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Abstract. Although still present in the popular imagination, the idea that the Brazilian terri-
tory is devoid of earthquakes and tradition that structures designed in this region do not re-
quire special considerations on this phenomenon are losing strength. Standards for the seis-
mic design of structures were recently developed and reports of seismic phenomena in the
country are not rare. The Brazlian seismic activity is low but not non-existent. Earthquakes
of significant magnitudes have been recorded and seismic history of this region is still little
known. Greater understandings of seismology, the availability of new records of earthquakes
and seismic observations of the behavior of structures have shown that a strong earthquake
could induce a significant dynamic amplification, capable of possible structural damage in
concrete dams. The evaluation of seismic safety of dams is a growing concern, because acci-
dents involving this type of structure have catastrophic consequences, with human and ma-
terial losses. This paper provides contributions to an analytical-numerical study on the dam-
reservoir interaction problem. The separation of variables method is employed in the closed
form solution of the bidimensional Laplace equation over rectangular domains, assuming an
infinite reservoir in the longitudinal direction. On a next step, having the analytical expres-
sions as a reference, a finite difference scheme is employed in non-rectangular domains, us-
ing the commercial software Excel. These solutions are readily applied in the investigation of
hydrodynamic pressures for non-vertical dam-reservoir interface as well asinclined reservoir
bottom. For these particular cases, where there is no analytical solution, parametric studies
were made, providing simplified expressions and design abacuses. The proposed expressions
can be readily applied in practical analysis of dam-reservoir interaction problems.
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1. INTRODUCTION

In the current economic scenario, in which Brazil has a prominent role, it is important
not only to promote the works of infrastructure, but also the modernization and upgrading of



design procedures towards new realities of projgot. seismic effect, contrary to what one
might imagine, exerts important influence on majonstructions such as dams and its con-
sideration has been taking importance with the gerere of specific standards for earth-
guake-resistant designs [1]. Therefore, the needtialies on the influence exerted by dy-
namic effects arises as an important analysis e@atiea particular field concerned specifical-
ly with the study of hydrodynamic pressures. Thame classical studies which concern the
analytical evaluation of the dam-reservoir inte@ctlike Westergaard [2] and Chopra [3]. In
Brazil, related studies began to appear more riceike the work of Silva [4], Ribeiro [5-6],
Ribeiro et al [7], among others. The results oldim studies cited above do not, however,
consider the inclination of the reservoir or thelimation of the upstream slope and its corres-
ponding effects on the hydrodynamic pressures. [iixce a few foreign articles, [8] and [9],
nothing has been done in this area domesticallys;Tdue to its obvious practical importance
and the lack of literature in the area, this stpdyposes a methodology that analyzes the in-
fluence of such factors on the distribution of lo@imamic pressures in the reservoir for non-
rectangular domains using a finite difference sahe@sia basis.

2. ANALYTICAL DEVELOPMENT OF THE GOVERNING EQUATION , BOUN-
DARY CONDITIONS AND EXACT SOLUTION.

2.1. Analytical development of the governing equatn

The study of phenomena related to the propagatiomawes in a continuous elastic
medium is based on the wave equation. This equaaonbe obtained through the equations
governing the behavior of the fluids. They are:

dp

Pl div(pV) = 0; Continuity equation (2)

pZ—‘t’ +pVgradpV) + gradp) + u[AV +§grad(div(\/))] = 0; Navier-Stokes equation (2)

f(p,p) = constant—> p =pc?; State equation 3)

in the equations abov,is fluid density,V = V,i + Vj + V;k is the speed of flowdiv(V) =

V.V:%+aﬁ+% ov . ov .

_ _ av : .
PR grad(V) = 7V = it 71 t— k, c is the speed of wave propagation

in fluid medium and can be calculated forz\/g, wherex is the bulk modulus of the fluid

volume.

Considering the fluid as compressible and idea Navier-Stokes equation reduces to
the Euler equation:



]
p>+ grad(p) = 0 (4)
Differentiating equation (3) and substituting iriguation (1), provides:

div(V) = — pL";—f (5)

Applying the divergence in equation (4) and repigdhe result in equation (5) yields
the following equation:

V2= = (6)

Equation (6) is exactly the Wave Equation, whictinestes the distribution of fluid
pressures in a linearly compressible, homogeneuatis small variations in density and small
disnlacements. It shouldzbe nozted tzhat in equgBynhe operatov? is the three-dimensional

d FE)

Laplacian given by? = ot 7 t—

In the case of an incompressible fluid, where thiewetric stiffness becomes infinite-
ly large and therefore,-e o, equation (6) reduces to the following expression:

72p =0 (7)

Equation (7) is known as Laplace's Equation, rdlabethe pressure field in an incom-
pressible fluid and will be applied throughout thaper.

