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Abstract. Titanium alloys have widespread applications in defense and aerospace industries 
owing to its high performance mechanical properties, particularly its high strength to weight 
ratio [1, 2, and 5]. Due to their Hexagonal closed packed (HCP) crystallographic structure; 
they have anisotropic properties and high strength differential (SD) effects in tension and 
compression during deformation [3, 4]. In practical applications, titanium alloys might be 
subject to complex loading conditions, which may include the presence of various strain 
rates. Therefore, in order to study their visco-plastic mechanical behavior, the present contri-
bution proposes an elastic-viscoplastic model for HCP materials by extending the Cazacu 
yield criteria with the widely used visco-plastic formulation proposed by Perzyna [9]. The 
new model is implemented in an implicit quasi-static finite element framework with a fully 
implicit integration scheme. The stress integration algorithm employs the closest point projec-
tion method (CPPM) combined with the line search method. Two benchmark tests are per-
formed to study the material mechanical behavior of the Ti-6Al-4V alloy at various strain 
rates. The stability and accuracy of this model is analyzed. 

Keywords: HCP materials, Cazacu model, constitutive modeling,  Perzyna model  

1. INTRODUCTION 

Titanium alloys are extensively used in medical devices, defense applications, aero-
space and automotive industries, because of their high comprehensive performance, superior 
specific strength to weight ratio, exceptional corrosion resistance, and biocompatibility etc. 
Titanium alloys have the microstructural arrangement of Hexagonal Closed Packed (HCP) 
crystallographic materials. Therefore, these materials will exhibit different mechanical behav-
iors when compared to other metals with FCC and BCC structures, such as steel, aluminum 
etc. At room temperature, there is a limited number of basal and non-basal slip systems to be 
activated to accommodate general deformation, so the activation of twinning plays an im-
portant role to accommodate the deformation. The polar nature of deformation twinning pro-
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motes a strong asymmetry between yielding in tension and compression, usually known as 
strength differential effect (SD) [5, 7]. In addition, Jiang et al. [8] have shown that the volume 
fraction of contraction and double twins increases with strain rate, which indicates that twin-
ning is an athermal deformation mode and has a high strain rate sensitive. Therefore, the dy-
namic behavior of Titanium alloys, particularly at high strain rates, must be modeled in order 
to design new applications. Although numerous yield criteria such as Hill, Hosford, Barlat, or 
Barlat and Lian, Karafillis et al [1, 4] have been proposed, all of them fail to capture this un-
conventional mechanical behavior. In order to model the response of HCP metals, Cazacu et 
al. [1, 3] studied the mechanical behavior of several HCP metals under monotonic loading 
paths and proposed two generic yield criteria. These yield functions employ the transformed 
stresses which are obtained from a 4th-order linear transformation operator on the Cauchy 
stress tensor. These two criteria were implemented in Cut Plane method by Nixon et al. [1] 
and Plunkett et al. [9], respectively.  

In this contribution, an elasto-viscoplastic model for Hexagonal Closed Packed mate-
rials is formulated. The Perzyna overstress viscoplastic model is coupled with Cazacu yield 
criteria here and the resulting constitutive model is implemented within an implicit quasi-
static finite element environment. In the numerical stress integration, a primal Closest Point 
Projection Method (CPPM) integration algorithm and a closed form consistent tangent opera-
tor are derived. Iso-error maps are used to illustrate the accuracy and stability of the algorithm 
at different strain rates. 

2. FORMULATION OF ELASTO-VISCO PLASTIC MODEL 

In the infinitesimal strain domain, similar to the classical plastic model, the total strain 
rate, �� , in an elasto-viscoplastic material point can be additively decomposed into an elastic 
component, �� � , and a viscoplastic component, �� �� : �� = �� � + �� ��,                                                                 (1) 
where the superimposed dot denotes the time derivative. The stress rate, � , is related to the 
strain rate via the constitutive relation  � = ��: �� �,                                                                                                                                                                                                                                                                             (2)    
with �� the fourth-order tensor containing the tangential elastic stiffness moduli. Furthermore, 
the viscoplastic strain rate evolves via a flow rule, �� �� = ���.                                                                                                                                                                                                                                                                              (3) 
The scalar, �� , is a non-negative parameter, known as the consistency parameter (Simo and 
Hughes, 1988).  

