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Abstract. Titanium alloys have widespread applications in defense and aerospace industries
owing to its high performance mechanical properties, particularly its high strength to weight
ratio [1, 2, and 5]. Due to their Hexagonal closed packed (HCP) crystallographic structure;
they have anisotropic properties and high strength differential (SD) effects in tension and
compression during deformation [3, 4]. In practical applications, titanium alloys might be
subject to complex loading conditions, which may include the presence of various strain
rates. Therefore, in order to study their visco-plastic mechanical behavior, the present contri-
bution proposes an elastic-viscoplastic model for HCP materials by extending the Cazacu
yield criteria with the widely used visco-plastic formulation proposed by Perzyna [9]. The
new model is implemented in an implicit quasi-static finite element framework with a fully
implicit integration scheme. The stress integration algorithm employs the closest point projec-
tion method (CPPM) combined with the line search method. Two benchmark tests are per-
formed to study the material mechanical behavior of the Ti-6Al-4V alloy at various strain
rates. The stability and accuracy of this model is analyzed.
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1. INTRODUCTION

Titanium alloys are extensively used in medical devices, defense applications, aero-
space and automotive industries, because of their high comprehensive performance, superior
specific strength to weight ratio, exceptional corrosion resistance, and biocompatibility etc.
Titanium alloys have the microstructural arrangement of Hexagonal Closed Packed (HCP)
crystallographic materials. Therefore, these materials will exhibit different mechanical behav-
iors when compared to other metals with FCC and BCC structures, such as steel, aluminum
etc. At room temperature, there is a limited number of basal and non-basal slip systems to be
activated to accommodate general deformation, so the activation of twinning plays an im-
portant role to accommodate the deformation. The polar nature of deformation twinning pro-



motes a strong asymmetry between yielding in tensied compression, usually known as
strength differential effect (SD) [5, 7]. In addii, Jianget al.[8] have shown that the volume
fraction of contraction and double twins increaa@h strain rate, which indicates that twin-
ning is an athermal deformation mode and has a $tigin rate sensitive. Therefore, the dy-
namic behavior of Titanium alloys, particularlytagh strain rates, must be modeled in order
to design new applications. Although numerous yeiteria such as Hill, Hosford, Barlat, or
Barlat and Lian, Karafilliet al[1, 4] have been proposed, all of them fail totaeg this un-
conventional mechanical behavior. In order to madbelresponse of HCP metals, Cazatu
al. [1, 3] studied the mechanical behavior of sevetf@P metals under monotonic loading
paths and proposed two generic yield criteria. €hgsld functions employ the transformed
stresses which are obtained from a 4th-order litarsformation operator on the Cauchy
stress tensor. These two criteria were implememedut Plane method by Nixon et al. [1]
and Plunkett et al. [9], respectively.

In this contribution, an elasto-viscoplastic mofitel Hexagonal Closed Packed mate-
rials is formulated. The Perzyna overstress visgsifg model is coupled with Cazacu yield
criteria here and the resulting constitutive modeimplemented within an implicit quasi-
static finite element environment. In the numerisess integration, a primal Closest Point
Projection Method (CPPM) integration algorithm andlosed form consistent tangent opera-
tor are derived. Iso-error maps are used to iwsthe accuracy and stability of the algorithm
at different strain rates.

2. FORMULATION OF ELASTO-VISCO PLASTIC MODEL

In the infinitesimal strain domain, similar to tbkassical plastic model, the total strain
rate,&, in an elasto-viscoplastic material point can beitagdy decomposed into an elastic
componentg® , and a viscoplastic compone&t? :

E=§E°+ &P, (D

where the superimposed dot denotes the time demvakhe stress raté, is related to the
strain rate via the constitutive relation
o = D¢ &°, (2)

with D€ the fourth-order tensor containing the tangermiastic stiffness moduli. Furthermore,

the viscoplastic strain rate evolves via a flowerul
£P = yN. 3)

The scalary, is a non-negative parameter, known as the consigtparameter (Simo and
Hughes, 1988).