2.2. Development of boundary conditions

Having the equations that govern the distributibhymrodynamic pressures in a fluid,
the next step is given by the development of bogndanditions governing the problem.

- Fluid-Structure Interface:

Arises due to the compatibility between the movenwdrthe adjacent structure and
the contained fluid. Consider Figure 1, which iradés a one-dimensional tube associated
with a piston. The movement of the struct@eoccurs along the axis x and pressure along a

cross-section is constant.
d-ﬁt; EE'-"- : o
L v M

8%

u

x

o

Figure 1. Schematic representation of fluid-streetondition

The dynamic equilibrium of horizontal forces on thed element hatched provides:



YE,=ma ~ —dpdA=dxdApsu (8)

wherep; indicates the density of the fluid. This last etpraresults in:

dp _ _ _

= TPru 9)
which may be extended, resulting in a boundary timmg fluid-structure:

dp -~

—= = —prl (20)

wheren is the normal direction of the surface.

- Rigid wall condition (Neumann condition):

The dynamic equilibrium of horizontal forces on tiached fluid element provides:
YE=ma ~ —dpdA=dxdApsu (11)

wherep, indicates the density of the fluid. For a rigichtour the termz vanishes, since the
contour is rigid. With this last comment Equati®) i reduced to:

dp _
=0 (12)
which may be substituted in (11), resulting in Bloeindary condition of the rigid wall:

Whereii is the normal direction of the surface.

- Free surface condition (Dirichlet condition):

At the free surface the domain is taken as undisti{neglecting free-surface waves ef-
fect), therefore we have p = 0.

- Infinite reservoir condition:

Radiation condition is considered, in a simplifiechnner, with zero hydrodynamic
pressure at the reservoir limits, which extendartanfinite length.

2.3. Exact analytical solution for a vertical upsteam face with rectangular reservoir

With the governing equation and boundary conditiohthe problem defined, the next
step is given by construction of the exact solutibime problem is simplified significantly with
the assumptions of a rigid dam (leading to a conistaceleration along the fluid-structure in-



terface) and an incompressible fluid, and thateisegally a first step solution in the analysis of
dam-reservoir interaction (being basic hypothegdate Pseudo-Static Method). Figure 2 pro-
vides a depiction of the analyzed rectangular dormasluding the prescribed boundary condi-
tions.

S4_:p—0

S3:p:0
.O0p _
2 =0

Figure 2. Analyzed rectangular domain and boundanglitions
The governing equation is given by Equation (14):
Vip=0 14

with p(x,y) = X(x)Y(y) assumed as separable. Therefore, boundary caomlibio each di-
rection are uncoupled, resulting in:

S1: pxy) =-puforx=0 (15)
S2:p(x,y)=0fory=0 (16)
S3: p(x,y) =0 for > a7

S4:p(x,y)=0fory=H (18)

with H standing for the reservoir height, whichassumed as equal to the dam’s vertical di-
mension, andi defining the horizontal acceleration of the motmliassumed as constant
along the dam’s height.

Using the method of separation of variables to fimelexpression p (x, y) for the giv-
en boundary conditions it is assumed a solutidiolésnys:

p(x,y) = X(x)Y(y) (19)

which can be substituted in (14), leading to tHe¥ang ordinary differential equations:
X" - AX=0 (20)
Y'+ AY =0 (21)

Making upA = 2, from (21) results:



Y(y) = A sen(uy) + B cos(uy) (22)

with A and B standing for arbitrary constants. Frboundary conditions at S2 and S4 the
final solution in y direction is defined by:

Ya(y) = Bacos(hy) = Beog(2n — 1) 27] (23)
with n=1,2,3,... given by a positive integer.
The same procedure is reproduced in horizontattiing, x, leading to:
X(X) = CeH* + De™Hx (24)
From p(x,y) = 0 for x> oo (condition at S3):
Ce'” +De™=0-C=0 (25)
Therefore, the final solution in x direction is ohefd by:
Xn(X) = Dye ™% = Dye (21 = D3pxl (26)