In the past decades, numerous viscoplastic models [10, 11] have been proposed. 
Perzyna's overstress theory provides a unified approach to analyze a wide range of engineer-
ing problem and has been widely used to capture rate-dependent effects in solid materials, 
like Luders bands and the Portevin-Le Chatelier effect in metals, shear banding and creep in 
geomaterials  and to analyze localization and bifurcation properties. Owing to the strain rate 
sensitivity of the twinning deformation mechanism for HCP materials, there is a dependence 



 
 

of mechanical behavior with the strain rate. 
In Perzyna´s model, the consistency parameter is expressed by  �� = 〈�(�)〉� ,																																																																	(4)	
where � is the viscosity parameter, � represents the overstress function that depends on the 
rate-independent yield surface � and “〈∙〉” are the McCauley brackets, such that: 

〈�(�)〉 =  �(�), !"	�(�) ≥ 00,																!"	�(�) < 0 	
2.1 Yield criteria 

The yield function proposed by Cazacu et al.[1] was obtained by extending the ortho-
tropic Drucker’s isotropic yield criterion with a constructed generalizations of the invariants 
of the deviatoric stress. The original Cauchy stress &' is transformed to a transformed tensor &(', which is defined as  )*+ = ,*+-./-..																																																													(5)	
The fourth-order linear transformation operator (1) can be represented in 6 × 6 matrix format 
as  

1 =
45
55
55
56
7897:; − 7:; − 78;− 7:; 7=97:; − 7=;− 78; − 7=; 7=978;

0 0 0
0 0 0
0 0 00 0 00 0 00 0 0
a? 0 00 a@ 00 0 aABC

CC
CC
CD
																																					(6)	

Cazacu´s anisotropic yield function can be expressed by  

� = E(FGH:8 − IF;H)J/; − /L, (7) 

where,  FGH, is the second invariant of the deviatoric transformed stress, and F;H, is the third in-
variant of deviatoric transformed stress, respectively, which can be obtained as  

FGH = JG MN((G),	 (8) 

F;H = J; MN((;).	 (9) 

The constant A is defined as 

E = 3[(PGG + P;G + PGP;):8 − I(PG + P;)PGP;]RJ/;, (10) 

where c is a material parameter, which can be expressed in terms of the yield in uniaxial ten-
sion, /S, and the yield in uniaxial compression, /T, as  



 
 

I = ;√;(VW:RVX:)G(VW:RVX:) .                                                             (11) 
To ensure the convexity of the yield function, the material constant c is limited to the range [− ;√;G , ;√;? ].  
3. STRESS INTEGRATION 

In this section, the evolution of the different quantities from time MY to time MY9J = MY + ∆M at 
each integration point will be treated with Closet Point Projection Method (CPPM) stress in-
tegration algorithm. Within a typical time interval[MY, MY9J], it is assumed that all variables [Y, �Y\ , �Y] , ^Y]_ at time MY are known, and the stress together with the updated variables, which 
characterize the inelastic response of the material, are pursued for given strain increment ∆�. 
The numerical integration of elasto-plastic constitutive equations is typically carried out by 
means of the so-called elastic predictor return mapping schemes. A fully implicit elastic pre-
dictor return mapping method, which is called Closest Point Projection Method (CPPM), is 
implemented within an implicit quasi-static finite element environment.  
In order to integrate the governing equations in a similar means to generalized plasticity, the 

overstress Perzyna model is chosen. The strain rate is assumed to be computed by �̂ ] =∆^/∆M. 
The summary of the CPPM for Visco-Cazacu model is presented in Box.1. In order to 

obtain quadratic convergence in the solution of an initial boundary value problem within an 
implicit finite element environment, the tangent operator consistent with the general algorithm 
is needed to assemble the tangent stiffness matrix. The fourth-order tensor can be obtained by 
computing the derivative of the updated stress tensor Y9J with respect to the final strain�Y9J. 
When the stress state lies within the elastic domain and no viscoplastic flow occurs, the tan-
gent operator is the elastic tangent operator ��. Otherwise, the elasto-viscoplastic consistent 
tangent operator has to be derived by consistently linearising the viscoplastic return-mapping 
algorithm under viscoplastic flow. The closed form for the viscoplastic tangent operator can 
be expressed by  

�`a =
bc
d
ce��RJ + ∆� f�f − �⨂ h� + ∆� f�f^]̅j

kf/\lf^]̅ − f/Lf^]̅ h1 + m∆�∆M jn − o/L h1 + m∆�∆M jnRJ h m∆Mjpqc
r
cs

RJ
 

It is important to remark that this tangent operator is not symmetric. 