In the past decades, numerous viscoplastic modé€ls I1] have been proposed.
Perzyna's overstress theory provides a unifiedagmbrto analyze a wide range of engineer-
ing problem and has been widely used to captueeda@pendent effects in solid materials,
like Luders bands and the Portevin-Le Chatelieeaffn metals, shear banding and creep in
geomaterials and to analyze localization and bétion properties. Owing to the strain rate
sensitivity of the twinning deformation mechanison HCP materials, there is a dependence



of mechanical behavior with the strain rate.

In Perzyna’s model, the consistency parametemigesged by
. _ (o)
T] )

(4)

wheren is the viscosity parametep, represents the overstress function that dependbeon

rate-independent yield surfageand {-)” are the McCauley brackets, such that:
_(®(F), ife(F)=0
(@(F)) ‘{o, if &(F) <0

2.1Yiddcriteria

The yield function proposed by Cazastual[1] was obtained by extending the ortho-
tropic Drucker’s isotropic yield criterion with agstructed generalizations of the invariants
of the deviatoric stress. The original Cauchy stfes is transformed to a transformed tensor
{Z}, which is defined as

2ij = Lij)iOxi- (5)

The fourth-order linear transformation operaty ¢an be represent&a 6 X 6 matrix format
as

aztas _a _2 0 0 07
3 3 3
asz a1+a3 a
3 3 3 0 0 0
_ _ a_z _ a_1 a1+a2
L= 3 3 3 0 0 0 (6)
0 0 0 dy 0 0
0 0 0 0 dsg 0
L0 0 0 O 0 ag
Cazacu’s anisotropic yield function can be expakbse
3
F=A(J? = )Y ~ gy, )

where, /9, is the second invariant of the deviatoric transfed stress, ang, is the third in-
variant of deviatoric transformed stress, respebtiwhich can be obtained as

J3 = tr(Z2),

(8)
1
]:g) = 5157'(23). (9)
The constanA is defined as
3
A = 3[(a3 + i + aza3)z — c(ap + az)azas] /3, (10)

wherec is a material parameter, which can be exprességtims of the yield in uniaxial ten-
sion,or, and the yield in uniaxial compressian, as
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(11)

To ensure the convexity of the yield function, thaterial constant is limited to the range

3. STRESSINTEGRATION

In this section, the evolution of the different gtiaes from timet,, to timet,,,; = t, + At at
each integration point will be treated with CloBetint Projection Method (CPPM) stress in-
tegration algorithm. Within a typical time interyig), t,.1], it is assumed that all variables
{an, g, b, en} at timet,, are known, and the stress together withujpp@ated variables, which
characterize the inelastic response of the matenial pursued for given strain incremamt
The numerical integration of elasto-plastic consitie equations is typically carried out by
means of the so-called elastic predictor returnpimgpschemes. A fully implicit elastic pre-
dictor return mapping method, which is called Cs&adeoint Projection Method (CPPM), is
implemented within an implicit quasi-static fineéement environment.

In order to integrate the governing equations ginailar means to generalized plasticity, the

overstress Perzyna model is chosen. The strainisatéssumed to be computed %pyz
AE/At.

The summary of the CPPM for Visco-Cazacu modelrésgnted in Box.1. In order to
obtain quadratic convergence in the solution ofrétnal boundary value problem within an
implicit finite element environment, the tangeneogtor consistent with the general algorithm
Is needed to assemble the tangent stiffness matmex fourth-order tensor can be obtained by
computing the derivative of the updated stressaiems, ; with respect to the final strap, ;.
When the stress state lies within the elastic domaad no viscoplastic flow occurs, the tan-
gent operator is the elastic tangent operBforOtherwise, the elasto-viscoplastic consistent
tangent operator has to be derived by consistéintarising the viscoplastic return-mapping
algorithm under viscoplastic flow. The closed fofon the viscoplastic tangent operator can

be expressed by
-1

( \D
I oN I
N® (N + Ay =
Oeq 00y pAYY MAV
| <agp 85P(1+At) eay (1+55F )

It is important to remark that this tangent operaégaot symmetric.



