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Abstract. We present a method for concurrent mesh and polynomial-order adaptation with
the objective of direct minimization of output error using a selection process for choosing
the optimal refinement option from a discrete set of choices that includes directional spatial
resolution and approximation order increment. The scheme is geared towards compressible
viscous aerodynamic flows, in which solution features make certain refinement options more
efficient compared to others. No attempt is made, however, to measure the solution anisotropy
or smoothness directly or to incorporate it into the scheme. Rather, mesh anisotropy and ap-
proximation order distribution arise naturally from the optimization of a merit function that
incorporates both an output sensitivity and a measure of the computational cost of solving
on the new mesh. An adjoint state is used to translate the residual perturbation resulting
from each refinement option into an output sensitivity with respect to each mesh modification
option. Two measures of computational cost are explored: a generic measure that accounts
for the number of degrees of freedom of the discrete state, and one that accounts for the
number of floating-point operations involved in solving the discrete problem. We restrict the
mesh refinement mechanics to quadrilateral and hexahedral meshes. Many such meshes and
associated meshing programs exist from the structured CFD community, and these can be
leveraged to produce the starting meshes for the proposed adaptation. Additionally, we dis-
cuss implementation challenges of hp-adaptive methods for aerodynamic problems, such as
load balancing on distributed-memory systems. The method is applied to output-based adap-
tive simulations of laminar and Reynolds-averaged compressible Navier-Stokes equations on
body-fitted meshes in two and three dimensions. Two-dimensional results show significant
reduction in the degrees of freedom and computational time to achieve output convergence
when the discrete choice optimization is used compared to uniform h or p adaptation. Three-
dimensional results show that the presented method is an affordable way of achieving output
convergence on notoriously difficult cases such as the third Drag Prediction Workshop W1
configuration.
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1. INTRODUCTION

Aerodynamic flows exhibit features in a wide range of length scales and singular fea-
tures whose distributions are not knowna priori. Hence, it is key for an efficient computation
that the adaptive algorithm is capable of generating stretched elements in areas where the solu-
tion exhibits anisotropy and choosing a local approximation order appropriate to the smooth-
ness of the solution. Anisotropic features include boundary layers, wakes, and shocks, where
the disparity of length scales is such that stretching ratios in the hundreds or thousands are
common. Singular or near-singular features, at least for the primal solution, include shocks,
trailing edges, edges of boundary layers and wakes, and trailing vortices,

The choice between subdividing an element or locally changing the scheme’s dis-
cretization order is not trivial and has been the subject of much previous research [3, 22, 34,
24, 16, 4]. Bey [3] uses the error equidistribution principle to first subdivide elements and then
increase the polynomial order where the solution is deemed smooth. Conversely, Heuveline
and Rannacher [22] propose a process that prioritizesp-refinement and only subdivides an
element when the previous step leads to an increase in the elemental error indicator. Houston
and Süli [24] introduced two methods for assessing the local smoothness of the solution using
Legendre series expansions and estimates of the local Sobolev index. In that same article,
they also provide an overview of different strategies for the decision of the refinement type.
Burgess and Mavriplis [4] use a solution-jump indicator to decide betweenh andp refine-
ments. Following a different approach, Rachowiczet al [34] chooseh or p refinement based
on an estimated lowest interpolation error.

Anisotropic mesh adaptation in aerospace applications is also a prolific research topic.
The dominant method for detecting anisotropy has relied on estimates of the directional in-
terpolation error of a representative scalar, such as the Mach number [32, 28]. When used
alone, this technique reduces to equidistributing the interpolation error of the chosen scalar
over the computational domain, with the absolute level of interpolation error prescribed by the
user [5, 19]. Alternately, this technique can be combined with output-based error estimation
by using the output adaptive indicator to set the element size and the directional interpolation
error to set the element stretching [38, 40]. The same idea can be extended to high-order
discretizations [11, 9], although the measurement of directional interpolation error becomes
more tedious. A more fundamental problem with this approachin the context of output-based
adaptation is the assumption that mesh anisotropy should begoverned by the directional in-
terpolation error of one scalar quantity. This assumption is heuristic because it does not take
into account the process by which interpolation errors create residuals that affect the output
of interest. As a result, recent research has turned to adaptation algorithms that directly target
the output error.

