressurep  which is required to prevent the appearance of any macroscopic 

ω  

xξ = ⋅∈  

= +ω  

xξ = ⋅∈  

ω  

0ξ =  

pT  0pT =  pT  

(P) (P1) (P2) 



 
 

strain. In order to evaluate
2

Σ� , Hill's lemma (9) is used twice. First, it is applied with the cou-

ple ( )2 1
' , 'σ σ ξ ξ= = : 
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2 2 1 1 2
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1
: : [ ] [ ] pk T dS

ω
σ σ ε ξ ξ
Σ

〈 〉 〈 〉 + ⋅ ⋅ +
Ω

= ∫∈                             (21) 

 

Hill's lemma is then applied with the couple( )1 2
' , 'σ σ ξ ξ= = :  

 

                                            
1 2 2 1

0

1
0 : [ ] [ ]k dS

ω
σ ε ξ ξ〈 〉 + ⋅ ⋅

Ω
= ∫                                     (22) 

 
since the displacement field 

2
ξ  in problem (P2) is kinematically admissible with the macro-

scopic strain  0=∈ . 

It follows from the state equation of the rock matrix that 
1 1

:sσ ε= C�  and 
2 2

:sσ ε= C� , which in 

turn ensure equality  
                                                       
                                                      

2 1 1 2
: :σ ε σ ε〈 〉 = 〈 〉                                                          (23) 

 
Combination of  (21), (22) and (23) yield  
 

                                              
2 1

0

1
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ω
ξΣ ⋅

Ω
= ∫∈                                                 (24) 

 

Recalling that alongpT p nα ω= − , and substituting into (21) the displacement 
1

[ ]ξ  in the 

dry problem (P1) by its expression (14), one obtains: 
 

                                              
2
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1
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ω
αΣ = −

Ω ∫∈ ∈                                         (25) 

 

and since the macroscopic stress in problem (P2) is independent of ∈,  (25) finally reads 

 
                                                               

2
p BΣ = −                                                               (26) 

with 
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1 nB a dS
ω

α=
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The first macroscopic state equation is obtained from (19) and (26), by superposition  
 

                                         hom

1 2
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Similarly to ordinary porous media, the macroscopic strain ∈ is controlled in poroelasticity 

by an effective Biot stress p BΣ +� . The tensorB  defined in Eq. (27) can be interpreted as the 

tensor of Biot coefficients for the jointed medium. The anisotropy introduced by the joint ori-

entation is captured through that of the normal concentration tensor na . 

The limit case of closed joints can be characterized by expressing that the normal component 

of the relative displacement [ ]ξ  vanishes, which implies that 0na → . In such a situation, the 

joint fluid pressure has no effect (i.e. 0B → ) on the relationship between the macroscopic 

strain and stress within the elastic domain. 
 
The fundamental difference between the jointed rock and an ordinary porous medium arises 
when examining how the Biot tensorB  is connected to the macroscopic elastic tensor of 

drained moduli hom
C� . 

For an ordinary porous medium, the classical relationship ( )1 hom1: (1 ) :sB φ
−

= − −��I� ���C� C�  

where φ  is the porosity of the medium [40], shows that the macroscopic Biot tensor is en-

tirely defined once the macroscopic tensor of elastic moduli is determined. 
As regards the jointed medium, it readily follows from (16) 
 

                                                ( )
0

1
1:na dS

ω
= − 〈 〉

Ω ∫ I� A                                           (29) 

Recalling that the concentration tensor A  can be related to hom
C� and s

C� as in (19), the above 
equality (29) takes the alternative form 
 

                                      ( )1 hom
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1
1: :n sa dS

ω

−
= −
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Hence, two possibilities are to be considered: 
 
Case 1. All the joints have the same Biot coefficient, i.e. ii α α∀ = . In this situation, com-
parison of equalities (27) and (30) provides the following identity 
 

                                                ( )1 hom1: :sB α
−

= −I� C� C�                                                   (31) 

 
which extends to the case of a jointed medium the classical relationship relating the tensor of 
Biot coefficients to the elastic tensors of  the porous medium and solid matrix.  
 
Case 2. There exists at least two joints having distinct Biot coefficients, i.e. ( ), | i ji j α α∃ ≠ . 

