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Abstract. The paper deals with the investigation of a higher order finite element method
utilizing Lagrangian interpolation polynomials as shape functions, also often referred to as
spectral element method (SEM). The main concern is to analyze the influence of the un-
derlying nodal distribution on the convergence, performance and stability properties of the
solution. To this end four different nodal configurations are investigated, namely the equis-
paced grid (EQ), the Gauss point grid (GP), the Gauss-Lobatto-Legendre grid (GLL) and the
Chebyshev-Gauss-Legendre (CGL) grid. It is concluded that the nodal distribution does not
alter the convergence behavior directly. Differences are only observed in cases, where, e.g.,
the approximation of the geometry of distorted elements or the implementation of Dirichlet
boundary conditions takes place. It is figured out that the EQ-grid cannot be recommended
because of the occurrence of Runge’s oscillations and very high condition numbers, while the
other three nodal configurations show an excellent solution quality and behave almost equal.
Further tests have revealed that the solution quality of the GLL-element is not significantly
affected by the well known mass lumping technique even if the element has a strongly distorted
geometry. This makes the GLL-grid favourable in dynamic analyses.

Keywords: Higher order finite element method, Spectral element method, Convergence stud-
ies

1. INTRODUCTION

The finite element mesh as well as the applied shape functions decisively affect the
quality of the numerical solution of a given field problem. In general, there are two basic op-
tions in achieving a well approximated solution of the field equations. At first, the geometry
is subdivided into very small finite elements of low order shape functions, which results in a
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huge amount of finite elements (h-refinement). At second, a comparatively coarser mesh of fi-
nite elements with higher order shape functions is used (p-refinement). The letterh represents
the elements size andp constitutes the polynomial degree of the shape functions. Whereas
in the early beginning of applying finite elements theh-methodwas used almost exclusively,
in the 1980sp-methodswere investigated and applied increasingly - a development which is
closely related to the works of Babuška, Szab́o (see [1] to [4]). The construction of finite
elements with higher order polynomials is by no means unique as there are various sugges-
tions in doing this. Well known approaches are, e.g., the application of Legendre-polynomials
resulting in the hierarchical p-FEM [1, 7, 8], the utilization of non-uniform rational B-splines
(NURBS) corresponding to the N-FEM [9, 10] and the application of Lagrange-polynomials
often referred to as Spectral Element Method (SEM) [11, 12, 13]. The latter term should not
be mixed up with the likewise named analytical or semianalytical approaches in [5] and [6],
for instance. Hence, for the sake of clarity in the following the term SEM is not used any-
more. Instead of that the higher-order finite element approaches with Lagrangian polynomials
are referred to as HOLP.

To create Lagrangian polynomials a certain grid of nodes in the domain of definition
is required. Besides the trivial choice of an equispaced distribution of nodes, various other
suggestions of nodal placements are proposed in the literature, such as the Gauss-Lobatto-
Legendre points [12, 14], the Gauss points [13] or the Chebyshev-Gauss-Lobatto points [11,
15]. The aim of this paper is to figure out how the solution of a problem is altered by the un-
derlying nodal distribution of the Lagrangian polynomials. The following study is performed
at rather simple linear-elastomechanic problems. Therein the focus is on the convergence
rate, the stability and the performance aspects of the respective approaches. In addition, the
isoparametric approximation of the element geometry involving the same Lagrangian polyno-
mials as for the shape functions is analyzed and discussed, giving evidence of the benefits and
drawbacks of each of the applied nodal distributions.

The paper’s outline is as follows. In Section 2 the analyzed variational problem is
described. The applied shape functions are given in Section 3. In Section 4 several illus-
trative model problems are introduced, which are solved and analyzed to answer the above
introduced questions. Finally, in Section 6 the results are summarized and recommendations
regarding the application of higher order finite elements are given.