Formaggiaet al [15, 14, 13, 29] combine Hessian-based interpolation errorestimates
with output-baseda posteriorierror analysis to arrive at an output-based error indicatorthat
explicitly includes the anisotropy of each element. Schneider and Jimack [36] calculate the
sensitivities of the output error estimate with respect to node positions and formulate an opti-
mization problem to reduce the output error estimate by redistributing the nodes. They then
combine this node repositioning with isotropic local mesh refinement sequentially in a hy-
brid optimization/adaptation algorithm. Park [31] introduces an algorithm that directly targets



the output error through local mesh operators of element swapping, node movement, element
collapse, and element splitting. Using the output error indicator to rank elements and nodes,
these operations are performed in sequence and automatically result in mesh anisotropy.

Following a similar approach presented by Houstonet al [23], we proposed in Ref. [6]
a direct mesh optimization technique in which a particular mesh refinement is chosen from a
discrete number of possible choices in a manner that directly targets reduction of the output
error. That strategy is specifically suited for hanging-node meshes, in which a handful of re-
finement options is typically available for each element andin which the adaptation mechanics
are relatively simple. We extended our previous work tohp-adaptation of quadrilateral and
hexahedral meshes in Ref. [8].

In order to fully use the potential ofhp-adaptive methods in practical aerodynamic
flows, the computational resources must be used efficiently.We present in this paper a method
for balancing the computational work in distributed-memory systems that aims to equalize
the number of floating point operations of each processor andimprove the effectivity of the
preconditioner.

2. PROBLEM STATEMENT

Let U denote a discrete state vector and consider the semi-discrete system,

Ut = −R(U), (1)

whereR(U) is a discrete residual operator derived from a weighted-residual statement of a
set of partial differential equations. In this work, we consider laminar and Reynolds-averaged
compressible Navier-Stokes equations [30].

The field representation of the state is given by an expansionin terms of basis functions
φ
H,p
j (x) ∈ VH,p,

u
H,p(t, x) =

∑

j

Uj(t)φ
H,p
j (x), (2)

whereVH,p is the space of polynomials of orderp with local support on each of the elements
κH in a non-overlapping discretizationTH of the domainD.

We are interested in the steady-state solution of the flow equations, therefore high-
accuracy is not required for discretizing the unsteady termin Eqn. 1. Instead, stability is the
main attribute which makes backward Euler an attractive choice. The fully discrete form of
Eqn. 1 is then:

M
1

∆t
(Un+1 −U

n) +R(Un+1) = 0, (3)

whereM is a block-diagonal mass matrix for discontinuous Galerkindiscretizations.
In time-accurate calculations, Eqn. 3 is solved for the future state using a nonlinear

solver such as Newton-Raphson. For steady calculations, the residual at the future state in
Eqn. 3 is expanded about the current state and the steps in theiterative procedure require
linear solves for the update∆U

k = U
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∆U
k = −R(Uk), (4)



wherek is used for the linear iteration number to distinguish the method from the time-
accurate backward Euler case.

In principle, Newton’s root-finding method could be used to solveR(U) = 0 directly.
However, the unsteady term in Eqn. 1 is kept to alleviate the spectral conditioning of the linear
systems in the initial stages of the calculation and to improve the global convergence property
of the solver.

The linearization of the residual operator involves simplifications due to non-differentiable
terms in numerical flux functions and artificial dissipationsensors. Additionally, the sparse
structure of the linear system given in Eqn. 4 depends on the type of spatial scheme used for
R, and an appropriate choice of iterative solver and preconditioner must be made. In this
work, we use the Generalized Minimal Residual (GMRES) algorithm with a line-Jacobi pre-
conditioner [10]. Note that for∆t → ∞ the iterative procedure of Eqn. 4 reduces to Newton’s
root-finding method.

3. OUTPUT ERROR ESTIMATION

Output-based error estimation techniques identify all areas of the domain that are im-
portant for the accurate prediction of an engineering output. The resulting estimates properly
account for error propagation effects that are inherent to hyperbolic problems, and they can be
used to ascribe confidence levels to outputs or to drive adaptation. A key component of output
error estimation is the solution of an adjoint equation for the output of interest. In a continuous
setting, an adjoint,ψ ∈ V, is a Green’s function that relates residual source perturbations to a
scalar output of interest,J(u), whereu ∈ V denotes the state, and whereV is an appropriate
function space. Specifically, given a variational formulation of a partial differential equation:
determineu ∈ V such that

R(u,w) = 0, ∀w ∈ V, (5)

the adjointψ ∈ V is the sensitivity ofJ to an infinitesimal source termδr ∈ V added to the
left-hand side of the original PDE.ψ satisfies a linear equation,

R
′[u](w,ψ) + J ′[u](w) = 0, ∀w ∈ V, (6)

where the primes denote Fréchét linearization with respect to the arguments in square brack-
ets. Details on the derivation of the adjoint equation can befound in many sources, including
the review in Ref. [12]. Specifically, in the present work we employ the discrete adjoint
method, in which the system is derived systematically from the primal system [18, 27].

