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Abstract. Two mesoscopic masonry models are presented in which the mortar joints are

incorporated using the Generalised Finite Element Method (GFEM): a model in which the

joints are represented as strong discontinuities and a model in which weak discontinuities

are used to model the joints. The bricks remain linear elastic throughout the calculation.

The presented models are compared using equivalent damage models through shear wall

and settlement tests. The simulations are validated with experimental results available in

literature.
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1. INTRODUCTION

Masonry structures are characterised by their low material cost and relatively simple

way of constructing. The computational modelling of these structures remains, however, a

great challenge. Two major modelling groups exist: macroscale and mesoscale models [5].

The former approach homogenises the masonry constituents, i.e. the bricks and joints, to one

orthotropic material whereas the latter approach models the constituents as separate entities.

In this contribution, two mesoscopic masonry models are presented and compared: a model

in which the joints are represented as strong discontinuities [2] and a model in which weak

discontinuities are used to model the joints [11].

Unlike classical models, where the strong and weak discontinuities are modelled, re-

spectively, by interface [1] and continuum elements [6], the discontinuities are incorporated

using the Generalised Finite Element Method [10, 12], whose formulation is described in

Section 2. This method allows an in-element embedment of the discontinuities, i.e. the finite

element mesh does not need to conform to the masonry joints. The enhanced degrees of free-

dom, stemming from this method, describe the joint behaviour. As the masonry joints can be

seen as a predefined failure pattern, these degrees of freedom are all active at the beginning of

the calculation.

As will be shown in Section 3, any continuum material model can be employed to

describe the joint behaviour in the weak discontinuity model. This is in contrast with the

strong discontinuity approach, in which the constitutive relations are expressed in degenerated

stress and strain spaces. An equivalent degenerated constitutive model is therefore presented,

in order to make a meaningful comparison between both approaches. The results of this

comparative analysis are given in Section 4 through shear wall and settlement tests.

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



2. MODELLING DISCONTINUITIES USING GFEM

In the developed two-dimensional mesoscopic masonry model, the GFEM technique

is used so that the behaviour of each brick is governed by a designated set of enhanced degrees

of freedom [12]. Consequently, the displacement field can be decomposed according to

u = û+

NB
∑

i=1

Hiũi (1)

where NB denotes the total number of bricks within the masonry wall, û is the regular dis-

placement field, ũi and Hi are the enhanced displacement field and enrichment function asso-

ciated with brick Bi, respectively.

In case of the weak discontinuity model, Figure 1(a), a unit ramp function is used

[7, 11] whereas the Heaviside step function is used in the strong discontinuity model [2],

Figure 1(b). Figure 1 also shows that for the same mesh size and when modelling stack bond

masonry, i.e. the joints can be aligned with the element borders, the strong discontinuity model

is computationally more attractive than the weak discontinuity model, since only half of the

enhanced degrees of freedom is needed. For a more detailed discussion concerning kinematic

descriptions and implementation aspects of both models, the reader is referred to [12].

Bi (Hi = 1)

Bi (Hi = 1)

regular DOF

enhanced DOF of brick Bi

(a) weak discontinuity model (b) strong discontinuity model

Figure 1. Enrichment functions for a brick Bi: (a) weak discontinuity model (unit ramp

function); (b) strong discontinuity model (Heaviside function).



3. MATERIAL MODELS

3.1. Weak discontinuity model

In the presented masonry model, the brick behaviour remains linear elastic throughout

the simulations, whereas the nonlinear mortar joint behaviour is governed by an isotropic

damage law of the form

σ = (1− ω)Cwε (2)

in which ω denotes a scalar damage parameter describing the softening behaviour [4],

ω =











0 if κ < κ0

1− κ0

κ
exp

[

− κ−κ0

GfI
ft

−
1

2
κ0

]

if κ ≥ κ0
, (3)

where GfI denotes the mode I fracture energy and ft is the uniaxial tensile strength of the

mortar joints. The threshold upon which damage of the mortar joints initiates is given by

κ0 =
ft
Em

(4)

with Em the Young’s modulus of the mortar joints. The history parameter κ stores the largest

value ever attained of the equivalent strain εeq. The latter is defined through a Drucker-Prager

damage model, expressed in terms of strain invariants (assuming plane stress conditions),

εeq =







A
I1,ε

1−2νm
+B

√
J2,ε

1+νm
if

√
J2,ε

1+νm
≥ A−C

D−B

I1,ε
1−2νm

C
I1,ε

1−2νm
+D

√
J2,ε

1+νm
if

√
J2,ε

1+νm
≤ A−C

D−B

I1,ε
1−2νm

, (5)

where νm denotes the Poisson’s ratio of the mortar joints. The material parameters A and B

are calculated by fitting the model to the uniaxial tensile (ft) and compressive strengths (fc)

