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Abstract. The aim of the paper is to determine the upper and lower limits of the homogenized 

elastic coefficients for a 27% fibers volume fraction Low-Shrink Sheet Molding Compound 

(LS-SMC) based on a homogenization method as well as to compute four averages of the 

Young’s and shear moduli of various LS-SMCs with different fibers volume fractions. Since 

the fibers volume fraction of common LS-SMCs is 27%, to lighten the approach, a 0.27 ellip-

soidal inclusion area situated in a square of side 1 is considered. The plane problem will be 

considered and the homogenized coefficients will be 1 in matrix and 10 in the ellipsoidal in-

clusion. The structure’s periodicity cell of a 27% fibers volume fraction LS-SMC composite 

material is presented, where the fibers bundle is seen as an ellipsoidal inclusion. The upper 

limit of the homogenized coefficients can be estimated computing the quadratic mean of these 

basic elastic properties taking into account the compounds volume fractions. The lower limit 

of the homogenized elastic coefficients can be estimated computing the harmonic mean of the 

basic elasticity properties of the isotropic compounds. A comparison between these moduli 

and experimental data obtained on a Zwick materials testing machine is also presented.  
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1. INTRODUCTION 

The objectives of the paper is to compute the upper and lower limits of the homoge-

nized elastic coefficients for a common 27% fibers volume fraction LS-SMC based on a ho-

mogenization method described by Ene and Pasa [5] as well as four averaging methods of the 

Young’s and shear moduli of various LS-SMCs with different fibers volume fractions. 

The most obvious mechanical model which features a multiphase composite material 

is a pre-impregnated material, known as prepreg. In the wide range of prepregs the most 

common used are Sheet and Bulk Molding Compounds. A Low-Shrink Sheet Molding Com-

pound (LS-SMC) is a pre-impregnated material, chemically thickened, manufactured as a 

continuous mat of chopped glass fibers, resin (known as matrix), filler and additives, from 

which blanks can be cut and placed into a press for hot press molding. The result of this com-

bination of chemical compounds is a heterogeneous, anisotropic composite material, rein-

forced with discontinuous fibers [4], [10]. 
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A typical LS-SMC material is composed of the following chemical compounds: cal-

cium carbonate, chopped glass fibers roving, unsaturated polyester resin, low-shrink additive, 

styrene, different additives, pigmented paste, release agent, magnesium oxide paste, organic 

peroxide and inhibitors in various volume fractions. The matrix system plays a significant role 

within a SMC, acting as compounds binder and being “embedded material” for the reinforce-

ment. To decrease the shrinkage during the cure of a LS-SMC prepreg, filler have to be added 

in order to improve the flow capabilities and the uniform fibers transport in the mold. For ma-

terials that contain many compounds, an authentic, general method of dimensioning is diffi-

cult to find. 

In a succession of hypotheses, some authors tried to describe the elastic properties of 

SMCs based on ply models and on material compounds [3], [6]. The glass fibers represent the 

basic element of LS-SMC prepreg reinforcement. The quantity and roving orientation deter-

mine, in a decisive manner, the subsequent profile of the LS-SMC structure’s properties. The 

following information is essential for the development of any model to describe the composite 

materials behavior: the thermo-elastic properties of every single compound and the volume 

fraction concentration of each compound. Theoretical researches regarding the behavior of 

heterogeneous materials lead to the elaboration of some homogenization methods that try to 

replace a heterogeneous media with a homogeneous one [1], [2], [7], [8], [9]. The aim is to 

obtain a computing model, which takes into account the microstructure or the local heteroge-

neity of a material. 

2. A HOMOGENIZATION METHOD 

We consider a domain Ω from R
3
 space, in xi coordinates, domain considered a LS-

SMC composite material, in which a so-called replacement matrix (resin and filler) represents 

the field Y1 and the reinforcement occupies the field Y2 seen as a bundle of glass fibers. Let us 

consider the following equation [5]: 
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alternatively, written under the equivalent form: 
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In the case of SMC materials that present a periodic structure containing inclusions, 

aij(x) is a function of x. If the period’s dimensions are small in comparison with the dimen-

sions of the whole domain then the solution u of the equation (1) can be equal with the solu-

tion suitable for a homogenized material, where the coefficients aij are constants. In the R
3
 

space of yi coordinates, a parallelepiped with 0
iy  sides is considered, as well as parallelepi-

peds obtained by translation 0
ii yn  (ni integer) in axes directions.  