An adjoint solution can be used to estimate the numerical error in the corresponding
output of interest. The resulting adjoint-weighted residual method is based on the observa-
tion that a solutionuH,p in a finite-dimensional approximation spaceVH,p will generally not
satisfy the original PDE. The adjointψ ∈ V translates the residual perturbation to an output
perturbation via,

δJ = J(uH,p)− J(u) ≈ −R(uH,p,ψ). (7)



This expression is based on a linear analysis, and hence for nonlinear problems and
finite-size perturbations, the result is approximate.

Although the continuous solutionu is not required directly, the continuous adjointψ
must be approximated to make the error estimate in Eqn. 7 computable. In practice,ψh,p+ is
solved approximately or exactly on a finer finite-dimensional spaceVh,p+ ⊃ VH,p [35, 1, 37].
This finer space can be obtained either through mesh subdivision or approximation order
increase [26, 20, 30] – denoted here by changes in the superscript H andp, respectively.

The adjoint-weighted residual evaluation in Eqn. 7 can be localized to yield an adap-
tive indicator consisting of the relative contribution of each element to the total output error. In
this work, the finer space is obtained by approximation orderincrement,VH,p+1 ⊃ VH,p, and
ψH,p+1 is approximated by injectingψH,p into VH,p+1 and applying 5 element block-Jacobi
smoothing iterations. The output perturbation in Eqn. 7 is approximated as

δJ ≈ −
∑

κH∈TH

RκH (IH,p+1

H,p (uH,p),ψH,p+1 − I
H,p+1

H,p (ψH,p)), (8)

whereIH,p+1

H,p (·) is an injection operator fromp to p + 1 in the coarse meshTH , andRκH

corresponds to the residual of elementκH . Note, the difference between the coarse-space
and fine-space adjoints is not strictly necessary due to Galerkin orthogonality [12]. However,
when the primal residual is not fully-converged to machine precision levels the use of the
adjoint perturbation gives better error estimates. Equation 8 expresses the output error in terms
of contributions from each coarse element. A common approach for obtaining an adaptive
indicator is to take the absolute value of the elemental contribution in Eqn. 8 [39, 2, 21, 17, 1,
6],

ηκH =
∣

∣

∣
RκH (IH,p+1

H,p (uH,p),ψH,p+1 − I
H,p+1

H,p (ψH,p))
∣

∣

∣
. (9)

With systems of equations, indicators are computed separately for each equation and
summed together. Due to the absolute values, the sum of the indicators,

∑

κH ηκH , is greater
or equal to the original output error estimate. However, it is not a bound on the actual error
because of the approximations made in the derivation.

4. MESH ADAPTATION MECHANICS

The elemental adaptive indicator,ηκH , drives a fixed-fraction hanging-node adapta-
tion strategy. In this strategy, which was chosen for simplicity and predictability of the adap-
tive algorithm, a certain fraction,fadapt, of the elements with the largest values ofηκH is
marked for refinement. Marked elements are refined accordingto discrete options which cor-
respond to subdividing the element in different directionsor increasing the approximation
order. For quadrilaterals, the discrete options are:x-refinement,y-refinement,xy-refinement
andp-increment, as depicted in Figure 1. Note,x andy refer to reference-space coordinates
of elements that can be arbitrarily oriented and curved in physical space. Also, the subele-
ments created through refinement inherit the approximationorder from the original element.
In three dimensions a hexahedron can be refined in eight ways:three single-plane cuts, three
double-plane cuts, isotropic refinement, andp increment.
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Figure 1. Quadrilateral refinement options. The dashed lines indicate the neighbors of the
refined element.

h-refinement is performed in an element’s reference space by employing the coarse el-
ement’s reference-to-global coordinate mapping in calculating the refined element’s geometry
node coordinates. The refined elements inherit the same geometry approximation order and
quadrature rules as the parent coarse element. As a result, there is no loss of element quality
when a nonlinear mapping is used to fit the element to a curved geometry. Therefore, curved
elements near a boundary can be efficiently refined to captureboundary layers in viscous flow.
For simplicity of implementation, the initial mesh is assumed to capture the geometry suffi-
ciently well, through a high enough order of geometry interpolation on curved boundaries,
such that no additional geometry information is used throughout the refinements. That is, re-
finement of elements on the geometry boundary does not changethe geometry. We note that
for highly-anisotropic meshes, curved elements may be required away from the boundary, and
for simplicity we use meshes with curved elements throughout the domain.

