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Abstract. We present and discuss a framework called the ‘derived-vector-space (DVS) 

framework’. In part, the relevance of this framework is because in its realm four precondi-

tioned massively parallelizable DVS-algorithms with constraints of general applicability (by 

this we mean: applicable to symmetric-definite, non-symmetric and indefinite matrices) have 

been developed. Such algorithms yield codes that are almost 100% in parallel; more precise-

ly, they achieve what we call the ‘leitmotif of DDM research’: to obtain algorithms that yield 

the global solution by solving local problems exclusively. This has been possible because in 

the DVS-approach the original PDE, or system of such equations, is transformed into a prob-

lem formulated in the derived-vector-space, which is a Hilbert-space that is well-defined by 

itself independently of the particular PDE considered, and afterwards all the numerical work 

is done in that space. Thus, the applicability of the algorithms developed in this framework is 

essentially independent of the specific problem considered, and furthermore this allows the 

development of codes, which to a large extent are of universal applicability. Thus, the DVS-

algorithms are very suitable for programming in an efficient manner the most powerful paral-

lel computers available at present.  
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1. INTRODUCTION 

In this paper, we present and discuss a framework recently introduced called the ‘de-
rived-vector-space (DVS) framework’ [1-7] (refer to [1-4] for the most recent developments 
and to [5-7] for background material). The main conspicuous features of the DVS-framework 
are:  

1. It is an axiomatic approach;  
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2. Its starting point is the system of equations that is obtained after the partial 
differential (PDE), or system of such equations, has been discretized;  

3. The derived-vector-space (DVS) has a Hilbert-space structure with respect 
to an inner-product that is defined independently of the problem considered. This 
permits to treat in the very same setting symmetric-definite, non-symmetric or indefi-
nite matrices. Furthermore, the space of continuous vectors is a subspace of the DVS;  

4. The problem is transformed into a problem defined in the DVS and, once 
this has been done, all the numerical work is carried out in the DVS.  
 
The DVS-framework is innovative in many respects and has yielded a good number of 

significant new results. One especially important is a set four preconditioned massively paral-
lelizable DVS-algorithms with constraints of general applicability (by this we mean: applica-
ble to symmetric-definite, non-symmetric and indefinite matrices). Such algorithms produce 
codes that are almost 100% in parallel; more precisely, they achieve what we call in what fol-
lows the ‘leitmotif of DDM research’: to obtain algorithms that yield the global solution by 
solving local problems exclusively. Furthermore, when the processing of different subdo-
mains is sent to different processors the communication required among them is insignificant 
[1]. The DVS-algorithms, in spite their generality, are independent of the problem considered. 
This fact, together with the outstanding uniformity of the algorithmic formulas that are ob-
tained, yields clear advantages for code development, especially when such codes are built 
using object-oriented programming techniques. This allows the development of codes that to 
a large extent are of universal applicability. 

 
The DVS-algorithms here presented are based on the extensive work on DDM done 

during the last twenty years or so by many authors (see, for example [8,9]), albeit what is spe-
cial of the DVS-approach is the use of the DVS-framework as the setting for its developments. 
Of the set of four preconditioned DVS-algorithms with constraints mentioned above apparent-
ly two of them are fully novel, since to our knowledge nothing similar has been reported pre-
viously in the literature [1-2]. As for the other two (to be referred as DVS-BDDC and DVS-
FETI-DP), they are the DVS-versions of two well-known, very efficient non-overlapping 
DDM approaches: the balancing domain decomposition with constraints (BDDC) and the 
dual-primal finite-element tearing and interconnecting (FETI-DP) methods, respectively. 
However, it should be noticed that the BDDC and FETI-DP methods were originally devel-
oped for definite-symmetric problems, while the DVS-BDDC and DVS-FETI-DP algorithms 
are applicable to very general non-symmetric and indefinite matrices, independently of the 
specific PDE that originated them. It should also be noticed that standard versions of BDDC 
and FETI-DP do not fully achieve the leitmotif of DDM; i.e., they do not obtain the global 
solution by solving local problems exclusively.  

 
We would like to recall that, as it is well-known, the balancing domain decomposition 

method was originally introduced by Mandel [10,11] and more recently modified by Dohr-
mann who introduced constraints in its formulation [12-14], while the original finite-element 
tearing and interconnecting method was introduced by Farhat [15,16] and later modified by 



 
 

the introduction of a dual-primal approach [17-19]. To be fair, we also would like to notice 
that certain number of applications of these methods have been made to non-symmetric and 
indefinite matrices (see, for example, [20-23]).  

