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Abstract. The contribution deals with the treatment of the director vector and the rotational
degrees of freedom in isogeometric Reissner-Mindlin shell analysis. In NURBS-based formu-
lations the director vectors and the nodal coordinate systems are defined at the control points.
The interpolation with the basis functions maps them to the shell reference surface. For curved
geometries the interpolated director at an arbitrary point is in general neither perpendicular
with respect to the shell surface nor has the correct length. Thus, basic kinematic assumptions
are violated. It is shown that this is one reason for the observed degradation of numerical re-
sults for shells when the polynomial order gets higher than five. In the present work a method
to overcome these problems is provided. A geometrically exact Reissner-Mindlin shell formu-
lation with five degrees of freedom, three displacements and two rotations, is presented. The
two rotations are defined with respect to the orthogonal tangent vectors at the shell reference
surface. In standard formulations the nodal coordinate system which also defines the director
is constructed from the derivatives in the closest point projection of the control point. It is
observed that error norms of angle and length of the interpolated director increase with the
order of the basis functions. To improve the accuracy the nodal coordinate systems and di-
rectors are chosen in a way, that the interpolated basis systems in all integration points are
orthonormal and in correct orientation. The existence of an unique solution is shown. This
leads to nodal coordinate systems which are no longer orthonormal. An interpolation, which
ensures orthonormality at the integration points, is introduced. The finite element implemen-
tation is tested with standard benchmark problems. In contrast to computations with nodal
directors being the normal to the shell surface, deformations converge monotonically. In all
computed examples the accuracy of the solution for a given mesh increases with the order of
the basis functions. Simplifications in the underlying shell theory inhibit exponential conver-
gence rates for curved domains. However, the proposed measures significantly improve the
accuracy of computations with high order basis functions.

Keywords: Isogeometric Analysis, Reissner-Mindlin Shells, Approximation of the Director,
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1. INTRODUCTION

Isogeometric Analysis is a high order alternative to standard finite element methods.
Introduced in 2005 by Hughes et al. [8] it attracts much interest recently. The idea of iso-
geometric analysis is to use the same mathematical geometry description for modeling and
computations. This averts costly conversions. Most approaches base on non-uniform rational
B-Splines (NURBS) which are widespread in the graphical industry. These functions posses
the required mathematical properties as shown by Bazilevs et al. in [1] for the use as basis
functions in a finite element context. Geometries modeled by NURBS are usually described
by surfaces. This requires a shell implementation to avoid a conversion to a solid model. The
continuity properties of NURBS surfaces permit the use of Kirchhoff-Love shells, entailing a
few drawbacks regarding boundary conditions and connection of multiple NURBS patches.
An implementation is described in [9]. To avoid these drawbacks and to allow for thick shells
a Reissner-Mindlin shell formulation is chosen. A formulation based on a degenerated solid
with director vectors obtained by a closest point projection is described in [4]. A rotation-free
isogeometric shell based on a discrete Kirchhoff -type formulation is proposed by Benson et al.
in [3]. There additional factors computed on the element level to attain an exact interpolation
of the normal vectors are introduced.

In this work we present a NURBS-based isogeometric Reissner-Mindlin shell formula-
tion with exact director vectors. The nodal director vectors valid throughout the entire domain
are computed in a preprocess with a global system of equations. First, all required NURBS
terminology and the employed Reissner-Mindlin shell theory are outlined in section 2 and 3.
In section 4 the computation of the director vector and the nodal basis systems is explained
in detail. This is followed by the description of the isogeometric finite element formulation.
Numerical examples demonstrate the capability of the presented formulation.