The functions [5]: 



 

 

 







=

η
η x

axa ijij )( , (3) 

can be defined, where η is a real, positive parameter. Notice that the functions aij(x) are ηY-

periodical in variable x (ηY being the parallelepiped with 0
iyη  sides). If the function f(x) is in 

Ω defined, the problem at limit is [5]: 
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Similar with equation (2), the vector ηp
r

 defines the following elements [5]: 
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For the function )(xuη , an asymptotic development will be looking for, under the fol-

lowing form [5]: 
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where u
i
(x,y) are elements, Y-periodical in y variable. The derivatives of the functions u

i
(x,y) 

behave in the following manner [5]: 
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If the values: 

 







η
x

xu
i

,  (8) 

are compared in two homologous points P1 and P2, homologous through periodicity in 

neighbor periods, it can be notice that the dependence in x/η is the same and the dependence 

in x is almost the same since the distance P1P2 is small. 

Let us consider P3 a point homologous to P1 through periodicity, situated far from P1. 

The dependence of u
i
 in y is the same but the dependence in x is very different since P1 and P3 

are far away. For instance, in the case of two points P1 and P4 situated in the same period, the 

dependence in x is almost the same since P1 and P4 are very close, but the dependence in y is 

very different since P1 and P4 are not homologous through periodicity. The function u
η
 de-

pends on the periodic coefficients aij, on the function f(x) and on the boundary Ω∂ . The de-

velopment (6) is valid at the inner of the boundary Ω∂ , where the periodic phenomena are 

prevalent. Using the development (6), the expressions: 
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and ηp  are [5]: 
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where: 
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represent the homogenized coefficients. 

3. APPLICATION FOR A 27% FIBERS VOLUME FRACTION LS-SMC 

In the case of a LS-SMC composite material which behaves macroscopically as a ho-

mogeneous elastic environment, is important the knowledge of the elastic coefficients. Unfor-

tunately, a precise calculus of the homogenized coefficients can be achieved only in two 

cases: the one-dimensional case and the case in which the matrix- and inclusion coefficients 

are functions of only one variable. For a LS-SMC material is preferable to estimate these ho-

mogenized coefficients between an upper and a lower limit. Since the fibers volume fraction 

of common LS-SMCs is 27%, to lighten the calculus, an ellipsoidal inclusion of area 0.27 

situated in a square of side 1 is considered. The plane problem will be considered and the ho-

mogenized coefficients will be 1 in matrix and 10 in the ellipsoidal inclusion. In fig. 1 the 

structure’s periodicity cell of a LS-SMC composite material is presented, where the fibers 

bundle is seen as an ellipsoidal inclusion. 

Let us consider the function f(x1, x2) = 10 in inclusion and 1 in matrix. To determine 

the upper and the lower limit of the homogenized coefficients, first the arithmetic mean as a 

function of x2-axis followed by the harmonic mean as a function of x1-axis must be computed. 

The lower limit is obtained computing first the harmonic mean as a function of x1-axis and 

then the arithmetic mean as a function of x2-axis. If we denote with φ(x1) the arithmetic mean 

against x2-axis of the function f(x1, x2), it follows: 
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Figure 1. Periodicity cell of a LS-SMC material with 27% fibers volume fraction [10]. 

 

The upper limit is obtained computing the harmonic mean of the function φ(x1): 
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To compute the lower limit, we consider ψ(x2) the harmonic mean of the function f(x1, 

x2) against x1: 
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The lower limit will be given by the arithmetic mean of the function ψ(x2): 
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Since the ellipsoidal inclusion of the LS-SMC structure may vary angular up to ± 30° 

against the axes’ centre, the upper and lower limits of the homogenized coefficients will vary 

as a function of the intersection points coordinates of the ellipses, with the axes x1 and x2 of 

the periodicity cell. The LS-SMCs micrographs make obvious this angular variation of the 
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fibers’ bundles, the extreme heterogeneity and the layered structure of these materials as well 

as the glass fibers and fillers distribution. The micrographs show that there are areas between 

100 – 200 µm in which the glass fibers are missing and areas where the fibers distribution is 

very high. 

We can consider both resin and filler system as a distinct phase compound which can 

be called replacement matrix, so that a LS-SMC can be regarded as a two phase compound 

material. If we denote Er the basic elastic property of the resin, EF the basic elastic property of 

the fibers, Ef the basic elastic property of the filler, φr the resin volume fraction, φF the fibers 

volume fraction and φf the filler volume fraction, the Young’s modulus of the replacement 

matrix (ERM) can be estimated computing the harmonic mean of the basic elastic properties of 

the isotropic compounds, as follows: 
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so, for the entire composite, the Young’s modulus has been computed using the rule of mix-

tures: 

 ).1( FRMFFC EEE ϕϕ −⋅+⋅=  (20) 

If we denote PM, the basic elastic property of the matrix, PF and Pf the basic elastic 

property of the fibers respective the filler, then the upper limit of the homogenized coeffi-

cients can be estimated computing the quadratic mean of these basic elastic properties taking 

into account the compounds volume fractions: 
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The lower limit of the homogenized elastic coefficients can be estimated computing 

the harmonic mean of the basic elasticity properties of the isotropic compounds: 
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Intermediate limits between the quadratic and harmonic means are given by the arith-

metic and geometric means written below: 
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where P and A can be the Young’s modulus or the shear modulus. 