[6], whereas C and D define the compressive cap:

A =
1

2

fc − ft
fc

, (6)

B =

√
3

2

fc + ft
fc

, (7)

C =
(fb − fc) ft

fbfc
, (8)

D =
√
3
(2fb + fc) ft

fbfc
. (9)



3.2. Strong discontinuity model

Since the behaviour of the strong discontinuity is expressed in terms of tractions and

jumps, the material model needs to be defined in traction (or jump) space. As in the weak

discontinuity model, the strong discontinuity model is also damage-driven through

td = (1− ω)Td[[u]] (10)

where [[u]] represents the displacement jump at the mortar joint, and ω is defined by

ω =











0 if κ < κ0

1− κ0

κ
exp

[

− κ−κ0

hGfI
ft

−
1

2
κ0

]

if κ ≥ κ0
, (11)

where h denotes the joint thickness. The components of the material stiffness matrix Td =

diag(kn, kt) are calculated according to [9]

kn =
EbEm

h (Eb − Em)
, (12)

kt =
GbGm

h (Gb −Gm)
(13)

in which Eb is the Young’s modulus of the bricks. Gb and Gm are the shear moduli of the

bricks and mortar joints, respectively. The damage threshold κ0 in (11) is taken

κ0 =
ft
kn

. (14)

The history parameter κ stores the largest value ever attained of the equivalent displacement

jump εeq, which is defined by a degenerated Drucker-Prager model, given by

[[u]]eq =

{

AI[[u]] +BJ[[u]] if J[[u]] ≥ A−C
D−B

I[[u]]
CI[[u]] +DJ[[u]] if J[[u]] ≤ A−C

D−B
I[[u]]

(15)

in which the variables containing the jump terms are calculated by

I[[u]] = (1 + νm) [[un]] , (16)

J[[u]] =
1

1 + νm

√

1

6
[[un]]

2

(

1 +
1 + νm2

(1− νm)
2

)

(1− νm2)2 +
1

4
[[ut]]

2 . (17)



4. NUMERICAL EXAMPLES

4.1. Shear wall test

The first example is a shear wall with opening [8]. Tables 1 and 2 list the material

parameters. A confining stress of 0,30 N/mm2 is applied on top of the wall, prior to the

application of the horizontal loading. The boundary conditions and test setup are depicted

in Figure 2. Figure 3(a) shows the background mesh used in combination with the weak

discontinuity model. In case of the strong discontinuity model, the number of finite elements

per half brick equals 4×4.

Table 1. Setup and elastic material parameters for the shear wall test.

dimensions E
[

N/mm2
]

ν

joints 10 mm 782 0,14

bricks 52 × 210 × 100 mm3 16700 0,15

Table 2. Inelastic material parameters for the shear wall test.

ft
[

N/mm2
]

fc
[

N/mm2
]

fb
[

N/mm2
]

GfI [N/mm]

joints 0,25 10,5 1,2 fc 0,018

0,30 N/mm2

F

(a) (b)

Figure 2. Test setup and boundary conditions for the shear wall test:

(a) phase 1: confining load; (b) phase 2: horizontal loading.

(a) (b) weak discontinuity model (c) strong discontinuity model

Figure 3. Background mesh (a) and deformed meshes (b-c) for the shear wall tests at a

loading point displacement (LPD) of 4,0 mm. The deformations are magnified by 10.



The results of all models show a good agreement with those from the experiments.

The typical staircase crack patterns, observed in the experiments, are obtained (Figure 3(b-c))

and all simulated peak loads are situated between the observed peak loads (Figure 4).
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Figure 4. Shear wall test: comparative results of both weak and strong discontinuity models.

4.2. Settlement test

In this final example, a blind wall is subjected to an end-settlement. The brick dimen-

sions equal 190 × 290 × 140 mm3, whereas the elastic and inelastic material properties are

those from the previous simulation (Tables 1 and 2). The behaviour of the soil is governed by

an interface element (indicated in blue in Figures 5 and 6). Again, both masonry models are

able to predict realistic failure modes when compared to experimental data [3].

Figure 5. Settlement test: weak discontinuity model.



Figure 6. Settlement test: strong discontinuity model.

5. CONCLUSIONS

In this contribution, two mesoscopic masonry models are presented and compared

in which joints are modelled by weak and strong discontinuities. The discontinuities are

element-embedded using the Genaralised Finite Element Method. The main difference be-

tween both models is that in case of the weak discontinuity model, continuum material models

can be employed to describe the joint behaviour. The strong discontinuity model requires a

degenerated material model, expressed in traction space. A comparative analysis was made

between both models through shear wall and settlement tests using a continuum and degen-

erated Drucker-Prager material model. It was shown that both weak and strong discontinuity

models are capable of predicting realistic crack patterns and peak loads.
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