2. THE LINEAR ELASTOMECHANICAL FIELD-EQUATION

The analyzed partial-differential equation is the Navier-Cauchy equation

(λ + μ)∇(∇ ∙ u) − μ∇ ⊗ (∇ ⊗ u) + ρb = ρü (1)

with the displacement fieldu, the two Laḿe constantsμ andλ, the mass densityρ and the
body forcesb. The corresponding variational formulation of (1) is the principle of virtual
work, stated as

0 = −
∫

B

δuT ü ρdV −
∫

B

δεT CεdV +

∫

∂B

δuT t dA, (2)

whereδu is a virtual displacement field fulfilling the Dirichlet boundary conditions,C is the
linear stiffness tensor in Voigt’s notation,δε is the virtual strain, andε is the strain due to the



displacementsu. The latter two relations are given by

ε = Du and δε = Dδu, (3)

with D being a linear operator mapping the displacement field to the strain field. In order
to achieve the spatially discretized form of (1) the actual and virtual displacement fieldu is
approximated by

u(x, t) = N (x)v(t) and δu(x, t) = N (x)δv(t) (4)

with N containing the space-dependent shape functions, andv is the vector of the time-
dependent nodal displacements. Arguing that every component ofδv can be chosen arbitrar-
ily, the spatially discretized form of (1) is derived as

Mv̈ + Kv = f . (5)

Here,M denotes the mass matrix,K the stiffness matrix, andf the force vector, respectively,
as

M =

∫

B

ρNT NdV, K =

∫

B

BT CBdV and f =

∫

B

tdA, (6)

whereB stands for the abbreviationD(N ). Typically, the shape function matrixN is not de-
fined on the spatial domain, but on a dimensionless reference frame utilizing the isoparametric
mapping of the element geometry as

x = N (ξ)X, (7)

where the parameters defining the geometry are included inX. Moreover, the solution do-
main is partitioned into small sub-domains, the so called finite elements, resulting in element
matricesK(e) andM (e), which have to be assembled to a global system of equations. For
more elaborate derivations the reader is referred to standard encyclopedias such as [16] or
[18].

3. LAGRANGE SHAPE FUNCTIONS

In general, the applied finite element shape functions can be divided into two sub-
groups. The first group includes unknown parametersv, which exhibit a physical interpreta-
tion like nodal displacements or angles. The second group of unknowns does not have any
physical relevance. An usual approach concerning the non-physical parameters, for instance,
arep-elementsusing standardized Legrende polynomials, see [3, 7] and [8], and NURBS,
being exploited in [10]. However, the application of Lagrange polynomials belongs to the lat-
ter group, since all parameters inv exhibit the interpretation of nodal displacements deriving
from the interpolation property of these polynomials. Regarding a polynomial degreep, the
set ofp + 1 basis shape functions are formally defined as

Nn(ξ) =

p+1∏

j=1,j 6=n

ξ − ξj

ξn − ξj

, n = 1, 2, . . . , (p + 1), (8)

where it is easily comprehended that the shape function values are

Nj(ξi) =

{
1 if i = j

0 if i 6= j
(9)



remarking their ability to interpolate a given set of points. To achieve theC0-compatibility
between the elements the nodal distribution necessarily needs to comprise the boundary loca-
tions−1 and+1. Thus, the utilized grid of the HOLP is defined by the location of the inner
nodes of the setξn. Subsequently, four of such nodal distributions are analyzed, namely:

• Equispaced distribution (EQ):

ξEQ
i =

2(i − 1) − p

p
(10)

• Gauss node distribution (GP):

ξGP
i =

{
−1, ξ

Lp−1

0 , +1
}

(11)

• Gauss-Lobatto-Legendre distribution (GLL):

ξGLL
i =

{
−1, ξ

Lop−1

0 , +1
}

(12)

• Chebyshev-Gauss-Lobatto distribution (CGL):

ξCGL
i = − cos

(
(i − 1)π

p

)

. (13)

Thereinξ
Lp−1

0 andξ
Lop−1

0 are the zeros of the Legendre polynomials

Lp−1(ξ) =
1

2p−1(p − 1)!

dp−1

dξp−1

[
(ξ2 − 1)p−1

]
(14)

or the Lobatto polynomials

Lop−1(ξ) =
1

2pp!

dp+1

dξp+1

[
(ξ2 − 1)p

]
, (15)

respectively. The EQ-grid as basis of Lagrangian interpolation can not be recommended,
because it results in heavy oscillations near the boundaries of the domain. This effect is
known asRunge’s phenomenon, making the EQ-grid not a suited choice for interpolation
tasks. Lagrangian polynomials based on the GP-, GLL- and CGL-grid do not show such a
behavior. The GLL-grid is quite popular in applications (see [12, 13, 14] and many more),
since in conjunction with the GLL-quadrature rule it enables the possibility to diagonalize the
mass matrix through a slight under-integration [13]. Moreover, one can easily see that at the
GLL-distribution the shape function values are not only equal to one at their corresponding
nodes, but also reach their maxima at these points. Since it can be shown that the CGL-grid
ensures minimal errors in the interpolation of smooth functions [17], some authors favor the
CGL-based HOLP, as in [11] and [15], for instance. In Fig. 1 the proposed nodal distributions
for p = 4 are displayed for comparison.
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Figure 1. Nodal distribution comparison of degreep = 4.