Box 1. Fully implicit closest point projection meith (CPPM)

(i) Elastic predictor. Giverde and the state variablestat evaluate the elastic trig
state:

etrial _ &P trial =D
g =g tAe g =&,
trial _ etrial. ctrial _ etrial. trial _ ctrial trlal
Pn+1 - stn+1 ’ Sn+1 - 2G"-‘:dn+1 » On+1 = Sn+1 + P I

trial _ trial.
2-"n+1 - l-‘O-n+1 ’

otrial _ 1 trial?y . jotrial _ 1 trial3y .
2n+1 —Etr(z'nﬂ ) i J3ns1 —gtr(z'nﬂ )

3

trlal — 0 trial 0 trial11/3.
eq n+l1 — Al[(]z n+1 —CJ3n+1 ] / '
(i) Check Plastic admissibility
__ _trial _p trial
If F= Uecrllfqlﬂ 0y(&nyr ) =0

Then se( )1 = ()3 and EXIT

(ilReturn mapping. Solve the system of eight equations using the Newton-Raphson
iterative method

e etnal
€n+1 — €ny1 +AtG(an+1' n+1)

_ 0
Ene1 — &1 +At](°'n+1' Enia — {0}
HAY 1\
k Oeqgn+1 — Oyn+1 (1 + A_:H> 0
G(O'n+1' §r€+1) = VNn+1(0n+1; 55...1), ](0n+1; 5_54.1) = YH(O'n+1' S_rziﬂ) ==Y

1 On+i, n+
V= (o) =4 L Gmrtnaye g,

3’( n+1

Ny = %

The solution is found foeZ, ;, £, , andAy. The stress tensor can be obtained by

— e, o€
Oni1 = D710

(VYEXIT

4. NUMERICAL EXAMPLE

In this section, some numerical examples are ptedeto verify the implementation of the
proposed elasto-viscoplastic constitutive modehiwitan implicit quasi-static finite element
environment. The numerical examples are divided Ihsections with different objectives. In
the first set of examples, the uniaxial tensile ancxial-compressive tests are performed to
evaluate the asymmetric mechanical behavior aemdifft strain rates. In the second set of



examples, several iso-error maps are presentewéstigate the accuracy of the CPPM stress
integration scheme at different strain rates. magerial constants, which are employed in all
examples, are listed in Table 1.

Table.1 Material properties for Titanium [5]

p (g/cm) E,Modulus (GPa) v, Poisson’s Ratio
Titanium 4.51 120000 0.361
The anisotropy coefficient values of pure titaniaorresponding to the yield surface evolu-
tion can be seen in Table 2.

Table 2 - Anisotropy coefficient values of pure titanium a@sponding to the yield surface
evolution [5]

Strain (g¥) Yield strength & a, a a as as c

(MPa)
0.0 208 0.5454 0.501 1.09 0.7246 -0.8675 -0.8675 -0.2168
0.025 245 0.5231 0.4745 0.9034 0.7309 0.7202 0.7202 98.21
0.05 261 0.6694 0.5585 1.103 0.9138 0.9381 0.9381 -0.2291
0.075 273 0.6960 0.5969 1.127 0.9838 0.9716 0.9716 -0.260
0.1 284 0.5356 0.4768 0.8603 0.7761 0.7714 0.7714 -0.2754
0.2 317 0.061 0.0576 0.0869 0.087 0.0794 0.0794 -0.5908
0.4 270 0.0632 0.062 0.0788 0.0816 0.0801 0.0801 -1.0330
0.5 389 0.9547 0.957 1.2140 1.181 1.176 1.176 -1.1480