 
 

Box 1. Fully implicit closest point projection method (CPPM) 

4. NUMERICAL EXAMPLE  

In this section, some numerical examples are presented to verify the implementation of the 
proposed elasto-viscoplastic constitutive model within an implicit quasi-static finite element 
environment. The numerical examples are divided into 2 sections with different objectives. In 
the first set of examples, the uniaxial tensile and uniaxial-compressive tests are performed to 
evaluate the asymmetric mechanical behavior at different strain rates. In the second set of 

bcd
ce�Y9J\ − �Y9J\	tu*v. + ∆MwxY9J, ^Y̅9J] y^Y̅9J] − ^Y̅] + ∆MFxY9J, ^Y̅9J] y

/\l	Y9J − /L	Y9J z1 + m∆�Y9J∆M {n
qcr
cs = |}00~ 

�� = 1m 〈�(")〉 = 1m 〈(Y9J, ^Y̅9J]
/Lx	^Y̅9J] y )J/n − 1〉	

�Y9J = f�f 

Y9J = �\: �Y9J\  

(i) Elastic predictor. Given ∆� and the state variables at MY, evaluate the elastic trial 
state: 

�Y9J\	tu*v. = �Y\ + ∆� ;	^Y̅9J]	tu*v. = ^Y̅] 

�Y9Jtu*v. = �^�	Y9J\	tu*v.; �Y9Jtu*v. = 2���	Y9J\	tu*v.;  Y9Jtu*v. = �Y9Jtu*v. + �Y9Jtu*v.� 
(Y9Jtu*v. = 1Y9Jtu*v.; 

FG	Y9JH	tu*v. = JG MN((Y9Jtu*v.G) ; F;	Y9JH	tu*v. = J; MN((Y9Jtu*v.;) ; 
/\l	Y9Jtu*v. = EJ[xFG	Y9JH	tu*v.y:8 − IF;	Y9JH	tu*v.]J/;; 

(ii) Check Plastic admissibility 

If   � = /\l	Y9Jtu*v. − /L(^Y̅9J]	tu*v.) ≤ 0 

Then set (	)�9J = (	)�9J���7�	and	EXIT 

(iii)Return mapping. Solve the system of eight equations using the Newton-Raphson 
iterative method 

wxY9J, ^Y̅9J] y = ���Y9JxY9J, ^Y̅9J] y,   FxY9J, ^Y̅9J] y = ���xY9J, ^Y̅9J] y = −��  

The solution is found for �Y9J\ ,	^Y̅9J]  and ∆�. The stress tensor can be obtained by 

(iv)EXIT 



 
 

examples, several iso-error maps are presented to investigate the accuracy of the CPPM stress 
integration scheme at different strain rates.  The material constants, which are employed in all 
examples, are listed in Table 1.  

Table.1 Material properties for Titanium [5] 

 � (g/cm3) E,Modulus (GPa) �, Poisson’s Ratio 
Titanium 4.51 120000 0.361 

The anisotropy coefficient values of pure titanium corresponding to the yield surface evolu-
tion can be seen in Table 2. 

Table 2 - Anisotropy coefficient values of pure titanium corresponding to the yield surface 
evolution [5] 

Strain (��) Yield strength 
(MPa) 

a1 a2 a3 a4 a5 a6 c 

0.0 208 0.5454 0.501 1.09 0.7246 -0.8675 -0.8675 -0.2168 
0.025 245 0.5231 0.4745 0.9034 0.7309 0.7202 0.7202 -0.2198 
0.05 261 0.6694 0.5585 1.103 0.9138 0.9381 0.9381 -0.2291 
0.075 273 0.6960 0.5969 1.127 0.9838 0.9716 0.9716 -0.2607 
0.1 284 0.5356 0.4768 0.8603 0.7761 0.7714 0.7714 -0.2754 
0.2 317 0.061 0.0576 0.0869 0.087 0.0794 0.0794 -0.5908 
0.4 270 0.0632 0.062 0.0788 0.0816 0.0801 0.0801 -1.0330 
0.5 389 0.9547 0.957 1.2140 1.181 1.176 1.176 -1.1480 

4.1 Single element tests 

(a) Uniaxial tensile test 

In this example, a uniaxial stress state is applied to a single 8-node brick element (with one 
integration point). The length of the element is 10x10x10 mm3. This example is conducted to 
demonstrate the ability of the finite element formulation to capture strain rate sensitivity. The 
element is stretched with a prescribed constant (in time) velocity, �, along the rolling direc-
tion (x direction). The geometry and the boundary conditions applied to the single element for 
the uniaxial tensile test in x direction are shown in Figure 1.   