2. NURBS-BASED ISOGEOMETRIC ANALYSIS

Geometry description and interpolation of the presented shell formulation is based on
NURBS basis function in an isogeometric framework. NURBS terminology needed in the
following is shortly introduced. For more details see [13] and [6]. NURBS surface patches
are spanned by a tensor-product combination of two knot vectors Ξ1 =

{
ξ1

1 , ξ
1
2 , · · · , ξ1

n+p+1

}
and Ξ2 =

{
ξ2

1 , ξ
2
2 , · · · , ξ2

m+q+1

}
. In ξ1-direction the order of the NURBS basis functions is

referred to as p and the number of control points in this direction is termed n. Analogously,
q and m define the ξ2-direction. Thus, a control point net with nnp = n ×m control points
arises. The control points

Bij = [xij, yij, zij, wij]
T =

[
XT
I , wij

]T
i = 1, . . . , n j = 1, . . . ,m (1)

are projected to a 3-dimensional space with the NURBS basis functions NI , where the index
I is a specified function of the indices i and j. The NURBS basis functions

NI

(
ξ1, ξ2

)
=

Np
i (ξ1)N q

j (ξ2)wij∑n
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are computed with the weighting factorwij of the control point. The B-Splines basis functions
Np
i (ξ1) and N q

j (ξ2) are determined by the recursive Cox-de Boor formula, see [13]. The
number of nonzero basis function in every element is nen = (p+ 1) (q + 1). The number of
elements per patch is nel = (n− p) (m− q). For the determination of a physical point

X
(
ξ1, ξ2

)
=

nen∑
I=1

NI

(
ξ1, ξ2

)
XI (3)

on the NURBS surface only nen specified basis functions have to be considered. See [13] for
the derivatives with respect to the parametric coordinates ξα with α = 1, 2.

3. REISSNER-MINDLIN SHELL THEORY

The proposed shell element incorporates a linear Reissner-Mindlin shell theory with
an inextensible director field to account for transverse shear strains. The shell formulation is
directly derived from the continuum theory as proposed in [11]. The variational formulation
is pure displacement based and no measures against locking are taken. As the focus of this
contribution lies on the choice of the director vectors a linear theory for small strains and
small rotations with linear elastic material is implemented.

3.1. Kinematic description

Location X̂ and deformations û of a physical point on the shell are given by

X̂
(
ξi
)

= X (ξα) + ξ3D (ξα)

û
(
ξi
)

= u (ξα) + ξ3d (ξα) ,
(4)

where ξα are the parametric coordinates of the shell mid-surface and ξ3 is the thickness co-
ordinate. Here Greek indices range from 1 to 2 and Latin indices from 1 to 3. In the linear
theory reference and current configuration coincide. The position vector of the mid-surface
is denoted by X (ξα). The deformed configuration computes with the deformations u (ξα) to
x (ξα) = X (ξα) + u (ξα). The director vector

|D (ξα) | = 1 (5)

is perpendicular to the shell mid-surface and is in accordant orientation with the thickness
coordinate ξ3 with the range −h

2
≤ ξ3 ≤ h

2
. The vector d is the difference vector between

the director vector and the deformed director vector. It can be computed by d = ω ×D. The
covariant basis vectors Gα are defined as the derivatives of the position vector X̂ with respect
to the coordinates ξα. This results in

Gα = X,α + ξ3D,α G3 = D , (6)

where subscript commas denote derivation with respect to the parametric coordinates ξi. The
contravariant basis vectors Gi can be computed by

Gi ·Gj = δji (7)

with the Kornecker-delta δji . The mid-surface area of an element is

dA = ‖G1|ξ3=0 ×G2|ξ3=0‖ dξ1dξ2 . (8)



3.2. Stresses and strains

The strains are measured with the linearized Green-Lagrange strain tensor

E =Eij Gi ⊗Gj

Eij =
1

2
(Gi · û,j + Gj · û,i) .

(9)

For an efficient formulation the strains are split up into shell strains with

Eαβ = εαβ + ξ3καβ +O
((
ξ3
)2
)

2E13 = γα

E33 = 0

(10)

under disregard of second order curvatures. Thus the resulting membrane strains εαβ , the
curvatures καβ and the shear strains γα are

εαβ =
1

2
(X,α · u,β + X,β · u,α)

καβ =
1

2
(X,α · d,β + X,β · d,α + D,α · u,β + D,β · u,α)

γα = X,α · d + u,α ·D

(11)

with the derivatives d,α = ω,α×D+ω×D,α . In Voigt notation the vector of the shell strains
reads

ε = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T (12)

and is work-conjugate to the resulting stress vector

σ =
[
n11, n22, n12,m11,m22,m12, q1, q2

]T
. (13)