4. ANALYSIS OF THE HIGHER ORDER METHODS

4.1. Single undistorted element: The point loaded half-space

The first problem involving a single undistorted element consists of a point load acting
on the center of an elastic half-space, as Figure 2 illustrates. In order to restrict the computa-
tional effort, the problem is simplified to a plain stress problem. The thickness is denoted by
t. Since a point load induces a singularity in the model, which is corrupting the convergence
behavior, the point-load is replaced by a static equivalent distributed line load as

q(ξ) =
q0

1 + (bξ)2
, (16)

whereb determines the width of the bell shaped curve, andq0 is its magnitude. This load
has to be distributed to the element nodes by applying eq. (6).1 The loading parameters are
selected asb = 10 andq0 = 4 ∙ 1010.

In the following the convergence behaviour is analyzed and presented as a function
of the polynomial degree of the shape functions. Since the element has equal dimensions in
theξ-direction as well as in theη-direction, thep-refinementwill be performed isotropically,
meaning thatpξ = pη. In Figure 3 the von-Mises stresses are displayed for the polynomial
degreesp = 2, 3, 4, 5, 8 and16 of the GLL-distributed Lagrangep-element. As anticipated,
the maximum equivalent stresses occur in the center of the square near the surface where the
line load acts on the body.

Figure 2. The point loaded half-space (E = 70 ∙ 109 ; ν = 0.33 ; a = 0.5 ; t = 1 ).

1The integral therein will be performed by applying a simple trapezoid rule, since the Gaussian quadrature
converges very badly for this specific function.



Figure 3. Von-Mises stresses of the point loaded half-space model for the polynomial degrees
pξ = pη = p = 2, 3, 4, 5, 8 and16 utilizing the GLL nodal distribution.

Further, it is analyzed how the nodal distribution influences the solution as well as
their convergence behavior. In Figure 4 the displacements of the polynomial shape function
degreespξ = pη = 5 for all four introduced distributions are displayed. Apparently, the
nodal placement has hardly any impact on the solutions, the displacement field approxima-
tions nearly coincide2. In order to quantify the convergence behavior concerningp-refinement
the vertical displacement of the point with the coordinatesx = 0 andy = a/2 is observed. For
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Figure 4. Overlay of the solutions of the point loaded half-space for the polynomial degree
pξ = pη = 5 concerning the four observed nodal distributions.

2The maximum difference between the displacement field approximations is not greater than1, 05 ∙ 10−15,
which is about1, 8 ∙ 10−12 % of the order of magnitude of the displacements.
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Figure 5. Convergence of the residual vertical displacement of the point with the coordinates
x = 0 andy = a/2 of the point loaded half-space model for the polynomial degreespξ =
pη = p = 2, 3, 4, . . . , 20 concerning the four observed nodal distributions.

the sake being able to plot this value on a logarithmic scale, a pseudo exact3 solution gained
by the software packageAbaqusis used. Therewith a residual value is computed by

Δuy =
‖u(p)

y − u
(h)
y ‖

‖u(h)
y ‖

(17)

whereu
(p)
y is the solution of the Lagrangep-elementandu

(h)
y is theAbaqusreference solution.
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Figure 6. Condition number evolution of the stiffness matrix of the undistorted element based
upon the model of the point loaded half-space. The polynomial degree of the shape functions
is raised isotropically fromp = pξ = pη = 2 to 20.

3Pseudo exact means, that this value is computed with a high number of finite elements (h-refinement). Its
solution is calculated with15625 elements with quadratic shape functions, resulting in a total of94752 degrees
of freedom.