Substituting (23) and (26) in equation (19) andstdering the Superposition Theo-
rem, which states that the sum of the solutiors differential equation is also solution of this
differential equation:

Pn(X,y) = Xn=1Ky e™n*cos (u,y) (27)

with K, standing for a remaining arbitrary constant. Bargdcondition at S1 provides the
value of this last term and the corresponding femdiition is given by:

2
n

oy DM y
p(x.y) = 2pTHE -y Sh— e nicos (u, £) (28)

which provides the hydrodynamic pressure field mimfinite acoustic cavity of height H,
subjected to a rigid wall uniform acceleratiomt S1. At this particular position, wix = 0,
the hydrodynamic pressure at the fluid-structuterface is given by:

- = o (D" Y
p(oly) - ZPUHanl Hﬁz Cos (IJ-n H) (29)

By representing the solution by means of functiohsach independent variable, there
is a limitation in solving irregular geometries tmgans of the separation of variables method,
since this procedure is limited to rectangular dmsarl herefore, obtaining the hydrodynamic
pressure field in cases where the boundaries r@guiar is only possible by means of numer-
ical methods. It is evident that practical casey meaolve slopping upstream faces, slopping
reservoir bottom, or even a combination of both.oVercome this problem an outline is pro-
posed using a fictitious boundary at S1. In otherds, an extra term is introduced in the
formulations ¢os 0), providing a slopping upstream face, even thahghis taken as vertical



for the application of a standard separation ofaldes method. Figure 3 explains the pro-
posed scheme.

fictitious boundary

irregular cavity i regular cavity

op 0dpox dp 1
\ on  dxdn OdxcosO

_pu

Figure 3. Outline for simplified solution of irrelgm domains (fictitious boundary)

Therefore, the new boundary condition at S1 udnedictitious boundary is given by:

op _ =
o, — —Pucos 0 (30)
Using (30) the proposed expression for a sloppiogtream face is defined by (31).
For 8 = 0 this latter expression is reduced to (28), resglin the classical case of a vertical
dam.
Y P w DMy X y
px.y) =|2ptH Xy = 5—e nicos (u, )| cos 6 (31)

n

3. NUMERICAL APPROACH TO THE PROBLEM

Given the limitations of the method of separatiéwariables and the practical impor-
tance of considering both the slopes in the upstrizece and reservoir bottom, a numerical
analysis of the problem is studied, aiming to wetiife influence of such changes in the distri-
bution of hydrodynamic pressures.

For this purpose, a finite difference method isli@polp approximating the differential
equation at discrete points. A short explanatiooua the method is discussed below. Consid-
er the diagram in Figure4.

Being "h" the differential step in "x" axis, appobéng the derivative dy / dx at point
"A" as follows:

(d_y)l ~ Yir1mVia (32)

dx/; 2h



Figure 4. Finite difference scheme

The following is the operator of a second ordendive at the same point:

2y Yit1= Vi _Yi=Vi-a Vir1— 2yt Vi
( ) ~ h h ~ i+1 i i—-1 (33)
i

dx? h h?

Applying these concepts to the Laplace equationgemeralizing them to the "y" axis,
we obtain the following expression:

_ . Diy1,j=2Dijt Di-1,j Dij+1~ 2Pij*+ Dij-1 _
et =0 2 + 2 =0 (34)

Being "h" the step in the axis "x" and "k" the siag'y" axis. Solving the above ex-
pression fop; ;, we have:

o K2(Pig1,j+Pio1,))+ W2 (@i j41+Dij-1) (35)
L 2(h2+k2)

3.1. Mesh example, boundary conditions and linearggiations

Consider the acoustic cavity and the following tendifference mesh, shown on Fig-
ure 5. Because the domain is rectangular, for cuenee, we take h = k. It should be noted
that in this way, the value @f ; is the arithmetic mean values of the four neighbor

1 12 13 14 15 16 17 18 19

21| 22\ 23| 24, 25| 26| 27, 28] 29

31| 32, 33| 34, 35 36| 37 38 39

41| 42| 43| 44| 45| 46| 57| 48] 49

51| 52| 53| 54, 55| 56| 57 58| 59

61| 62| 63| 64, 65 66| 67 68 69

71| 72\ 73| 74, 75| 76| 77| 78| 79

81| 82| 83| 84, 85 86| 87 88 89

91| 92| 93| 94| 95| 96| 97| 98| 99

Figure 5. Finite difference mesh (Laplace equati@toustic cavity)



To point "34" application of the finite differenoperator results in:

_ P35 t P33+ Pag t+ P2
P34 = 4

Application to point "21" provides:

_ P22 t P20 t P31 T P1g
P21 = 4

It should be noted, however, that the point "20hdd defined in the problem. This
point is called "dummy point" and, through the boary condition of fluid-structure, it can
arise in terms of a real component.