3.3. Variational formulation

The presented shell is based on a pure displacement formulation with static loading,
which is considered as Neumann conditions t̄ on the boundary Γt and surface loads p̄. The
potential reads

Π (v) =

∫
Ω

εTσdA−
∫

Ω

uT p̄ dA−
∫

Γt

uT t̄ ds (14)

with the independent displacement vector v = [u,ω]T containing the displacements u and
the rotational parameters ω of the shell mid-surface. The variation of the potential leads to
the weak form of equilibrium and is given as

δΠ (v, δv) =

∫
Ω

δεTCε dA−
∫

Ω

δuT p̄ dA−
∫

Γt

δuT t̄ ds = 0 , (15)

where C is the linear elastic material tensor. The virtual shell strains

δεαβ =
1

2
(δx,α ·X,β + δx,β ·X,α)

δκαβ =
1

2
(δx,α ·D,β + δx,β ·D,α + δd,α ·X,β + δd,β ·X,α)

δγα = δx,α ·D + δd ·X,α .

(16)

are arranged akin to equation (12).



4. CHOICE OF DIRECTOR VECTORS AND NODAL BASIS SYSTEMS

4.1. Closest point projection

Reissner-Mindlin shell formulations require the definition of nodal basis systems for
the interpolation of the director vector and for the rotational directions. These systems have to
be given as an input. In standard finite element shell formulations these nodal basis systems
are e.g. determined by analytical functions for regular geometries or they are interpolated
from the neighboring elements. For more details about the choice of directors in standard
finite element shell formulations see [5]. In isogeometric analysis the control points, which
correspond to the nodes in finite element formulations, are in general not located on the phys-
ical domain. The control point net is disjunct from the element mesh. Thus in [4] the use
of the normal from the control point with respect to the shell reference surface is proposed.
This normal vector has to be computed in a preprocess by a closest point projection. The
characteristics of NURBS surfaces preclude a closed solution, an iterative solution process,
e.g. with the Newton-Raphson method is necessary. See [13] for details. With the normal
vector and the local derivatives in the projected point orthonormal nodal basis systems can
be determined. Computations with an isogeometric Reissner-Mindlin shell formulation along

Figure 1. Scordelis-Lo roof: System and deformations for director vectors determined by
closest point projection.

the lines of [7] do not show correct convergence behavior for order elevation (k-refinement).
This is also visible in the results of Benson et al. in [4]. As an example the Scordelis-Lo roof,
part of the shell obstacle course proposed by Belytschko et al. in [2], is examined. System and
applied load are exactly chosen as in [2]. In Figure 1 the h-refinement convergence behavior
for three orders p of NURBS basis functions is given. A system sketch is also provided for
convenience. Figure 1 clearly shows that the accuracy deteriorates for rising orders p. The
distance of control points from the relevant element and the number of control points influ-



encing one element nen = (n− p) (m− q) grows with the order p respective q. In the case of
curved domains this leads to an addition of vectors with distinct differing directions which has
a negative impact on the interpolation of the director vector. This can be clearly seen in Figure
2, where the error norms for deviation of length and angle of the director vector are plotted for
three different orders p of NURBS basis functions. This deterioration in interpolation quality
averts proper convergence behavior.

Figure 2. Scordelis-Lo roof: Deviation of the director vector.

4.2. Computation of exact basis systems

In the following section a method is introduced, which ensures the orthonormality
and the correct orientation of the director vector at the integration points. The orthonormal
basis vectors Ai entail nine equations in each of the ngp integration points in each of the nel
elements of the relevant patch. As all nine directions can be treated independently this yields
(ngp × nel) equations of the the type

AGPij =

nnp∑
I=1

NIA
CP
ijI (17)

which can be arranged in a system of equations

AGP
ij = NACP

ij . (18)

Here AGPij is the j-th component of the i-th basis vector of the integration point basis system.
Analogously ACPijI are the unknown values for the nodal point basis systems at the control
point I . The matrix N with (ngp × nel) rows and nnp columns contains the basis functions NI

and is identical for all nine directions. This requires only one solution of equation (18) with
multiple right-hand-sides. The number of integration points per element ngp is chosen as for



the structural analysis and must lead to a determined or overdetermined system of equations.
The condition nnp ≥ ngp × nel holds in all cases where the structural analysis is stable. As
the columns of N contain the linear independent basis functions NI the columns of the matrix
are linear independent. This implies that

rank N = nnp (19)

holds, which guarantees an unique solution, see e.g. [10]. This allows to solve the determined
normal equation

NTAGP
ij =

(
NTN

)
ACP
ij (20)

instead of the overdetermined equation (18).