Note that elements created in a hanging-node refinement can be marked forh-refinement
again in subsequent adaptation iterations. In this case, neighbors will be cut to keep one level
of refinement difference between adjacent cells. This is illustrated in Figure 2.

Figure 2. Hanging-node adaptation for a quadrilateral mesh, with a maximum of one level of
refinement separating two elements. The shaded element on the left is marked for refinement,
and the dashed lines on the right indicate the additional newedges formed.

5. MERIT FUNCTION

The choice of a particular refinement option is made locally in each element flagged
for refinement. This choice is made by defining a merit functionm(i) that ranks each available



refinement optioni. This function is defined as

m(i) =
b(i)

c(i)
, (10)

whereb andc respectively correspond to measures of the benefit and the computational cost
of the refinement option indexed byi. These measures depend on the method used for solving
the flow equations and they should be tailored for each specific solver. We define them further
in this section in the context of the applications presentedin this paper.

During calculation of the merit function, local mesh and data structures are created that
include the flagged element and its first-level neighbors along with the corresponding primal
and adjoint states. In these local structures, the central element is refined in turn according to
each of the discrete options. On the refined local mesh, the merit function is computed and
the refinement option with the largest value ofm(i) is chosen.

5.1. Cost

We consider two measures of computational cost. The first measure is solution storage
that is proportional to the number of degrees of freedom in the discrete state vector. For
tractability, we consider only the degrees of freedom pertinent to the flagged elementκH ,

cDOF(i) =
∑

κh∈κH

(pκh(i) + 1)dim, (11)

whereκh ∈ κH denotes the subelements embedded in the original element selected for re-
finement andpκh(i) is the element’s approximation order after the refinement asdepicted in
Figure 1. Note thatpκh = pκH for h-refinement while the number of embedded elements
changes. Conversely,pκh = pκH + 1 for p-refinement and there is only one embedded ele-
ment,i.e. the original element. Also, we are not considering the rank of the conserved state
vectorNs because it is a constant throughout the mesh. It is worth emphasizing that this mea-
sure of cost is insensitive to the type of time integration used to solve Eqn. 1, and therefore it
is a generic measure of cost.

The second measure of computational cost incorporates information about the time
integration method. In this work, most of the computationaltime is spent solving the linear
system in Eqn. 4 using the GMRES algorithm. In a sparse structure such as in Eqn. 4, we
approximate the number of floating point operations in applying GMRES by the number of
non-zero entries in the Jacobian matrix. Based on this observation, we define the second
measure of cost as:

cNZ(i) =
∑

κh∈κH







(pκh(i) + 1)2·dim +
∑

∂κh\∂D

[(pκh(i) + 1) · (p−
κh(i) + 1)]dim







, (12)

wherep−
κh denotes the approximation order of the neighboring elementacross face∂κh, which

must not be part of the boundary of the domain,∂D. The first term in Eqn. 12 accounts for
the self-blocks of the residual Jacobian matrix corresponding to each of the subelements. The
second term corresponds to the dependence of the subelements’ residual on the neighboring



states. The cost function does not take into account possible sparsity within the blocks of the
Jacobian matrix, as such sparsity is not taken into account by the solver. Note thatcNZ is more
sensitive to the number of spatial dimensions thancDOF.

5.2. Benefit

The benefitb(i) is a measure of how much improvement in the prediction of an output
results from refinement optioni. Evidently, the definition of benefit is not unique and it may
be tailored for different applications and solution methods. However, it is desirable that such
a definition is tractable and computationally inexpensive.

In an output-based mesh adaptation cycle, the steady-stateresidual is driven to zero
at each step. Therefore, mesh modification on the element level can be interpreted as a local
residual perturbation. Since an adjoint solution represents the sensitivity of an output with
respect to a residual perturbation, we define our benefit function as:

b(i) =
∑

κh∈κH

|Rκh(UkTkl(i))j | · |ΨkTkl(i)|, (13)

whereRκh(·)j is a discrete residual component in the embedded element, Tkl(i) is a matrix
that transfers the discrete primal and adjoint solutions, Uk andΨk, to the local meshes for
each refinementi. Note that the adjoint variables act as positive weights foreach of the
perturbations.