In Figure 5 the amount of the residual displacements is plotted against the resulting degrees
of freedom of the model. It is apparent that also at other shape function orders the solution
is hardly influenced by the nodal distribution. Hence, the convergence rate does not depend
on the nodal basis, but on the chosen order of the Lagrange interpolation polynomials only.
Another observed phenomenon is, that for polynomial degrees greater thanp = 16 the equis-
paced solution drifts off. This is due to the bad condition of the stiffness matrix, which in case
of equispaced nodes is orders of magnitudes higher than for the other three analyzed grids,
being emphasized in Figure 6.

Figure 7. The point loaded half-space with Dirichlet boundary conditions (E = 70 ∙ 109 ;
ν = 0.33 ; a = 0, 5 ; t = 1 ).

Subsequently, the problem will be posed in a slight different way. Instead of a Neu-
mann boundary condition a similar Dirichlet boundary condition is prescribed at the top
boundary of the square, forcing the displacements as displayed in Figure 7. The prescribed
displacements regarding they−direction are assumed as

uy(ξ) =
−u0

1 + (bξ)2
. (18)

The boundary condition parameters of the following examples areu0 = 0.005 and
b = 3 . Figure 8 shows the top boundary of the square including the applied displacements
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Figure 8. Overlay of the solutions of the point loaded half-space with Dirichlet boundary
conditions for the polynomial degreepξ = 5. The gray line represents the prescribed Dirichlet
displacement.



of the different types of Lagrangian interpolation polynomials of degreep = 5. Obviously,
the solution is only as good as the shape functions are able to mapuy(ξ) correctly. Thus, for
this problem the interpolation ability of the ansatz polynomials has a significant impact on the
numerical solutions.

4.2. Single distorted element: The C-Cantilever

Figure 9. The C-Cantilever (E = 70 ∙ 109 ; ν = 0.33 ; r1 = 0, 4 ; r2 = 0, 55 ; t = 1 ;
F = 1 ∙ 107 ).

Next, a C-Cantilever illustrated in Figure 9 is considered. The problem is solved with
a single distorted finitep-element. With the restriction that the discretization only involves
one single finite element, the whole domain has to be mapped to the reference frame[−1, 1]2.
The ξ−direction is assumed to be in axial direction of the beam, while theη−coordinate
constitutes the thickness direction. In the following only an isoparametric approximation of
the geometry is applied, exploiting the same ansatz-functions as for the displacement field
approximation. Figure 10 shows the von-Mises stresses and the displacement fields of the
GLL-solutions for three combinations ofpξ and pη. It can be seen clearly, that a typical
beam bending stress state arises in the center of the cantilever, involving pressure stresses

Figure 10. Von Mises stresses of the C-Cantilever for various degrees of shape functions
regarding a GLL nodal distribution.
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Figure 11. Residualy−displacement of the C-Cantilever’s lower right corner at continuous
raise of the polynomial degreepξ = 2, 3, . . . , 18 and fixedpη.

at the outer-surface and tensile stresses at the inner surface. The convergence plot in Figure
11 is based upon the displacement’sy−component concerning the C-Cantilever’s lower right
corner. As in the former example, also here a residual value of

Δuy =
‖u(p)

y − u
(h)
y ‖

‖u(h)
y ‖

(19)

is computed by comparing it with a pseudo exact reference solution again calculated with
Abaqusbased on a very high mesh density4. In order to contrast the convergence behavior of
thep-method, someAbaqussolutions based on standard square elements with quadratic shape
functions and a standardh-refinementprocedure with similar amounts of degrees of freedom
have been added to this chart. Whereas these solutions converge algebraically, thep-element
solutions exhibit a spectral convergence behavior. The latter is characterized by a monotonous
decrease of the convergence curve’s slope in a doubly logarithmic scaled diagram. Taking the
graphs of the Lagrangian elements into account, it turns out, that beyond a certain point an
increasing ofpξ does not improve the solution any more, which means that the curves end
up on a plateau-like area. In the first case atpη = 2 this happens due to the fixed shape
function degrees in thickness direction, which of course limits the solutions quality. The
convergence disturbances of the other two graphs atpξ > 8 can probably be attributed to the
interference of an inexact approximation of the geometry as well as the minimization of the
functional. But, like at the point loaded half-space with Dirichlet boundary conditions, also
here the nodal distribution shows no effect on the convergence behavior. The solutions of the
four analyzed nodal placements again almost coincide, except of the equispaced case, which
starts to diverge at higher order polynomial degrees of the shape functions. This is again due
to the rising condition number of the stiffness matrix in this case.

