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Abstract. We present and discuss a framework called the ‘derived-vector-space (DVS)
framework’. In part, the relevance of this framework is because in its realm four precondi-
tioned massively parallelizable DVS-algorithms with constraints of general applicability (by
this we mean: applicable to symmetric-definite, non-symmetric and indefinite matrices) have
been developed. Such algorithms yield codes that are almost 100% in parallel; more precise-
ly, they achieve what we call the ‘leitmotif of DDM research’: to obtain algorithms that yield
the globalsolution by solving locabroblems exclusively. This has been possible because in
the DVS-approach the original PDE, or system of such equations, is transformed into a prob-
lem formulated in the derived-vector-space, which is a Hilbert-space that is well-defined by
itself independently of the particular PDE considered, and afterwards all the numerical work
is done in that space. Thus, the applicability of the algorithms developed in this framework is
essentially independent of the specific problem considered, and furthermore this allows the
development of codes, which to a large extent are of universal applicability. Thus, the DVS-
algorithms are very suitable for programming in an efficient manner the most powerful paral-

lel computers available at present.
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1. INTRODUCTION

In this paper, we present and discuss a framework recently introduced called the ‘de-
rived-vector-space (DVS) framework’ [1-7] (refer to [1-4] for the most recent developments
and to [5-7] for background material). The main conspicuous features DMBdramework
are:

1. It is an axiomatic approach;



2. Its starting point is the system of equations thaibtained after the partial
differential (PDE), or system of such equations been discretized;

3. The derived-vector-space (DV®as a Hilbert-space structure with respect
to an inner-product that is defined independenfiythe problem considered. This
permits to treat in the very same setting symmekeiinite, non-symmetric or indefi-
nite matrices. Furthermore, the space of continwegsors is a subspace of the DVS;

4. The problem is transformed into a problem definedhie DVS and, once
this has been done, all the numerical work is edraut in thdDVS

The DVS-frameworks innovative in many respects and has yieldeda grumber of
significant new results. One especially importand iset four preconditioned massively paral-
lelizable DVS-algorithms with constraints of gerleapplicability (by this we mean: applica-
ble to symmetric-definite, non-symmetric and ind#& matrices). Such algorithms produce
codes that are almost 100% in parallel; more pegishey achieve what we call in what fol-
lows the'‘leitmotif of DDM research’ to obtain algorithms that yield the glolsdlution by
solving local problems exclusively. Furthermore, when the prsiogs of different subdo-
mains is sent to different processors the commtinitaequired among them is insignificant
[1]. The DVS-algorithmsin spite their generality, are independent ofgheblem considered.
This fact, together with the outstanding uniformatfythe algorithmic formulas that are ob-
tained, yields clear advantages for code developnaspecially when such codes are built
using object-oriented programming techniques. Bliswvs the development of codes that to
a large extent are of universal applicability.

The DVS-algorithmshere presented are based on the extensive wolxDivi done
during the last twenty years or so by many autfges, for example [8,9]), albeit what is spe-
cial of theDVS-approachs the use of thBVS-frameworlas the setting for its developments.
Of the set of four preconditiondalVS-algorithmswith constraints mentioned above apparent-
ly two of them are fully novel, since to our knodtge nothing similar has been reported pre-
viously in the literature [1-2]. As for the othevd (to be referred as DVS-BDDC and DVS-
FETI-DP), they are th®VS-versionsof two well-known, very efficient non-overlapping
DDM approaches: the balancing domain decomposivgh constraints (BDDC) and the
dual-primal finite-element tearing and interconnegt(FETI-DP) methods, respectively.
However, it should be noticed that the BDDC and FBP methods were originally devel-
oped for definite-symmetric problems, while the DBBDC and DVS-FETI-DP algorithms
are applicable to very general non-symmetric arttkfinite matrices, independently of the
specific PDE that originated them. It should algonioticed that standard versions of BDDC
and FETI-DP do not fully achieve theitmotif of DDM i.e., they do not obtain the global
solution by solving locaproblems exclusively.

We would like to recall that, as it is well-knowthge balancing domain decompaosition
method was originally introduced by Mandel [10,Rbld more recently modified by Dohr-
mann who introduced constraints in its formulatjp®-14], while the original finite-element
tearing and interconnecting method was introducedrdrhat [15,16] and later modified by



the introduction of a dual-primal approach [17-1B¢. be fair, we also would like to notice
that certain number of applications of these methHoalve been made to non-symmetric and
indefinite matrices (see, for example, [20-23]).