Conditiong—z = —pu at S1 provides:

P22 — P2o _

n — pU - Pao = P2z + 2puh

The same procedure can be applied to other pdintghose points located at the bot-
tom of the reservoir, proceed analogously.

Application of the differential operator to poing'sgives:

_ Pse t Dsa + Pas t Pes
Pss = 4

Point "65" is not defined and therefore can be iokthby reference to a real compo-
nent through the rigid wall condition.

From the conditior% =0 at S2:

P45 — DPes . _
—n 0 = Pes = Pas

In short, operators must be applied to the pomtke diagram in Figure 6.

22 23 24 25 26 27 28

32| 33| 34, 35| 36| 37| 38

42| 43| 44| 45| 46| 57| 48

52| 53| 54, 55| 56| 57| 58

62| 63| 64, 65| 66| 67| 68

72| 73| T4 75| 76| 77| 78

82| 83| 84, 85 86| 87| 88

Figure 6. Finite difference mesh including onlyereince (internal) points



From what has been said, it can be noticed thasahgion through the finite differ-
ence method involves obtaining a system of linepragons, the unknowns being the pres-
sures at each point of the reservoir. The diffeaémperator, as shown in Equation (35), is
applied only to reference (internal) points. Theaming points at the boundary are related to
the interior mesh by means of boundary conditidar$8laS4. The size of such a system is giv-
en by the product m x n, where "m" and "n" are eesipely the number of rows and columns
of the grid chosen to discretize the domain.

3.2. Step-by-step solution of a finite differenceckeme using Microsoft Excel

Through this article an iterative routine is progmssimplifying significantly the prob-
lem since, by such approach, there is the no nreasdlve a system of linear equations. The
proposed method consists in setting up an Excedasisheet, and the completion of this
worksheet consists of the following steps:

1. Fill the boundary conditions at the ends offtak;

2. Enable iterative calculation option;

3. Set Maximum Number of Iterations and Maximum &g

4. Fill in an internal cell as an average of foarghboring cells (differential operator);
5. "Drag" the cell filled for the remaining intetrdomain.

Upon completing the above steps, the program witess the iterations according to
the increment chosen in step (3) and, after conopleaif the iterative process, the pressure
value at each point is displayed in the respectek. It is evident that best results are
achieved with an increment of rows and columns. él@w, such operation implies in more
computational cost. An example of the foregoinghewn below using a 10 x 10 mesh.

Step 1

- Fluid-structure boundary condition:

By analyzing the points of the fictitious fluid-stture interface, it can be seen that
these are functions of real components of the naleslomain. With the first being given by
the following law, which describes de fluid-struetdboundary condition:

Dij = Dij+2 + 2puh

The value oRpuh is constant and, for our analysis, the terinh was taken as being equal to
a unity value. Thus:



Pij = DPij+2 T2

The filling of the cells in fluid-structure boundais illustrated on Figure 7.

| SOMA (> % -/ﬁr|=C2+2
A B C D E F G H 1 J K L
—c2+2 | [ |

W 0o [~ | |0 fa || p
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RN =]

Figure 7. Fluid-structure boundary condition on Mgoft Excel

- Rigid wall boundary condition:

By analyzing the points on the fictitious fluidistture interface, it can be seen that
these are also functions of the internal domairesébeing given by the following law:

Dij = Di-2,j

The filling of the cell contour for a rigid wall lbadary is shown on Figure 8.
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Figure 8. Rigid wall boundary condition on Microsgicel
- Free surface and infinite reservoir boundary cooas:

In both cases cells are simply filled with zeror Bee discretization chosen including
all boundary conditions, the final scheme is shonrFigure 9.
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Figure 9. Final scheme including all boundary ctinds (Step 1)

It should be noted that as the cells of the infedomain were not filled, the condi-
tions of fluid-structure and rigid wall were arlited by the program to be zero and two, re-
spectively.