The definition in Eqn. 13 relies on the following observations:

• At each step of the adaptation cycle, a discrete primal solution is found so that the
residual vector is machine-zero. Therefore, the benefit as defined in Eqn. 13 is also
machine-zero if computed before refining the central element.

• In the limit of the discrete solution representing the exactsolution to machine precision,
the result of Eqn. 13 will be of the order of machine precisionfor any refinement option.

• The refinement option with the largestb(i) is expected to be the option that produces
the largest change in the output of interest.

Note that Eqn. 13 is inexpensive to compute since only a residual calculation in the
local mesh and data structures is required for each refinement option. Also, this framework
is different than a residual-based decision because the values of the discrete adjoint provide
information on the distribution of output sensitivity.

6. MESH PARTITIONING

At higherp-orders, the time taken to solve the primal and dual problemsincreases and
the non-homogeneity ofp affects the distribution of computational work amongst theproces-
sors. Therefore, dynamic load-balancing forhp-adaptive methods is important for efficient
use of computational resources. However, such balance is not trivial and, in fact, is a topic
of research rarely explored. The difficulty is that the computational effort for the residual
operator, and its Jacobian, is not constant between elements in the mesh and the performance



of the line-Jacobi preconditioner deteriorates [10] when cells with strong coupling reside in
different processors.

Typically in CFD, the mesh is represented as an irregular graph where each element
κH is a node in the graph and the interior faces∂κH \ ∂D are edges in the graph (Figure
3). This graph is then partitioned using a multilevel algorithm in which sequences of smaller
graphs are systematically generated and partitioned untilthe partitions are as close to equal
size as possible.

Figure 3. Example of mesh (continuous lines) and corresponding graph (dashed lines); the
sets of elements circled in red represent lines of the preconditioner.

In our work, we use the multilevelk-way graph partitioning algorithm implemented
in the ParMETIS library [25] which permits the attribution of weights to nodes and edges
of the graph. The node weights are used to represent the computational effort for each ele-
ment due to non-uniformity ofp-orders. The edge weights are used to make the partitioning
algorithm avoid separating elements with strong coupling improving the effectivity of the
preconditioner.

The inter-domain communication stores the data in one layerof fictitious elements
neighboring each inter-domain boundary. This informationis enough for the residual calcu-
lation and the assembly of its Jacobian due the compact stencil of DG discretizations.

The node weights are computed based on the number of non-zeroentries in the self-
blocks of the Jacobian matrix,

ωκH = (pκH + 1)2·dim, (14)

wherepκH is the polynomial order of elementκH .
The edge weights are computed in the following sequence.

1. Loop through edges of the graph and compute:

ω∂κH\∂D = (p+
κH + 1)dim + (p−

κH + 1)dim, (15)

wherep+
κH and p−

κH are the polynomial orders of the elements on both sides of the
interior face.

2. Loop trough edges of the graph that are part of lines of the preconditioner (red node
groups in Figure 3) and augmentω∂κH\∂D with

ω∂κH\∂D ⇐ ω∂κH\∂D ·max(v+
κH , v

−
κH), (16)



wherev+
κH andv−

κH are the number of edges that are connected to the nodes on eachend
of edge∂κH \ ∂D.

Equation 15 gives weights to the edges that are proportionalto the amount of data
transferred in each exchange of information between processors. The second step (Eqn. 16)
makes the partitioner prefer to separate elements that are not strongly coupled.

7. RESULTS

In this section, we assess the performance of ourhp-adaptation framework using the
cost measurescDOF and cNZ. The performance is measured in terms of number of degrees
of freedom and wall-clock time. In the output-based adaptation methods, the time stamps
include the solution of both the primal and adjoint solves and the time taken to estimate the
output error, while for the uniform refinements only the primal solve time is included.

At each step of the adaptive process,fadapt= 10% of the elements with largestηκH are
selected for refinement. The output of interest is drag and westart from ap = 1 solution for
all the results presented.

7.1. NACA 0012 -M∞ = 0.5, α = 1.0o, Re = 5× 103

The first case is two-dimensional flow atM∞ = 0.5, α = 1.0o andRe = 5× 103 over
the NACA 0012 airfoil. We compare thehp-adaptation framework using both cost measures
against uniformh andp refinements. Figure 4 shows the initial mesh and Mach contours.
This case used 1 Nehalem 8-core node from the Nyx cluster at the University of Michigan.