2. OVERVIEW OF THE DVS-FRAMEWORK

The ‘derived vector space framework (DVS-framewosiirts with the system of li-
near equations that is obtained after the partfdrdntial equation, or system of such equa-
tions, has been discretized; this system of discegfuations is referred to as tleiginal
problem’. Independently of the discretization method use, assumed that a set of nodes
and a domain-partition have been introduced and bloth the nodes and the partition-
subdomains have been numbered. Generally, somieeséadriginal-nodesbelong to more
than one partition-subdomain (Fig.1). For the foatian of non-overlapping domain decom-
position methods it would be better if each nodeilidoelong to one and only one partition-
subdomain, and a new set of nodes -dir@ved-nodesthat enjoy this property is introduced.
This new set of nodes is obtained by dividing eaxbginal-nodein as many pieces as re-
quired to obtain a set with the desired properig.@. Then, eacklerived-nodeas identified
by means of an ordered-pair of numbers: the lab#heoriginal-node it comes from, fol-
lowed by the partition-subdomain label, it belongsA ‘derived-vector’is simply defined to
be any real-valued functionlefined in the whole set dferived-nodesthe set of alblerived-
vectorsconstitutes a linear space: thkerived-vector space (DVS)The ‘Euclidean inner-
product’, for each pair oflerived-vectorsis defined to be the product of their components
summed over all thderived-nodesThe DVS constitutes a finite-dimensional Hilbspiace,
with respect to th&uclidean inner-productA new problem, which is equivalent to tbegi-
nal problemis defined in thelerived-vector spacéf course, the matrix of this new problem
is different to theoriginal-matrix, which is only defined in theriginal-vector spaceand the
theory supplies a formula for deriving it [2]. Fraifmere on, in th&VS frameworkall the
work is done in thalerived-vector spacand one never goes back to thraginal vector-
space In a systematic manner, this framework led todbestruction of the following pre-
conditionedDVS-algorithms DVS-primal formulation #1,DVS-dual formulation #1,DVS-
primal formulation #2 andVS-dualformulation #2. However, thBVS-primalformulation
#1 andDVS-dualformulation #1were later identified aBVS-version®of BDDC and FETI-
DP, respectively. With this adjustment in nomenclafun [1,2] they were summarized as it is
indicated next. Thereby, it should be mentioned standard versions &DDC and FETI-
DP (see references mentioned above) were originatintdilated for definite-symmetric ma-
trices (positive-definite or negative-definite)u#) their extension to non-symmetric and inde-
finite matrices is among the achievements ofON&-framework

The Four General Preconditioned Algorithms with Constraints that will be dis-
cussed in this paper are:

a).- TheDVS-version of BDDC
b).-TheDVS-version of FETI-DP

" For the treatment of systems of equations, vector-valued functions are considered, instead



c).-DVS-primalformulation #2;
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Figure 1. Théoriginal nodes’
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Figure 2. Théderived nodes’

d).- DVS-dualformulation #2.
All these algorithms are preconditioned and arentdated in vector-spaces subjected
to constraints; so, they are preconditioned andttamed algorithms.



3. THE DVSALGORITHMSWITH CONSTRAINTS

In this Section we summarize some results prewooistained. The interested reader
is referred, in particular, to [1-4] for details the DVS-frameworkthe original problemis
transformed into one defined in tHerived-vector space with restrictiong/ . Thus, we look
for a vectoruJW, such that

aAu= f and ju=0 (3.1)

Whereu=u, +u, and f = f + f , While u, f OW, are thedual parts of the
respective vectors. For S|mpI|C|ty of exposmom:rdn we assume tha‘t takes onlydual-
values f—fA (i.e., fn =0). Then, Eq.(3.1) is equivalent to

asy = f, and_lg =0 (3.2)

Together with -

u, =-A' A Y (3.3)

=nn=n .
Above, the matrixa is the projection on the subspace:ohtinuous derived-vectqra/hile |

is the projection on the subspacezefo-average derived-vectora/hich is the orthogonal

complement of the subspacecointinuousvectors. Furthermore,

A A
A=|=""="lands= A- A A A (4)
— A A o =AA =AM =MNN=nA

—=AN =AA

3.1- THE DVSVERSION OF THE BDDC ALGORITHM
TheDVS-BDDC algorithms [2]: “Find u, OW, such that
aS asy= a§ f and ji=0 (3.5)"

3.2- THE DVSVERSION OF FETI-DP ALGORITHM
The DVS-FETI-DP algorithmis [2]: “Given f DaV\/A, find AOW, such that

jSis'A= ijS f andA=0 (3.6)"
OnceAl jWA has beén obtained, T aW is given by:
Uy _asf( f,-2) (3.7)