 

Figure.1 Uniaxial tensile test 

 



 
 

The normalized stretching rate can be defined conveniently for the unit cell by �∗ = m� and 
the simulation is carried out for three different values of �∗ 

�∗ = 10R?, 10H, 10?. 

This choice covers very slow to very fast strain rates and is meant to demonstrate the robust-
ness of the integration algorithm over a wide range of strain rates. In order to show the effect 
of the rate-sensitivity parameter on the behavior of the model, in the uniaxial-tensile stress 
state, four values of o are considered  

o = 10J, 10H, 10RG, 10RA 
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(a) o = 10J (b) o = 10H 
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(c) o = 10RG (d) o = 10RA 

Figure 2. Uniaxial-tensile stress-strain curve 

 A series of stress-strain curves for each power-law exponent o = 10J, 10H, 10RG	and 	10RA 
are drawn from the numerical uniaxial tensile test, which are shown, respectively, in Figures 
2(a) , (b), (c), (d).  It can be seen that when the power-law exponent ϵ is larger than 1.0, the 
material shows a significant strain rate sensitivity. The mechanical response increases re-
markably with the increase of strain rate, when o = 10J and o = 10H . In addition, when �∗ = 10?, the material doesn’t yield during the deformation and demonstrates a very high 
stiffness. When the power-law exponent o = 10RG, although the material still shows visco-



 
 

plastic mechanical behavior, the influence of the strain rate on the response decreases. Par-
ticularly, when �∗ = 10R?  and �∗ � 10H , the mechanical response almost coincides. This 
behavior becomes more obvious when the power-law exponent ϵ � 10RA. In this case, all the 
stress-strain curve coincide and the viscoplastic model is effectively reduced to the elasto- 
plastic Cazacu model. 

(b) Uniaxial compressive test 

Owing to the different mechanical behavior of Titanium alloy under compressive stress states 
and the tensile stress states, a uniaxial compressive benchmark test is used to study the stress 
integration algorithm of the viscoplastic cazacu model at different strain rates. Similar to the 
tensile test, a single 8-node brick element (see Figure.3) is loaded with a prescribed displace-
ment. The simulation is also carried out for three different values of �∗ 

�∗ � 10R?, 10H, 10?, 

and  four values of o � 10J, 10H, 10RG, 10RAare also studied [11].  

 

Figure.3 Uniaxial compressive test 
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(a) o � 10J (b) o � 10H 
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(c) o = 10RG (d) o = 10RA 

Figure 4. Uniaxial-compressive stress-strain curve 

Stress-strain curves for the power-law exponent o = 10J, 10H, 10RG	and 	10RA are also drawn 
from this numerical uniaxial compressive test, which are shown, respectively, in Figures 4(a) , 
(b), (c), (d).  From these, we can see that the mechanical response under compressive stress 
states also shows strong strain rate sensitivity for high power-law exponent. By comparing 
with the stress-strain curve under uniaxial tensile stress states, it can be seen that the strain 
rate sensitivity in compression is higher than the tensile stress state, which can be concluded 
obtained from the Figure 4 (c). In the compression test, the stress-strain curves coincide for all 
the strain rates when the power-law exponent o = 10RG, however, in the scenario of tensile 
loading the mechanical response at high strain rate of  10? is higher for low (�∗ = 10R?) and 
medium (�∗ = 10H) strain rate.  

4.2 Iso-error maps 

In order to assess the accuracy of the stress integration algorithm,  iso-error maps are drawn 
by standard numerical testing procedure under realistic finite time/strain steps [12]. Using the 
three-dimensional implementation of the model, we start from a stress point at time MY,	Y, 
lying on the yield surface, and a sequence of strain increments is applied corresponding to 
specified normalised elastic trial stress increments of the form 

∆tu*v. = ∆VWV�� � + ∆V�V�� �,                                              (12) 

where � and � are, respectively, the unit (in Euclidean norm) normal and tangent vectors to 
the yield surface and /\l is the equivalent stress.  