 

 

4. RESULTS AND DISCUSSION 

Typical elasticity properties of the LS-SMC isotropic compounds and the composite 

structural features for a 27% fibers volume fraction LS-SMC are given as input data in the 

theoretical approach. For the unsaturated polyester resin, following data have been used: 

Young’s modulus: < 5 GPa; shear modulus: < 4 GPa; volume fraction: 30%. For glass fibers: 

Young’s modulus: < 80 GPa; shear modulus: < 35 GPa; volume fraction: 27%. For filler: 

Young’s modulus: < 55 GPa; shear modulus: < 25 GPa; volume fraction: 43%. 

According to equations (19) and (20), the longitudinal elasticity moduli ERM (for the 

replacement matrix) and EC (for the entire composite) can be computed. A comparison be-

tween these moduli and experimental data obtained on a Zwick materials testing machine is 

presented in fig. 2. 
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Figure 2. Young’s moduli ERM and EC for a 27% fibers volume fraction SMC material [10]. 

 

From fig. 2, it can be noticed that the Young’s modulus for the entire composite is 

closer to the experimental value unlike the Young’s modulus for the replacement matrix. This 

means that the rule of mixtures used in equation (20) give better results than the inverse rule 

of mixtures presented in equation (19), in which the basic elastic property of the filler and the 

filler volume fraction can be replaced with fibers Young’s modulus and fibers volume frac-

tion, appropriate for a good comparison. 

According to equations (15) and (18), the upper and lower limits of the homogenized 

coefficients for a 27% fibers volume fraction LS-SMC material have been computed and pre-

sented in table 1. The results show that the upper limit of the homogenized coefficients de-

creases with the increase of angular variation of the ellipsoidal inclusion unlike the lower 

limit which increases with the increase of this angular variation. 



 

 

Table 1. Upper and lower limits of the homogenized coefficients for a 27% fibers volume 

fraction LS-SMC material [10] 

Angular variation of the  

ellipsoidal inclusion 

Upper limit a
+
 Lower limit a_ 

0° 2.52 0.83 

± 15° 2.37 0.851 

± 30° 2.17 0.886 

 

Fig. 3 shows the Young’s moduli of the isotropic LS-SMC compounds, the upper and 

lower limits of the homogenized elastic coefficients as well as a comparison with the experi-

mental value. 
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Figure 3. The Young’s moduli of the isotropic LS-SMC compounds, the upper (E+) and lower 

limits (E-) of the homogenized elastic coefficients [10]. 

 

Fig. 4 presents the shear moduli of the isotropic LS-SMC compounds, the upper and 

lower limits of the homogenized elastic coefficients and a comparison with the experimental 

value obtained on a Zwick materials testing machine. 

According to equations (21) – (24), the averaging methods of Young’s and shear 

moduli of various LS-SMCs with different fibers volume fractions present following distribu-

tions in figs. 5 and 6. By increasing the fibers volume fraction, the difference has been equally 

divided between matrix and filler volume fraction. The averaging methods to compute the 

Young’s and shear moduli of various LS-SMCs with different fibers volume fractions show 

that for a 27% fibers volume fraction LS-SMC, the quadratic and arithmetic means between 

matrix, fibers and filler Young’s moduli respective shear moduli give close values to those 

determined experimentally. 
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Figure 4. The shear moduli of the isotropic LS-SMC compounds, the upper (G+) and lower 

limits (G-) of the homogenized elastic coefficients [10]. 
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Figure 5. Four averaging methods to compute the Young’s moduli of various LS-SMCs with 

different fibers volume fractions. 
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Figure 6. Four averaging methods to compute the shear moduli of various LS-SMCs with 

different fibers volume fractions. 

5. CONCLUSIONS 

The presented results suggest that the environmental geometry given through the an-

gular variation of the ellipsoidal domains can lead to different results for same fibers volume 

fraction. This fact is due to the extreme heterogeneity and anisotropy of these materials. The 

upper limits of the homogenized elastic coefficients are very close to experimental data, 

showing that this homogenization method give better results than the computed composite’s 

Young’s modulus determined by help of the rule of mixtures. The proposed estimation of the 

homogenized elastic coefficients of pre-impregnated composite materials like Low-Shrink 

Sheet Molding Compounds (LS-SMCs) can be extended to determine the elastic properties of 

any multiphase, heterogeneous and anisotropic composite material. 
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