2. OVERVIEW OF THE DVS-FRAMEWORK   

The ‘derived vector space framework (DVS-framework)’ starts with the system of li-
near equations that is obtained after the partial differential equation, or system of such equa-
tions, has been discretized; this system of discrete equations is referred to as the ‘original 
problem’. Independently of the discretization method used, it is assumed that a set of nodes 
and a domain-partition have been introduced and that both the nodes and the partition-
subdomains have been numbered. Generally, some of these original-nodes belong to more 
than one partition-subdomain (Fig.1). For the formulation of non-overlapping domain decom-
position methods it would be better if each node would belong to one and only one partition-
subdomain, and a new set of nodes – the derived-nodes- that enjoy this property is introduced. 
This new set of nodes is obtained by dividing each original-node in as many pieces as re-
quired to obtain a set with the desired property (Fig.2). Then, each derived-node is identified 
by means of an ordered-pair of numbers: the label of the original-node, it comes from, fol-
lowed by the partition-subdomain label, it belongs to. A ‘derived-vector’ is simply defined to 
be any real-valued function* defined in the whole set of derived-nodes; the set of all derived-
vectors constitutes a linear space: the ‘derived-vector space (DVS)’. The ‘Euclidean inner-
product’, for each pair of derived-vectors, is defined to be the product of their components 
summed over all the derived-nodes. The DVS constitutes a finite-dimensional Hilbert-space, 
with respect to the Euclidean inner-product. A new problem, which is equivalent to the origi-
nal problem, is defined in the derived-vector space. Of course, the matrix of this new problem 
is different to the original-matrix, which is only defined in the original-vector space, and the 
theory supplies a formula for deriving it [2]. From there on, in the DVS framework, all the 
work is done in the derived-vector space and one never goes back to the original vector-
space. In a systematic manner, this framework led to the construction of the following pre-
conditioned DVS-algorithms: DVS-primal formulation #1, DVS-dual formulation #1, DVS-
primal formulation #2 and DVS-dual formulation #2. However, the DVS-primal formulation 
#1 and DVS-dual formulation #1 were later identified as DVS-versions of BDDC and FETI-
DP, respectively. With this adjustment in nomenclature, in [1,2] they were summarized as it is 
indicated next. Thereby, it should be mentioned that standard versions of BDDC and FETI-
DP (see references mentioned above) were originally formulated for definite-symmetric ma-
trices (positive-definite or negative-definite); thus, their extension to non-symmetric and inde-
finite matrices is among the achievements of the DVS-framework.  

The Four General Preconditioned Algorithms with Constraints that will be dis-
cussed in this paper are:  

 a).- The DVS-version of BDDC;  
 b).-The DVS-version of FETI-DP;  

                                                 
* For the treatment of systems of equations, vector-valued functions are considered, instead 



 
 

          c).- DVS-primal formulation #2;  

 

Figure 1. The ‘original nodes’ 

 

 

 

Figure 2. The ‘derived nodes’  

 d).- DVS-dual formulation  #2.  
All these algorithms are preconditioned and are formulated in vector-spaces subjected 

to constraints; so, they are preconditioned and constrained algorithms.  
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3. THE DVS-ALGORITHMS WITH CONSTRAINTS  

In this Section we summarize some results previously obtained. The interested reader 
is referred, in particular, to [1-4] for details. In the DVS-framework, the original problem is 
transformed into one defined in the derived-vector space with restrictions, rW . Thus, we look 
for a vector ru W∈ , such that  

 0aAu f  and ju= =  (3.1) 
Where u u uΠ ∆≡ +  and f f f

Π ∆
≡ + , while ,u f W∆∆ ∆

∈  are the dual parts of the 
respective vectors. For simplicity of exposition, here we assume that f  takes only dual-
values; f f

∆
=  (i.e., 0f

Π
= ). Then, Eq.(3.1) is equivalent to  

 0aSu f  and ju∆ ∆∆
= =  (3.2) 

Together with  
 1u A A u−

Π ∆ΠΠ Π∆
= −  (3.3) 

Above, the matrix a  is the projection on the subspace of continuous derived-vectors, while j  

is the projection on the subspace of zero-average derived-vectors, which is the orthogonal 

complement of the subspace of continuous vectors. Furthermore,  

 1
A A

A  and S A A A A
A A

−ΠΠ Π∆

∆∆ ∆Π ΠΠ Π∆
∆Π ∆∆

 
 = ≡ −
 
 

 (4) 
 
3.1- THE DVS VERSION OF THE BDDC ALGORITHM  
The DVS-BDDC algorithm is [2]: “Find u W∆ ∆∈  such that  

 1 1 0aS aSu aS f   and ju− −
∆ ∆∆

= =  (3.5)” 
 

3.2- THE DVS VERSION OF FETI-DP ALGORITHM  
The DVS-FETI-DP algorithm is [2]: “Given f aW∆∆

∈ , find Wλ ∆∈  such that  
 1 1 0jS jS jS jS f   and aλ λ− −

∆
= =  (3.6)” 

Once jWλ ∆∈  has been obtained, u aW∆∆ ∈  is given by:  
 ( )1u aS f λ−

∆ ∆
= −  (3.7) 

 
3.3- THE DVS PRIMAL-ALGORITHM #2  
This algorithm consists in searching for a function W∆ ∆∈v , which fulfills [2]  