(a) Initial mesh for the NACA 0012. (b) Initial Mach contours obtained on the initial
mesh withp = 1.

Figure 4. NACA 0012 -M∞ = 0.5, α = 1.0o, Re = 5× 103: Initial quartic (q = 4) mesh and
Mach contours.

Figure 5(a) shows the drag coefficient convergence in terms of number of degrees of
freedom. While bothhp-adaptation runs present similar convergence histories for the cor-



rected output (dashed lines), the uncorrected drag values (solid lines) converge faster with
cDOF than whencNZ is employed. Additionally, thehp-adaptation runs converge the corrected
output with significantly fewer degrees of freedom than the uniform refinements. Figure 5(b)
shows the performance in terms of wall-clock time of ourhp- adaptation method without the
adaptive repartitioning described in Section 6. This comparison favors the uniform refinement
strategies.
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Figure 5. NACA 0012,M∞ = 0.5, α = 1.0o, Re = 5 × 103: drag coefficient convergence;
⋄: uniform h-refinement;△: uniform p-refinement;◦: hp-adaptation withcDOF; +: hp-
adaptation withcNZ. The dashed lines correspond to the drag values corrected with the error
estimate.

Table 1 shows the percentage of choice of the different refinement options for each
of the cost measures. Note thatp-increment is chosen significantly more often whencDOF is
used, whilecNZ prefers single-cuth-refinement. Additionally,cNZ performs slightly better
in terms of time (Figure 5(b)), whilecDOF converges faster in terms of degrees of freedom
(Figure 5(a)).

Table 1. NACA 0012,M∞ = 0.5, α = 1.0o, Re = 5 × 103, drag-driven adaptation: per-
centage of choice for each refinement option; iso-h: isotropich-refinement; sc-h: single-cut
h-refinements; iso-p: isotropicp-refinement.

cDOF cNZ

Adaptation step iso-h sc-h iso-p iso-h sc-h iso-p
1 0.0 35.1 64.9 0.0 86.5 13.5
2 0.0 31.6 68.4 0.0 85.0 15.0
3 0.0 27.5 72.5 0.0 70.4 29.5
4 0.0 19.5 80.5 0.0 91.7 8.3
5 0.0 31.0 69.0 0.0 70.4 29.6
6 0.0 20.0 80.0 0.0 82.7 17.2

Figure 6 shows the final meshes andp-order distributions. The adaptive scheme pro-



duces a larger area of the domain with higher order cells whencDOF is used to measure cost
(Figure 6(c)). In contrast, the adaptive algorithm, when usingcNZ, choosesp-increment mostly
in the wake region combined with anisotropich-refinement as seen in Figures 6(d) and 6(b)
respectively.

(a) 6th Mesh with Mach contours forcDOF. (b) 6th Mesh with Mach contours forcNZ.

(c) 6
th p-order distribution forcDOF; blue indicates

p = 1; red indicatesp = 3.
(d) 6

th p-order distribution forcNZ; blue indicates
p = 1; red indicatesp = 3.

Figure 6. NACA 0012,M∞ = 0.5, α = 1.0o, Re = 5× 103: hp-adapted meshes for drag.

We now analyze the effect of the mesh partitioning algorithmdescribed in Section 6.
Figure 7(d) shows that the weighted partitioning saves close to 1000 GMRES iterations in the
last 2 adaptation steps. This is mostly due to using the element lines of the preconditioner to
assign weights to the edges of the graph. We use block-Jacobismoothing for the fine-space
solves involved in error estimation, therefore, the savings shown in Figure 7(c) are due to a
better distribution of computational work amongst the processors. Figures 7(a) and 7(b) show



the timings for the primal and adjoint solves. The weighted partitioning runs are significantly
faster then the baseline unweighted partitioning method.
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(c) Wall-clock time taken for error estimation and
adaptation.
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Figure 7. NACA 0012,M∞ = 0.5, α = 1.0o, Re = 5 × 103: effect of weighted partitioning
- the points correspond to each of the adaptation steps;◦: hp-adaptation withcDOF; +: hp-
adaptation withcNZ; solid lines: unweighted partitioning; dashed lines: weighted partitioning.