Steps 2 and 3

Enabling iterative calculation can be made as vaito

EXCEL OPTIONS> FORMULAS> ENABLE ITERATIVE CALCULATON> SELECT
MAXIMUM NUMBER OF ITERATIONS AND CHANGES

This is a critical step, because without it Exaspthys an error related to circular ref-
erences. The maximum number of iterations and awngn be chosen according to the de-
sired accuracy by the user and determines alsprdwessing time required.

Step 4

Figure 10 indicates an application example of tifferential operator to the internal
domain.

50MA v (0 X « f|=(C2+A2+B1+B2)/4

A B c D E F G H I ) K L
1 [ o] 0 0 0 0 0 0 0 0 0
2| 2| +B3)/a ] ] 0
3 2 0
4 2 0
5 2 0
6 2 0
7 2 0
8 2 0
9 2 0
10 2 0
1 2 0
12 0 0 0 0 0 0 0 0 0 0

Figure 10. Differential operator applied to cell E&ep 4)

Step 5



Having filled up the first cell as the average afif neighboring cells, we drag it verti-
cally and horizontally so that the same commanédpgated in the other cells. When this pro-
cedure ends, Excel automatically begins the iwezagirocess which generally lasts a few
seconds and ends with the pressure obtaining ih pamt of the chosen mesh. Figure 11
shows the results obtained with the boundary carditgiven on Figure 9 using the 10 x 10
mesh. The "dummy points" and the boundary conditiere hatched in order to distinguish
them from the internal domain.

A B 8 D E F G H 1 J K L

0 0 0 0 o 0 0 0 o 0

3,406135 2,04274 1,406136 1,042745 0,801222 0,623067 0481967 0,364268 0,261918 0,169585 0,083347
4,539062 3,358695 2,539065 1,963626 1,53908 1,209082 0,540534 0,71319 0,513819 0,333078 0,163802
5427804 4,31392 3,427809 2,733623 2,1823%6 1,733653 1,357903 1,034144 0,747093 0,485107 0,238783
6,124631 5,041383 4,124637 3,36067 2,723238 2,18524 1,723286 1,318357 0,955304 0,621475 0,306226
6,0608693 5,002357 4,668699 3,861192 3,164656 2,560752 2,031612 1,560858 1,134258 0,739267 0,364640
7,086618 6,030668 5,086626 4,250758 3,513413 2,86167 2,281522 1,759174 1,281606 0,8366%4 0,413091
7,396384 6,34709 5,396392 4,5341817 3,776584 3,090964 2,473642 1,912717 1,396304 0,912815 0,451024
7,610046 6,5645932 5,610055 4,74355 3,960154 3,251975 2,609378 2,021757 1,478084 0,967243 0,478153
7,735353 6,6092558 5,735362 4,862191 4,068524 3,347416 2,690148 2,086858 1,527038 0,993886 0,494505
7,776634 6,734604 5,776664 4,901345 4,104352 3,379031 2,716954 2,108498 1,343332 1,01076 0,499942
6,0602558 5,735362 4,862191 4,008524 3,347416 2,690148 2,086858 1,527038 0,993886 0,494505
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Figure 11. Problem solved — end of iteraction pdoce (Step 5)

For cases in which the inclination of the reser®itonsidered, it proceeds analogous-
ly to what was seen. The only changes to such @ases

1. Will be added cosine and sine terms to boundanditions of fluid-structure and rigid
wall, respectively, since these are defined thrahghdirection normal to the surface;

2. The values of p (i, j) are obtained from equa(i®5), and increments "h" and "k" will vary
according to the inclination of the reservoir. 8w,example, an inclination (¢ = 30°0f the
upstream slope implies 6 = 60°, and thus having k = 1, we have h = 1.73205. Edw#
clarifies this interpretation.

irregular cavity

Figure 12. Upstream inclined reservoir with defimedjles and dimensions



4. CONVERGENCE STUDY — ANALYTICAL X NUMERICAL

To validate the proposed methodology a comparisas made between the distribu-
tion of pressures through the analytical formulamd the numerical results. The latter being
analyzed by three different mesh schemes, in daleerify the influence of its size in the
refinement of the results. Figure 13 presents thaséyses.

From the graphic analysis it is concluded thatrtiesh size varies the numerical re-
sults. Mesh 20 x 30 gives good results with a destngy ratio y / H, and those are the values
that matter most to analysis, with an overall miemor when compared to the rectangular
(analytical) solution. Therefore, this mesh wassamfor the proceedings analyses.