5. ISOGEOMETRIC FINITE ELEMENT IMPLEMENTATION

The shell mid-surface, the deformations and the director vector are interpolated by

X =
nen∑
I=1

NIXI uh =
nen∑
I=1

NIuI D =
nen∑
I=1

NIDI (21)

with the NURBS basis functions given in equation (2). The superscript h identifies approxi-
mated quantities. The director vectors DI = A3I are computed in the preprocess described in
section 4. The derivatives of the NURBS basis functions NI,ξα with respect to the parametric
coordinates ξα have to be transformed to a local Cartesian basis system t. With the resulting
derivatives NI,α the quantities

X,α =
nen∑
I=1

NI,αXI uh,α =
nen∑
I=1

NI,αuI D,α =
nen∑
I=1

NI,αDI (22)

are interpolated. For the variation of the potential the interpolation of the variated shell strains
is necessary. It results in

δεh =



δεh11

δεh22

2δεh12

δκh11

δκh22

2δκh12

δγh1
δγh2


=



δxh,1 ·X,1

δxh,2 ·X,2

δxh,1 ·X,2 + δxh,2 ·X,1

δxh,1 ·D,1 + δdh,1 ·X,1

δxh,2 ·D,2 + δdh,2 ·X,2

δxh,1 ·D,2 + δxh,2 ·D,1 + δdh,1 ·X,2 + δdh,2 ·X,1

δxh,1 ·D + δdh ·X,1

δxh,2 ·D + δdh ·X,2


(23)

with

δxh =
nen∑
I=1

NIδuI δxh,α =
nen∑
I=1

NI,αδuI . (24)

The interpolation of δdh,α and δdh is given in the following. The proposed approach does not
interpolate the nodal variation of the director, but the local rotations δβ. It is somehow similar
to the full SO(3) update proposed in [12], where the interpolation of the rotational parameter



δω is discussed. However the proposed approach is more accurate for curved domains as
account is taken for the differing orientation of the nodal rotations.

The variation of the director vector can be rewritten to

δd = δw ×D

= WT δw
(25)

with W = skew D. The equivalence δw = δω holds for small rotations. With the interpola-
tions of the nodal basis systems

A1 =
nen∑
I=1

NIA1I A2 =
nen∑
I=1

NIA2I (26)

the matrix
T3 =

[
A1 A2

]
(27)

establishes the connection δω = T3δβ. Thus follows

δd = WTT3δβ = Tδβ (28)

as relation between variated director and variated nodal rotations.
The interpolation of δβ requires a transformation from local rotations in the control

points δβI to local rotations in the integration point. From

δβiAi︸ ︷︷ ︸
integration point

=
nen∑
I=1

NIβiIAiI︸ ︷︷ ︸
control point

(29)

the relation

δ

β1

β2

β3

 =
nen∑
I=1

NI

A1 ·A1I A1 ·A2I A1 ·A3I

A2 ·A1I A2 ·A2I A2 ·A3I

A3 ·A1I A3 ·A2I A3 ·A3I

 δ
β1I

β2I

β3I

 (30)

can be derived. The drilling rotation δβ3 is fixed for a 5-parameter shell. Therefore a stat-
ical condensation is possible and δβ3I can be eliminated from equation (30). As result the
interpolation

δβh =
nen∑
I=1

NIMIδβI (31)

with

MI =

[
M11I M12I

M21I M22I

]
MαβI = Aα ·AβI −

(A3 ·AβI) (Aα ·A3I)

A3 ·A3I

(32)

is established. The combination of equation (28) and (31) yields

δdh = T
nen∑
I=1

NIMIδβI (33)



as interpolated variated director vector. The derivatives δd,α are more lengthy to attain. They
read

δdh,α = T,α

nen∑
I=1

NIMIδβI + T
nen∑
I=1

(NI,αMI +NIMI,α) δβI (34)

with

T,α = WT
,αT3 + WTT3,α W,α = skew D,α T3,α =

[
A1,α A2,α

]
(35)

and the derivatives of the transformation matrix

MI,α =

[
M11I,α M12I,α

M21I,α M22I,α

]
MγδI,α = Aγ,α ·AδI −

[(A3,α ·AδI) (Aγ ·A3I) + (A3 ·AδI) (Aγ,α ·A3I)]

(A3 ·A3I)

− (A3,α ·A3I) (A3 ·AδI) (Aγ ·A3I)

(A3 ·A3I)
2 .