4.1 Single element tests

(a) Uniaxial tensile test

In this example, a uniaxial stress state is appled single 8-node brick element (with one
integration point). The length of the element ix@10 mni. This example is conducted to
demonstrate the ability of the finite element folation to capture strain rate sensitivity. The
element is stretched with a prescribed constantirfie) velocity,v, along the rolling direc-
tion (x direction). The geometry and the boundamditions applied to the single element for
the uniaxial tensile test in x direction are shawfigure 1.

z
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Figure.1 Uniaxial tensile test



The normalized stretching rate can be defined caiewdy for the unit cell by* = uv and
the simulation is carried out for three differeatues ofv*

v*=10"%10°,10%.

This choice covers very slow to very fast straitesaand is meant to demonstrate the robust-
ness of the integration algorithm over a wide raofstrain rates. In order to show the effect
of the rate-sensitivity parameter on the behaviothe model, in the uniaxial-tensile stress
state, four values af are considered
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Figure 2. Uniaxial-tensile stress-strain curve

A series of stress-strain curves for each powerdaponent = 10%,10°, 1072 and 107°

are drawn from the numerical uniaxial tensile tegtich are shown, respectively, in Figures
2(a) , (b), (c), (d). It can be seen that whenpgbeer-law exponert is larger than 1.0, the
material shows a significant strain rate sensitivithe mechanical response increases re-
markably with the increase of strain rate, whken 101ande = 10°. In addition, when

v* = 10%, the material doesn't yield during the deformatmmd demonstrates a very high
stiffness. When the power-law exponent 1072, although the material still shows visco-



plastic mechanical behavior, the influence of tiraiis rate on the response decreases. Par-
ticularly, whenv* = 10~* andv* = 10°, the mechanical response almost coincides. This
behavior becomes more obvious when the power-lawmente = 107°. In this case, all the
stress-strain curve coincide and the viscoplasticehis effectively reduced to the elasto-
plastic Cazacu model.

(b) Uniaxial compressive test

Owing to the different mechanical behavior of Titan alloy under compressive stress states
and the tensile stress states, a uniaxial compeebginchmark test is used to study the stress
integration algorithm of the viscoplastic cazacudeloat different strain rates. Similar to the
tensile test, a single 8-node brick element (sgarki3) is loaded with a prescribed displace-
ment. The simulation is also carried out for thdé&erent values ob*

v* =107%,10°, 10,

and four values of = 10%,10°, 1072, 10 ®are also studied [11].
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Figure.3 Uniaxial compressive test
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Figure 4. Uniaxial-compressive stress-strain curve

Stress-strain curves for the power-law exporeat10?,10°, 1072 and 10° are also drawn
from this numerical uniaxial compressive test, ilhace shown, respectively, in Figures 4(a) ,
(b), (c), (d). From these, we can see that thehar@cal response under compressive stress
states also shows strong strain rate sensitivityhigh power-law exponent. By comparing
with the stress-strain curve under uniaxial tensiless states, it can be seen that the strain
rate sensitivity in compression is higher thantiesile stress state, which can be concluded
obtained from the Figure 4 (c). In the compressasn, the stress-strain curves coincide for all
the strain rates when the power-law exporent10~2, however, in the scenario of tensile
loading the mechanical response at high strainafate0* is higher for lowm(v* = 10~*) and
medium(v* = 10°) strain rate.

4.2 | so-error maps

In order to assess the accuracy of the stressratieg algorithm, iso-error maps are drawn
by standard numerical testing procedure understgafinite time/strain steps [12]. Using the
three-dimensional implementation of the model, w&tsrom a stress point at tinag, o,,,
lying on the yield surface, and a sequence ofrstiragrements is applied corresponding to
specified normalised elastic trial stress incremehthe form

i Ao Ao,
Ao.trlal — TT + N
Oeq Oeq

N, (12)

whereN andT are, respectively, the unit (in Euclidean normjmal and tangent vectors to
the yield surface andl,, is the equivalent stress.