7.2. Third Drag Prediction Workshop W1 geometry -M∞ = 0.76, α = 0.5o, Re = 5×106

In this case study, we consider the baseline wing geometry (DPW-W1) from the third
AIAA Drag Prediction Workshop. This case consists of turbulent, transonic flow over a ta-
pered wing and the mesh adaptation routine is driven by the drag output. The initial curved
mesh, shown in Figure 8(a), was obtained through agglomeration of cells from a finer struc-
tured linear C-grid generated specifically for this purpose. In the agglomeration, each curved
hexahedral element was obtained by merging twenty seven linear elements using a distance-
based Lagrange interpolation of the nodal coordinates, resulting in cubic (q = 3) geometry in-
terpolation. Also, the spacing of the linear mesh is such that the agglomerated mesh presents
y+ ≈ 1 for the first element off the wall as recommended in the workshop and the outer
boundary is located at 100 mean-aerodynamic-chord-lengths away from the wing.



We used the Spalart-Allmaras turbulence model without tripterms and we assumed
the flow as fully turbulent. Also, Persson and Peraire’s [33]shock-capturing method is used
to improve stability. The flow was initialized with free-stream values and, due to the difficulty
of this case, the constraint handling technique presented in Ref. [7] was used to compute
the baseline flow with linear (p = 1) approximation order. As a basis of comparison, all
the adaptive schemes started from the same initial solutionso that all methods are compared
against the same initial time-stamp. For the adjoint-basedadaptation methods, the wall-clock
time taken for the initial adjoint solve is also included in the initial starting time. Similarly
to the previous case, the adaptive runs used unweighted partitioning and this favors uniform
refinement. We assess the effect of weighted partitioning later in this section.

All of the calculations for this case were executed on 180 Harpertown 8-core nodes
from NASA’s Pleiades supercomputer. Due to the computational expense of these runs, we
did not perform a statistical study to account for machine performance variability in the CPU-
time measurements.

(a) Initial pressure contours (29310 cubic elements,
p = 1).

(b) Pressure contours on the1st level of uniformh-
refinement (234480 cubic elements,p = 1).

(c) Pressure contours on the5th drag-adapted mesh
usingcDOF (59503 cubic elements).

(d) Pressure contours on the7th drag-adapted mesh
usingcNZ (85377 cubic elements).

Figure 8. DPW Wing 1 -M∞ = 0.76, α = 0.5o, Re = 5 × 106: Initial and drag-adapted
meshes with pressure contours.

We compare three mesh improvement strategies starting fromthe initialp = 1 solution
shown in Figure 8(a). As reference, one of the strategies is uniform h-refinement (Figure
8(b)) in which all hexahedra are divided into 8 elements. Thetwo cost measures described
earlier are compared forhp-adaptation in whichfadapt= 10% of the elements is selected for
refinement at each adaptation step. Additionally, we fixed the overall budget of CPU wall-



time for each of the three runs and the last converged solution obtained within that budget are
shown in Figure 8.
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Figure 9. DPW Wing 1 -M∞ = 0.76, α = 0.5o, Re = 5× 106: drag coefficient convergence;
⋄: uniformh-refinement;◦: hp-adaptation withcDOF; +: hp-adaptation withcNZ. The dashed
lines correspond to the drag values corrected with the errorestimate.

Figure 9 shows the drag coefficient convergence for the mesh refinement strategies.
The solid lines in Figures 9(a) and 9(b) are the computed dragvalues and the dashed lines
correspond to the output corrected with the error estimate.The difference between these
corrected values for the last two adaptation steps of the output-based strategies is within0.15
counts of drag. Note that the performance in terms of degreesof freedom of the output-based
strategies is very similar. However, in terms of CPU time, the use ofcNZ leads to faster
output convergence. This difference is due to the more representative measure of solution
cost bycNZ. This effect is illustrated in Table 2 where we show the frequency at which the
refinement options were chosen for each cost measure at each adaptation step. Note that for
cNZ, p-refinement is chosen significantly less often than forcDOF and both methods have a
propensity to choosep-refinement more often in the later stages of adaptation. Moreover, the
large increase in CPU time between the third and fourth adaptation steps forcDOF (Figure
9(b)) is an effect ofp-increment being chosen more often forcDOF (Table 2) which makes the
primal and adjoint solves more expensive.

Figure 10 shows the effect of the weighted partitioning method. Note in Figure 10(a)
that the first primal solve was the longest, this is due to RANS-SA being very stiff. In the first
primal solve, the weighted partition runs took about two thirds of the time taken by the un-
weighted runs, even though the preconditioner lines used for the edge weights were computed
with the free-stream initial condition. Additionally, thesavings withcDOF increases as the
adaptation progresses and the number of higher-order cellsincreases. The complete adaptive
sequence is not presented in Figure 10 because the disparityof node weights increases with
higherp-orders in 3 dimensions and the partitioner creates subdomains without elements. The
solution to this problem is part of our ongoing work.