 1 1 1 0S jS j S jS jS f   and aS− − −
∆ ∆∆

= =v v  (3.8)”  
Once 1S jSW−

∆ ∆∈v  has been obtained, then  
 ( )1u a S f−

∆∆ ∆
= − v  (3.9) 

 
3.4- THE DVS DUAL-ALGORITHM #2  
This algorithm consists in searching for a function Wµ ∆∈ , which fulfills [2]  

 1 1 1 1 0SaS a SaS aS jS f   and jSµ µ− − − −

∆
= =  (3.10) 

Once 1SaS Wµ −
∆∈  has been obtained, u aW∆∆ ∈  is given by:  

 ( )1u aS f µ−
∆ ∆

= +  (3.11) 



 
 

4. NUMERICAL PROCEDURES  

The four preconditioned DVS-algorithms with constraints enumerated in Section 3, are  
 1 1 0;aS aSu aS f   and ju  DVS - BDDC− −

∆ ∆∆
= =  (4.1) 

 1 1 0;jS jS jS jS f   and a  DVS - FETI - DPλ λ− −

∆
= =  (4.2) 

 1 1 1 0;S jS j S jS jS f   and aS  DVS - PRIMAL - 2− − −
∆ ∆∆

= =v v  (4.3) 
and  

 1 1 1 1 0;SaS a SaS aS jS f   and jS  DVS - DUAL - 2µ µ− − − −

∆
= =  (4.4) 

In numerical experiments that have been carried out thus far, with symmetric and non-
symmetric problems[1,2,4], they have exhibited update numerical efficiency. More precisely, 
for symmetric problems their efficiency has been slightly better that FETI-DP and BDDC; 
while for non-symmetric problems it is similar. Of course, in numerical implementations 
CGM has been used for symmetric-definite matrices and other algorithms such as GM-RES 
have been used in for non-symmetric ones.  

 
4.1- COMMENTS ON THE DVS NUMERICAL PROCEDURES  
The outstanding uniformity of the formulas given in Eqs.(4.1) to (4.4) yields clear ad-

vantages for code development, especially when such codes are built using object-oriented 
programming techniques. Such advantages include:  

I. The construction of very robust codes. This is an advantage of the DVS-
algorithms, which stems from the fact the definitions of such algorithms exclu-
sively depend on the discretized system of equations (which will be referred to 
as the original problem) that is obtained by discretization of the partial diffe-
rential equations considered, but that is otherwise independent of the problem 
that motivated it. In this manner, for example, essentially the same code was 
applied to treat 2-D and 3-D problems; indeed, only the part defining the geo-
metry had to be changed, and that was a very small part of it;  

II.  The codes may use different local solvers, which can be direct or iterative 
solvers;  

III.  Minimal modifications are required for transforming sequential codes into pa-
rallel ones; and  

IV.  Such formulas also permit to develop codes in which “the global-problem-
solution is obtained by exclusively solving local problems”. 

This last property must be highlighted, because it makes the DVS-algorithms very 
suitable as a tool to be used in the construction of massively-parallelized software, which is 
needed for efficiently programming the most powerful parallel computers available at present. 
Thus, procedures for constructing codes possessing Property IV are outlined and analyzed 
next.  

 
All the DVS-algorithms of Eqs.(4.1) to (4.4) are iterative and can be implemented with 

recourse to Conjugate Gradient Method (CGM), when the matrix is definite and symmetric, 
or some other iterative procedure such as GMRES, when that is not the case. At each iteration 
step, one has to compute the action on a derived-vector of one of the following matrices: 



 
 

1aS aS− , 1jS jS− , 1S jS j−  or 1SaS a− , depending on the DVS-algorithm that is applied. 
Such matrices in turn are different permutations of the matrices S , 1S− , a  and j . Thus, to 
implement any of the preconditioned DVS-algorithms, one only needs to separately develop 
codes capable of computing the action of one of the matrices S , 1S− , a  or j  on an arbitrary 
vector of W , the derived-vector-space. Therefore, in [1] it has been explained how to com-
pute the action of each one of the matrices S  and 1S−  by means of computations that are car-
ried out separately in each one of domain decomposition subdomains, exclusively. As for a  
and j , their applications require exchange of information between derived-nodes that are 
descendants of the same original-node, and that is a very simple operation for which the ex-
change of information between different subdomains is minimal [1-4].  
4. CONCLUSIONS  
The derived-vector-space (DVS) framework unifies domain decomposition methods and has 
permitted to develop four preconditioned algorithms with constraints that are almost 100% in 
parallel, in the sense that they achieve the leitmotif of DDM research, and which at the same 
time are to a large extent of universal applicability, in the sense that each one of them is ap-
plicable to symmetric-definite, indefinite and non-symmetric matrices, independently of the 
PDE (or system of such equations) that originated them. Furthermore, each one of them has 
also update numerical efficiency. Therefore, DVS-algorithms are very suitable for program-
ming in an efficient manner the most powerful parallel computers available at present.  
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