Legend:
Retangular

10x15
20x30
40x60

y/H
|

0
\ \ \

0 0.1 0.2 0.3 0.4
DIMENSIONLESS PRESSURE

Figure 13. Dimensionless pressure at fluid-strigctaterface — analytical x numerical

5. APPLICATION EXAMPLES AND RESULTS

5.1. Influence of the upstream slope on the hydnadyic pressure distribution

To evaluate the importance of the upstream slopéherpressure distribution along
the fluid-structure interface, analyses were penfxt for three different numerical models,
including angles of 30, 45 and 60 degrees. Reatdtpresented on Figure 14.

It is clear from the graphical analysis results @ya increment of the upstream slope
results in overall greater pressure values at lthd-$tructure interface. The "saws" on the
charts representing the hydrodynamic pressuresttediappear with a more refined discre-
tization of the reservoir. It should also be notleat maximum values are not at base of the
dam (in contrast to a vertical dam).
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Figure 14. Dimensionless pressure at fluid-strectnterface — slopping face

Another analysis of practical importance is givenam error estimative of proposed
expression (31) when compared to results provided humerical analysis. Figures 15, 16
and 17 present these results.

1 —

0.8 —|

0.6 —|

Legend:
30°(numerical)

30° (analytical)

y/H

0.4 —

02 —

0 /
\ \ \ \

0 0.05 0.1 0.15 0.2
DIMENSIONLESS PRESSURE

Figure 15. Results for a 30degrees upstream siopaytical x numerical)

Through the graphical analysis, one can see thmatdioes of y / H between 0.4 and
0.6 the values obtained by the proposed analyégplession and the corresponding finite
difference scheme approach as the angle of theeapstslope decreases. Moreover, for val-
ues of y/H less than 0.2 the values of the pressarboth methods differ, with the analytical
values oversized. Still, the proposed analyticainidation emerges as an additional tool for
the preliminary assessment of pressures on slogants.



Legend:
45°(numerical)

45°(analytical)

y/H
|

0 0.1 0.2 03
DIMENSIONLESS PRESSURE

Figure 16. Results for a 45 degrees upstream géopaytical x numerical)
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60°(analytical) \

y/H
|

0.4 —

0.2 —

0
\ \ \ |

0 0.1 0.2 0.3 0.4
DIMENSIONLESS PRESSURE

Figure 17. Results for a 60 degrees upstream g&p@ytical x numerical)

5.2. Influence of the reservoir bottom slope onhiigrodynamic pressure distribution

Evaluation of the of the reservoir bottom slopeeti§ on the distribution of fluid pres-
sure at the interface was performed for three iffenumerical models, with variation made
for angles of 30-60 degrees, with an incrementofldgrees. Figure 18 presents these results.

It is clear from the graphical analysis that asittedination of the tank bottom increas-
es, the greater the pressure for values of y /tivden 0.4 and 0.6. The pressure for values of



y / H less than 0.1 follows the inverse order. Tisathe pressure at the base of the dam de-
creases with an increasing inclination of the nesiebottom.

1 —

0.8 —

0.6 —
Legend:
60° |
- 45°
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y/H

0.4 —

/
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0 0.1 0.2 0.3 0.4
DIMENSIONLESS PRESSURE

Figure 18. Dimensionless pressure at fluid-strgctaterface — slopping bottom

6. CONCLUDING REMARKS

A simple and practical method was made to evaltiagedistribution of pressures
along the fluid-structure interface consideringetiént geometries of the domain, namely, the
slope of the ornament on the upstream side anth¢hipation of the reservoir bottom.

It could be seen that in both cases there wasrafisant shift in the distribution of
pressures and that the value of hydrodynamic pressu the bottom of the reservoir decreas-
es as the angle of inclination decreases for duthupstream face and the reservoir bottom
slope.

The major advantage of applying the finite differemethod by using the commercial
program Excel is to obtain the pressure valuestiyrewithout the need to solve a linear sys-
tem of equations. This same procedure can be apiaiether problems for solution of diffe-
rential equations separate and / or including obbmmdary conditions. Therefore, the pro-
posed procedure is an ideal introductory tool fouryg researchers working with finite differ-
ences schemes.

The analytical formulation proposed for cases vath upstream slope, despite its
physical and mathematical sense, emerges as anadite for practical problems dealing
with limitations imposed by traditional theory, whiapplied are only to vertical dams. De-
spite the errors, the proposed formulation provalgeod estimative of pressure values at the
dam-reservoir interface.
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