Applying increments of trial stress in the tangarand normal direction to the yield surface,
the error is evaluated by

J(on—-0gxacr):(6n—0Exact)
0 _
ERROR( /0) B OEXACT'OEXACT (13)




where,a,, is numerical solution, ansl;y,-r IS the exact solution. Here, due to the lack of an
analytical solutionggx.cr IS @assumed to be the stress obtained by sub-iecrt@tion of each
stress increment into 1000 steps.

In order to evaluate the accuracy properties anhrkable robustness at different strain rates,
several iso-error maps are drawn at low and highrstates with the non-dimensional factor:

uli€ll

Set, respectively, to 1 and 1000. In order to stigate the influence of power-law exponent,
three values chosem0°®, 1071, 0.

(a) Iso-error maps under a uniaxial tensile strede sta

Figures 5 and 6 show the iso-error maps under ialigensile stress state obtained at the
aforementioned low and high strain rates for défeérpower-law exponents,.For the power-
law exponent = 0, the standard rate-independent Cazacu elastaeptastiel is recovered.
The resulting iso-error map in this case is idexttio the rate-independent map. For the small
power-law exponeng = 0.1, the iso-error map is almost the same as theimdependent
map at the low strain rate (see in Figure 5 (bpwelver, the iso-error map changes signifi-
cantly at the high strain rate (see in Figure §. (bhis also occurs for the power-law exponent
e = 10°. It can also be seen that the maximum value ekisar maps for high power-law
exponent is higher than in the rate-independent, meyertheless, it decreases sharply at high
strain rate. The larger the power-law exporerthe more strain rate sensitivity of the iso-
error value. From the maximum iso-error value,sitpossible to conclude that the current
stress integration algorithm is remarkable robust ean handle effectively any power law
exponent —from small (corresponding to high rate-sensiivito extremely large values
(corresponding to effectively rate-independent daoras)—under low as well as high strain

rates.
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Figure 5. Iso-error maps under a uniaxial-tengiless state witp||é|| = 1.0. (a)e = 10°; (b)
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Figure 6. Iso-error maps under a uniaxial-tertsis withu||¢|| = 1000. (a)e = 10°; (b)

e = 1071; (c) e = 0 (rate-independent)

Ao/,

(b) Uniaxial-compressive stress state

The iso-error maps under a uniaxial compressivesststate obtained at low and high strain
rates for different power-law exponers(which can be seen in Figures 7 and 8. The same
stress integration algorithms and tolerances apdiegpto draw iso-error maps at uniaxial-
compressive stress state. From Figures 7 and 8athe behavior for the strain rate sensitivi-
ty can be observed in the uniaxial compressivesstséate. From the comparison between the
iso-error maps under uniaxial compressive stregs aind under uniaxial tensile stress state, it
is clear that the iso-error maps are completelfedént, which illustrates the importance of
the strength differential (SD) effect.
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Figure 7. Iso-error maps at uni-compressive test wji¢|| = 1. (a)e = 10%; (b)e = 107%; (c)
€ = 0 (rate-independent)
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Figure 8. Iso-error maps at uni-compressive test pjjé|| = 1000. (a)e = 10°; (b)e =
107%; (c) € = 0 (rate-independent)



5. CONCLUSION

In this work, an elastic-viscoplastic constitutivedel coupled with Cazacu’s yield function
has been proposed to simulate the mechanical ehaivmetals with an HCP crystal struc-
ture at different deformation strain rates. Thesgki Point Projection Method (CPPM) is
implemented within an implicit quasi-static finidement environment. Two numerical ex-
amples show that the integration algorithm canfiexvely used at high strain rate even for
very high power-exponent. It is also shown thatdtiess evolution under compressive stress
states is higher than under tensile stress statesanore strain rate sensitive.
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