Table 2. DPW Wing 1 -M∞ = 0.76, α = 0.5o, Re = 5 × 106: percentage of choice for
each refinement option; iso-h: isotropich-refinement; sc-h: single-cuth-refinements; dc-h:
double-cuth-refinements; iso-p: isotropicp-refinement.

cDOF cNZ

Adaptation step iso-h sc-h dc-h iso-p iso-h sc-h dc-h iso-p
1 0.0 99.3 0.0 0.7 0.0 100.0 0.0 0.0
2 0.0 97.3 0.0 2.7 0.0 99.9 0.0 0.1
3 0.0 94.9 0.0 5.1 0.0 99.8 0.0 0.2
4 0.0 91.8 0.4 7.8 0.0 99.1 0.3 0.6
5 0.0 90.6 0.3 9.1 0.0 98.7 0.5 0.8
6 – – – – 0.0 98.6 0.5 0.9
7 – – – – 0.0 98.6 0.4 1.0

8. CONCLUSIONS

We demonstrated the use of an optimization-basedhp-adaptation method in aerody-
namic problems. The objective function used for ranking therefinement options uses a mea-
sure of output sensitivity and a measure of computational cost. We compared two measures
of cost: number of degrees of freedom and number of floating point operations. The latter is
correlated to the number of non-zero entries in the residualJacobian.

The cost measures presented here are not perfect as they do not account for stiffness
effects of different refinements in the iterative solution method. These effects have a direct im-
pact in the CPU time, but they are difficult and computationally intensive to estimate because
they are global measures and their effect depends on the typeof solver and preconditioner
used. Since the merit function is computed multiple times ineach refinement cycle, the local
property of cost and benefit measures is attractive.

We proposed a method for assigning weights to the nodes and edges of the graph used
for partitioning the mesh. The method accounts for the non-homogeneity of computational
cost of the elements in the mesh and uses preconditioner information to improve parallel
efficiency. The results show speedup of up to 2 with the weighted partitioning in 3 dimen-
sions. Although not yet fully robust due to the possibility of empty partitions, the weighted-
partitioning algorithm is an attractive option for the element-line preconditioner. Extension to
other preconditioners, such as the incomplete lower-upper(ILU) factorization, is a subject of
future work.
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(c) Wall-clock time taken for error estimation and
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Figure 10. DPW Wing 1 -M∞ = 0.76, α = 0.5o, Re = 5 × 106: effect of weighted parti-
tioning - the points correspond to each of the adaptation steps; ◦: hp-adaptation withcDOF;
+: hp-adaptation withcNZ; solid lines: unweighted partitioning; dashed lines: weighted par-
titioning.
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[17] M. B. Giles and E. Süli,Adjoint methods for PDEs: a posteriori error analysis and
postprocessing by duality, Acta Numerica, vol. 11, 2002, pp. 145–236.

[18] Michael B. Giles, Mihai C. Duta, Jens-Dominik Müller,and Niles A. Pierce,Algorithm
developments for discrete adjoint methods, AIAA Journal41 (2003), no. 2, 198–205.

[19] Wagdi G. Habashi, Julien Dompierre, Yves Bourgault, Djaffar Ait-Ali-Yahia, Michel
Fortin, and Marie-Gabrielle Vallet,Anisotropic mesh adaptation: towards user-
independent, mesh-independent and solver-independent CFD. Part I: general principles,
International Journal for Numerical Methods in Fluids32 (2000), 725–744.

[20] Ralf Hartmann,Adjoint consistency analysis of discontinuous Galerkin discretizations,
SIAM Journal on Numerical Analysis45 (2007), no. 6, 2671–2696.

[21] Ralf Hartmann and Paul Houston,Adaptive discontinuous Galerkin finite element meth-
ods for the compressible Euler equations, Journal of Computational Physics183(2002),
no. 2, 508–532.

[22] V. Heuveline and R. Rannacher,Duality-based adaptivity in the hp-finite element
method, Journal of Numerical Mathematics11 (2003), no. 2, 95–113.

[23] Paul Houston, Emmanuil H. Georgoulis, and Edward Hall,Adaptivity and a posteriori
error estimation for DG methods on anisotropic meshes, International Conference on
Boundary and Interior Layers, 2006.
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