3.3- THE DVSPRIMAL-ALGORITHM #2
This algorithm consists in searching for a functigridW, , which fulfills [2]

S'jS¥,=S"iSjS f andag=0 (3.8)
Oncev, JSW has been obtained, then
u, —a(S f -V ) (3.9)

3.4- THE DVSDUAL-ALGORITHM #2
This algorithm consists in searching for a functlW, , which fulfills [2]
SaS’ = _§a§__as_jé_ f and iB=0 (3.10)

Oncey[] SaS vy "has been obtalned gawy, is given by:
u,=as’( f +u) (3.11)



4. NUMERICAL PROCEDURES

The four preconditione®VS-algorithmswith constraints enumerated in Section 3, are
asS™ aSg._g = aS f and j=0; DVS-BDL (4.1)

jSJS )= J_SJ_S _fA and/zh 0; DVS-FETI-C (4.2)
S JS MA _sq JSJSl f “and a5 =0; DVS-PRIMAL (4.3)
and B -

SaS' ¢=_SaS_aS]S f and’j8=0; DVS-DUAI (4.4)

In numerical experiments that have been carriedhoust far, with symmetric and non-
symmetric problems|[1,2,4], they have exhibited wpdaumerical efficiency. More precisely,
for symmetric problems their efficiency has beeghdly better that FETI-DP and BDDC;
while for non-symmetric problems it is similar. @burse, in numerical implementations
CGM has been used for symmetric-definite matriaces$ @ther algorithms such as GM-RES
have been used in for non-symmetric ones.

4.1- COMMENTSON THE DVSNUMERICAL PROCEDURES

The outstanding uniformity of the formulas givendgs.(4.1) to (4.4) yields clear ad-
vantages for code development, especially when sodes are built using object-oriented
programming techniques. Such advantages include:

I.  The construction of very robust codes. This is dnaatage of theDVS-
algorithms which stems from the fact the definitions of sadiporithms exclu-
sively depend on the discretized system of equsitfaich will be referred to
as theoriginal problen) that is obtained by discretization of the partdfe-
rential equations considered, but that is otheniisependent of the problem
that motivated it. In this manner, for example,ee$illy the same code was
applied to treat 2-D and 3-D problems; indeed, dhé/ part defining the geo-
metry had to be changed, and that was a very gadlbf it;

. The codes may use different local solvers, which ba direct or iterative
solvers;

lll.  Minimal modifications are required for transformiegquential codes into pa-

rallel ones; and

IV.  Such formulas also permit to develop codes in wHibtie globalproblem-

solution is obtained by exclusively solvifagal problems.

This last property must be highlighted, becausmakes the DVS-algorithms very
suitable as a tool to be used in the constructiomassively-parallelized software, which is
needed for efficiently programming the most powkepfarallel computers available at present.
Thus, procedures for constructing codes possesiagerty IV are outlined and analyzed
next.

All the DVS-algorithms of Eqs.(4.1) to (4.4) arerditive and can be implemented with
recourse to Conjugate Gradient Method (CGM), whenratrix is definite and symmetric,
or some other iterative procedure such as GMRE®nwimat is not the case. At each iteration
step, one has to compute the action otkedved-vectorof one of the following matrices:



aS'asS, jSjS*’, ST S| or SaS’ ¢ depending on th®VS-algorithmthat is applied.

Such mafrices in turn are different permutationghef matricesS, S™, a and j. Thus, to
implement any of the precondition@VS-algorithms one only needs to separately develop
codes capable of computing the action of one ofhgicesS, S™, a or j on an arbitrary
vector of W, the derived-vector-spaceTherefore, in [1] it has been explained how teneo
pute the action of each one of the matri€and S™ by means of computations that are car-
ried out separately in each one of domain decortippssubdomains, exclusively. As far
and j, their applications require exchange of informatlmetween derived-nodes that are
descendantsf the sameriginal-node and that is a very simple operation for which éxe
change of information between different subdom&mainimal [1-4].

4. CONCLUSIONS

Thederived-vector-space (DVS) framewankifies domain decomposition methods and has
permitted to develop four preconditioned algorithmih constraints that are almost 100% in
parallel, in the sense that they achievel¢itenotif of DDM researchand which at the same
time are to a large extent of universal applicahiin the sense that each one of them is ap-
plicable to symmetric-definite, indefinite and nsymmetric matrices, independently of the
PDE (or system of such equations) that originatednt Furthermore, each one of them has
also update numerical efficiency. Therefdd®,S-algorithmsare very suitable for program-
ming in an efficient manner the most powerful p@falomputers available at present.
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