Unlike the situation of ordinary porous medium, there is no direct connection between B , 
hom
C�  and the poroelastic properties of the rock matrix.  In this rather general case, the deter-
mination of B  defined by (27) would require a priori the knowledge of the normal concentra-

tion tensor na . 



 
 

4.2. Second state equation 

The complete formulation of the overall poroelastic behavior for the jointed medium is 
achieved by providing the second macroscopic state equation. The second state equation for 
the macroscopic poroelastic behavior classically relates the pore volume change to the fluid 

pressurep and the macroscopic strain ∈. In the particular case under consideration, the pore 

volume change is exclusively due to the joint volume change. For this purpose, we introduce 
a dimensionless variable called lagrangian porosity change defined as: 
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which reads by virtue of (17)  
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Referring to the decomposition of ξ  as 

1 2
ξ ξ+ , (33) takes the form 
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The first term of the right hand side in the above equality writes 
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where the average Biot modulus m  is given by 
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iS  represents the specific area of joint iω . 

From definition (14) relating the displacement jump 
1

[ ]ξ  in the dry problem to the con-
centration tensors '( , , )n t ta a a  and macroscopic strain tensor ∈,  it can readily be shown that 
the second term of the right hand side in (34) reads 
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Finally, the last integral of the right hand side in (34) can be evaluated by invoking line-

arity arguments. Indeed, the response
2

ξ , and consequently the corresponding jump 
2

[ ]ξ , 



 
 

associated with the loading ( )0 , p=∈  in problem (P2) is proportional to fluid pressurep . 

Thus, a scalar mɶ exists such that  
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Finally, the conjunction of Equations (34), (35), (37) and (38) yields 
 

                                                     :
p

B
M

Φ = + ∈                                                                (39) 

  
Relationship (39) is the second state equation for jointed porous medium. It constitutes with 
(28) a set of two equations governing the response of the jointed porous medium. 
The expression of the macroscopic Biot modulus is given by 
 

                                                         
1 1 1

M m m
= +

ɶ
                                                                 (40) 

 
As regards the connection between the overall Biot Modulus M and the elastic properties of 
jointed medium hom

C� ,  once again one should examine as in section 4.1 whether the value of 
the Biot coefficient is the same for all joints or not. 
 
Case 1. All the joints have the same Biot coefficient, i.e. ii α α∀ = . As shown by relation-
ship (31) established in section 4.1, the macroscopic tensor B  of coefficients is determined 
from the knowledge of hom

C�  and the poroelastic properties of the jointed medium constitu-
ents.  To provide the expression of M  defined in (40), it is first observed that m  is simply 
obtained by (36) from the specific areas and Biot coefficients of the individual joints.   
On the other hand, the displacement field 

2
ξ  in problem (P2) is kinematically admissible with 

the macroscopic strain
2

0∈ = , which leads by virtue of (10) to  
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which implies that 
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Ω ∫                                                 (42) 

The above equality simply expresses that the volumetric strain associated with the joint nor-
mal displacement jump is balanced by the volume change of the rock matrix, resulting in zero 
volume change of the REV. 

The state equation of the rock matrix reads 
2 2

:sσ ε= C� , thus  
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2 2
1: 1: :sε σ

−
〈 〉 = 〈 〉C�                                                 (43) 

 



 
 

Recalling that in the present situation defined by i iα α= ∀ , the stress average given by (26) 

is 
2 2

p BσΣ = 〈 〉 = − , the following identity is therefore deduced from (42) and (43) 
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Comparison of (38) and (44) yields 
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Hence, 
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Relationships (31) and (46) show that the overall properties M and B  are entirely known 

once the macroscopic tensor of elastic moduli has been determined. These relationships ex-
tend to the situation of jointed rock medium the classical relationships providing the Biot ten-
sor and Biot modulus as functions of solid matrix elasticity s

C�and dry porous medium elastic-
ity hom
C�  [1].  

 

Case 2. There exist at least two joints having distinct Biot coefficients, i.e. ( ), | i ji j α α∃ ≠ .  

As already mentioned in section 4.1, there is no direct connection between B , hom
C�  and the 

poroelastic properties of the rock matrix.  The same remark holds for the scalarmɶ  and conse-
quently for the macroscopic Biot modulusM . Actually, the determination of B  defined by 

(27) would require a priori the knowledge of the normal concentration tensor na , and that of 

mɶ  defined by (38) would require a priori the knowledge of  the displacement field 
2

ξ  solu-

tion of  problem (P2) . 