 Applying increments of trial stress in the tangential and normal direction to the yield surface, 
the error is evaluated by 

�����(%) =  (¡R¢£¤¥W):(¡R¢£¤¥W) ¢£¤¥W:¢£¤¥W                                  (13) 



 
 

where, Y is numerical solution,  and ¦§¨©S is the exact solution. Here, due to the lack of an 
analytical solution, ¦§¨©S is assumed to be the stress obtained by sub-incrementation of each 
stress increment into 1000 steps.  

In order to evaluate the accuracy properties and remarkable robustness at different strain rates, 
several iso-error maps are drawn at low and high strain rates with the non-dimensional factor: 

m‖^�‖ 

Set, respectively, to 1 and 1000.  In order to investigate the influence of power-law exponent, 
three values chosen: 10H, 10RJ, 0.   

(a) Iso-error maps under a  uniaxial tensile stress state 
Figures 5 and 6 show the iso-error maps under uniaxial tensile stress state obtained at the 
aforementioned low and high strain rates for different power-law exponents, o .For the power-
law exponent o � 0, the standard rate-independent Cazacu elasto-plastic model is recovered. 
The resulting iso-error map in this case is identical to the rate-independent map. For the small 
power-law exponent, o � 0.1, the iso-error map is almost the same as the rate-independent 
map at the low strain rate (see in Figure 5 (b)). However, the iso-error map changes signifi-
cantly at the high strain rate (see in Figure 6 (b)). This also occurs for the power-law exponent 
o � 10H. It can also be seen that the maximum value of iso-error maps for high power-law 
exponent is higher than in the rate-independent map; nevertheless, it decreases sharply at high 
strain rate. The larger the power-law exponent o, the more strain rate sensitivity of the iso-
error value. From the maximum iso-error value, it is possible to conclude that the current 
stress integration algorithm is remarkable robust and can handle effectively any power law 
exponent o —from small (corresponding to high rate-sensitivity) to extremely large values 
(corresponding to effectively rate-independent conditions)—under low as well as high strain 
rates. 

   
(a) (b) (c) 

Figure 5. Iso-error maps under a uniaxial-tensile stress state with m‖^�‖ � 1.0. (a) o � 10H; (b) 
o � 10RJ; (c) o � 0 (rate-independent) 



 
 

(a) (b) (c) 
Figure 6. Iso-error maps under a  uniaxial-tensile test with m‖^�‖ = 1000. (a) o � 10H; (b) 

o � 10RJ; (c) o � 0 (rate-independent) 

(b) Uniaxial-compressive stress state 
The iso-error maps under a uniaxial compressive stress state obtained at low and high strain 
rates for different power-law exponents(o), which can be seen in Figures 7 and 8. The same 
stress integration algorithms and tolerances are applied to draw iso-error maps at uniaxial-
compressive stress state. From Figures 7 and 8, the same behavior for the strain rate sensitivi-
ty can be observed in the uniaxial compressive stress state. From the comparison between the 
iso-error maps under uniaxial compressive stress state and under uniaxial tensile stress state, it 
is clear that the iso-error maps are completely different, which illustrates the importance of 
the strength differential (SD) effect.  

   
(a) (b) (c) 

Figure 7. Iso-error maps at uni-compressive test with m‖^�‖ � 1. (a) o � 10H; (b) o � 10RJ; (c) 
o � 0 (rate-independent) 

   
(a) (b) (c) 

Figure 8. Iso-error maps at uni-compressive test with m‖^�‖ � 1000. (a) o � 10H; (b) o �
10RJ; (c) o � 0 (rate-independent) 



 
 

5. CONCLUSION 

In this work, an elastic-viscoplastic constitutive model coupled with Cazacu´s yield function 
has been proposed to simulate the mechanical behavior of metals with an HCP crystal struc-
ture at different deformation strain rates. The Closest Point Projection Method (CPPM) is 
implemented within an implicit quasi-static finite element environment. Two numerical ex-
amples show that the integration algorithm can be effectively used at high strain rate even for 
very high power-exponent. It is also shown that the stress evolution under compressive stress 
states is higher than under tensile stress states and is more strain rate sensitive.  
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