4This solution is based upon14174 quadratic elements, resulting in a total of86690 degrees of freedom.



4.3. Single distorted element: The mounted L

The next static test is performed at a L-shaped component part being mounted at a
ceiling as it is illustrated in Figure 12.

Figure 12. The mounted L (E = 70 ∙ 109 ; ν = 0.33 ; a = 0.15 ; b = 0.4 ; c = 0.5 ,
t = 1 ; F = 1 ∙ 107 ).

Even though it is not very recommendable to cover this domain by one single element,
in the following exactly this is done in order to analyze the influence of the nodal distribution
on an ill-posed geometrical approximation. Regarding the isoparametric mappings of the
geometry it has to be distinguished between two nodal distributions, firstly, the one on the
reference frame, and, secondly, the one on the physical component part as being displayed in
Figure 13. While the former can generally be chosen from the set of the presented distributions
in Section 3, the latter one has to be chosen in dependence of the given problem.

Figure 13. The mounted L: Geometry mapping.



pξ = 4 pξ = 6 pξ = 14

Figure 14. Geometry mapping of the mounted L with equally spaced nodes in both, the
physical and the reference frame.

pξ = 4 pξ = 6 pξ = 14

Figure 15. Geometry mapping of the mounted L with GLL-like distributed nodes in the
physical frame, and GLL-distributed nodes in the reference frame.

pξ = 4 pξ = 6 pξ = 14

Figure 16. Geometry mapping of the mounted L with notch-centered grid-points in the phys-
ical frame and GLL-distributed nodes in the reference frame.



In Figure 14-16 various options concerning these two nodal placements are illustrated
utilizing the shape function degreespξ = 4, 6 and14, andpη = 3. Although in the prior
example the shape of the C-Cantilever has been mapped well by utilization an equispaced
nodal distribution in the reference frame, for the current example this turns out to be rather
inapplicable, since for polynomial degreespξ > 6 strongRunge’s oscillationsoccur. These
oscillations are suppressed by switching to a GLL nodal distribution like in Figure 15. Even
though in this case the geometrical mapping works at least, the L’s notch is not very sharply
mapped even at high polynomial degrees. Thus, in Figure 16 the reference nodes are main-
tained, while the physical nodes are centered to the corner. This option induces a very accurate
description of the geometry, and, hence, is used for the subsequent analysis.

Figure 17. Von-Mises stresses of the mounted L for various shape function degrees.

In Figure 17 the resulting von-Mises stresses and displacements regarding a set of
three combinations ofpξ andpη are plotted. Since the notch results in a singularity in this
model, the stresses tend to infinity at this point as ap-refinementtakes place. According to
these plots, in Figure 18 the resultingy−displacements of the lower right corner are shown
in dependence of the continuously increasing polynomial degreespξ and pη. The ratio at
which the two polynomial degrees are raising is2 : 1, meaning thatpξ is chosen twice as
big aspη, while pη runs from2 to 13. This chart also contains anAbaqussolution5, which
permits a rating of the solutions quality. It is evident, that only the GLL-grid withp-elements
reaches the accuracy of the reference solution. Nevertheless, the CGL and the Gauss nodal
distribution seem to converge also, but at a much slower rate. The equispaced solution is
excluded from this diagram, since it diverges already at very low shape function orders, which
is not a surprise due to theRunge’s oscillationsin the approximation of the geometry. In
summary, it can be stated, that the nodal distribution used for the isoparametric mapping of a
complicated geometry significantly impacts the solutions quality, which directly corresponds
to the interpolation ability of the applied shape functions.
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Figure 18. Convergence of they−displacement of the lower right corner of the mounted
L. The polynomial degrees are increased at a ratio of2 : 1, meaning thatpξ = 2pη, with
pη = 2, 3, . . . , 13.

4.4. Single distorted element: The Flying S

As a last example an unmounted S-shaped sheet is considered, as being illustrated
in Figure 19. At first, the influence of the mass lumping in the GLL-case on the solution
quality is investigated. At second, it is studied how the maximum stable step size of an ex-
plicit time integration scheme is altered by the nodal distribution at which the mass-lumping
is performed. Like in all other test models, also here an isoparametric approximation of the
geometry is applied, exploiting the same shape-functions as for the displacement field ap-
proximation. Therein the physical nodal distribution is adopted from the reference frame, as

Figure 19. The flying S (E = 70 ∙ 109 ; ν = 0.33 ; ρ = 2700 ; r1 = 0.2 ; r2 = 0.4 ; α = 45◦).