5. APPLICATION TO CRACKED ROCK MEDIUM  

We deal herein with the situation of a cracked rock. The only heterogeneities considered 
for the rock medium are short joints (i.e., cracks with load transfer). The analysis presented in 
the sequel is intended as an extension of classical results established in poroelasticity for 
cracks which do not transfer stresses. 

A convenient way to represent cracks is in the form of oblate spheroids [10]. As made 
in section 3.1, we introduce for a crack an orthonormal frame ( ), ',t t n , in which n  denotes 

the normal to the crack plane (Fig. 4). The geometry of this oblate spheroid is defined by the 
crack radius a  and the half opening of the crack c .  The aspect ratio /X c a=  of such a 
penny-shaped crack is subjected to the condition 1X ≪ .  In the continuum micromechanics 
approach employed herein, a crack represents an inhomogeneity embedded within the rock 
matrix. We assume for simplicity that the latter is elastically isotropic: 



 
 

 
                                                       3 2s s sk µ= +C� J K                                                            (47) 
 
where sk  is the bulk modulus and sµ  is the shear modulus. The fourth-order tensorsJand 
Kare defined as  

                                                    
1

1 1 ;
3

⊗= = −J K I J                                                      (48) 

 
The crack modeled as a short joint (crack with stress transfer) has a stiffness in the form 

                                             
                                              ( )' 'n tk k n n k t t t t= ⊗ + ⊗ + ⊗                                            (49) 

 
where nk  and tk  denote  respectively the normal stiffness and shear stiffness.  

 
We consider the situation of a homogeneous rock with parallel cracks defined by the 

same radius a  and crack aspect ratioX .  The volume fraction of cracks present in the me-
dium is denoted byf : 

                                                                  
4

3
f Xπ ε=                                                           (50) 

 
where 2aε = N  is the crack density parameter of the considered set of parallel cracks   intro-
duced by Budiansky and O’Connel [6], N being the number of cracks by unit volume. 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Crack as oblate spheroid. 
 
 
Using a Mori-Tanaka scheme, the estimate of  the tensor of drained moduli hom

C� reads: 
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0
lim : : ( ) : : ( )s j s j s j

X
f f
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→
= + + − + + −C C C C C CC� � � I�P � � I� I�P � �                       (51) 

where ( , )X n=P�P  is the Hill tensor associated with the considered crack family. It depends 

on the aspect ratioX  of the oblate spheroid and its orientation n .  The components of the Hill 

tensor of an oblate spheroid can be found in Handbooks [16,17]. Tensor j
C� is related to the 

crack stiffness 

t  

n  

a

2c 't  
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n t tX a k k X a k= − +C� J K                                                 (52) 

 
The components of the Mori-Tanaka estimate of hom

C�  given by (51) are expressed analyti-
cally.  Since all the cracks have the same poroelastic properties ( ), ,k mα , the Mori-Tanaka 

estimate of the Biot tensor reads 
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and the Biot modulus estimate  can therefore be  deduced from that of B   
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The components of hom

C� , B  and M  are given below. 
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Only diagonal components of Biot tensor B  are not equal to zero: 
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Finally, the Biot modulus estimate reads 
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where the non-dimensional parameters 1κ , 2κ  and 3κ are defined by 
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6. CONCLUSION  

The micromechanical analysis of the behavior of rocks with fluid saturated joint net-
work has been presented. Extending the concept of strain concentration tensor to jointed me-
dia, the reasoning relies upon the formulation of Hill lemma for such materials and the intro-
duction of strain concentration tensors for the displacement jump along the joints, modeled as 
interfaces. The two state equations for the rock medium with a fluid saturated connected joint 
network have been formulated. They can be viewed as an extension of the poroelasticity Biot 
theory to such materials. The particular role played by the Biot coefficient α of joints is dis-
cussed in detail. In the situation when all the joints are characterized by the same Biot coeffi-
cient, it is established that the homogenized Biot coefficient B  and Biot modulus M are re-

lated to the homogenized tensor of drained moduli hom
C�  by Eqs. (31) and (46), extending to 

the case of jointed rocks the classical relationships available for ordinary porous media. From 
a practical viewpoint, this means that the determination of poroelastic properties reduces to 
elastic homogenization in the dry case. 
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