5This solution involves 7069 quadratic elements, which corresponds to a total of 21658 degrees of freedom.



pξ = 4 pξ = 6 pξ = 8 pξ = 16

Figure 20. Geometry mapping of the flying S involving a GLL nodal distribution in the
reference frame and a GLL-like nodal distribution in the physical frame. The polynomial
degreepη is fixed to3.

it can be seen in Figure 20. According to the illustrated GLL nodal distribution the S-shape
is mapped adequately well for polynomial degreespξ ≥ 8. In Figure 21 the first four eigen-
modes and eigenfrequencies are displayed utilizing the GLL-element with fixed polynomial
degreespξ = 16 andpη = 8, and a lumped mass matrix. Taking the first eigenfrequency
ω1 into account involving ap-refinementbased ansatz-function where the number of degrees
of freedom along the S is twice as high as the degrees of freedom in thickness direction, the
convergence behavior shown in Figure 22 is gained.

Mode 1: ω
1
 = 1026.42 Mode 2: ω

2
 = 1145.36 Mode 3: ω

3
 = 2853.49 Mode 4: ω

4
 = 3796.86

Figure 21. The first four eigenmodes and frequencies regarding one single GLL -element with
completely integrated mass matrix atpξ = 16 andpη = 8.

Evidently, even for this strongly distorted element the mass matrix lumping has hardly
any impact on the calculated solutions. The computed eigenfrequencies of the lumped and
the fully integrated mass matrices share the same magnitude of the errors, which is caused
by the inexact description of the geometry. In conclusion, the mass matrix lumping of a
distorted GLL-element does not necessarily worsen the solution conspicuously, and, hence, it
is applicable under special care.
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Figure 22. Convergence of the first eigenfrequency of the flying S at continuousp-refinement.
The polynomial degrees are increased at a ratio2 : 1, meaningpξ = 2pη, whilepη = 2, . . . , 13.

Taking dynamic, transient problems into account the maximum stable time step-size
is of crucial interest. Applying the central difference method the maximum eigenfrequency of
the model influences the critical time step as [18]

Δt ≤ Δtcrit =
2

√
λmax(M

−1K)
. (20)

According to the results plotted in Figure 23, the nodal distribution has hardly any influence
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Figure 23. Maximum stable time step sizes of the flying S model at continuousp-refinement.
The polynomial degrees are increased at a ratio2 : 1, meaningpξ = 2pη, whilepη = 2, . . . , 10.



on the maximum stable time step-size neither. Mass matrix lumping in the GLL-case even
increases this value. Hence, unlike at theh-method, where the highest nodal density of a
model is a measure for the stability criterion, at the HOLP the higher nodal density at the
boundary of elements does not cause lower stable time step sizes.

5. CONCLUSIONS

All performed tests have shown, that in general the nodal distribution does not affect
the quality of the solution nor the convergence behavior of the applied algorithms directly.
Significant differences are only observed for problems comprising an interpolation task, such
as the geometrical descriptions or the treatment of the Dirichlet boundary conditions. Being
strongly underlined at the example of the mounted L involving an ill-posed geometry ap-
proximation, the HOLP on an equispaced grid is fairly inapplicable due to the occurrence of
strongRunge’s oscillations. It is shown that in these cases the GLL-method converges fastest.
The analysis of the condition number of the model with the point loaded half-space has re-
vealed, that the mesh with EQ-grid elements results in very high condition values, which are
much higher than the condition number from the three other investigated nodal placements.
Consequently, the EQ-elements cannot be recommended to be applied in higher order finite
element analysis. Although at such analysis the GLL-based finite element mesh is slightly
better than the GP- and the CGL-based element meshes, the authors cannot recommend any
of the three orthogonal polynomial based nodal placements as being best suited. The mea-
sured differences in most of the investigated tests cases are rather small. Only in cases where
a diagonalized mass matrix is of advantage, we recommend the application of the GLL nodal
placement, since to the best of the author’s knowledge for the GP- or the CGL-based elements
no such diagonalization technique is known.
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