(36)

Inserting equations (24), (33) and (34) into equation (23) yields the BI matrix, which estab-
lishes the relation between virtual strains and the variations of rotations and displacements

δεh =



δεh11

δεh22

2δεh12

δκh11

δκh22

2δκ12h

δγh1
δγh2


=

nen∑
I=1



NI,1X
T
,1 0

NI,2X
T
,2 0

NI,1X
T
,2 +NI,2X

T
,1 0

NI,1D
T
,1 b̂T11I

NI,2D
T
,2 b̂T22I

NI,2D
T
,1 +NI,1D

T
,2 b̂T12I + b̂T21I

NI,1D
T NIb

T
I1

NI,2D
T NIb

T
I2


[
δuI
δβI

]

δεh =
nen∑
I=1

BIδvI

(37)

with the submatrices bIα = MT
I TTX,α and b̂αβI = T̂T

I,αX,β . The matrix T̂I,α is defined by

T̂I,α = T,αMINI + T (NI,αMI +NIMI,α) . (38)

The strains εh are interpolated akin to equation (34). The approximation of the weak form
(15) is given as

δΠ (v, δv) =

nel⋃
e=1

nen∑
I=1

nen∑
K=1

(
−f e,extI + Ke

IK∆vK
)

= 0 (39)

with the element load vector f e,extI and the element stiffness matrix

Ke
IK =

∫
Ω

BT
I CBKdΩ . (40)



6. NUMERICAL EXAMPLES

The improved accuracy of the proposed approach is shown with the help of two nu-
merical examples. Both benchmarks are part of the shell obstacle course proposed by Be-
lytschko et al. in [2]. The Scordelis-Lo roof illustrates the difference between the proposed
approach and a standard approach using closest point projection and orthonormal nodal basis
systems. In the second example the present shell formulation is compared to the isogeometric
Reissner-Mindlin shell described in [4]. All computations are linear.

6.1. Scordelis-Lo roof

In section 4 the Scordelis-Lo roof is used to illustrate the shortcomings of Reissner-
Mindlin shell analysis with directors attained by closest point projection and interpolated vari-
ated nodal directors. The latter one is called standard approach and is compared to the present
approach. Figure 3 shows the convergence behavior of a characteristic deformation with re-
spect to mesh refinement (h-refinement) for different polynomial orders. The symmetry of
the system is used and only one quarter of the system is computed. The length of the full
system is L = 50 with a radius R = 25 . The wall thickness is t = 0.25 with a Young’s
modulus E = 4.32 · 108 and a Poisson’s ratio ν = 0 . The system is loaded with a uniform
gravity load of g = 90 per unit area. For more details about the geometry of the system
see [2]. The deformations computed with the proposed approach clearly show monotonously

Figure 3. Scordelis-Lo roof: Comparison of deformations in point A.

growing convergence behaviour for all order of NURBS basis functions. The standard ap-
proach overestimates the defomations for a order p = 4 for very coarse meshes, then shows
oscillatory behaviour and finally converges from above. For an order p = 6 the standard ap-
proach converges slower than for p = 4, which indicates wrong p-convergence behaviour for



the used k-refinement. For low order NURBS basis functions only small differences between
both approaches occur.

6.2. Pinched cylinder

The pinched cylinder sketched in Figure 4 is used to compare the accuracy of the pro-
posed formulation with existing shell formulations. As a reference the isogeometric Reissner-
Mindlin shell proposed by Benson et al. in [4] is used. The system consists of a cylinder
with a radius R = 300 and is L = 600 long. The material is specified by a Young’s modulus
E = 3.0 · 106, Poisson’s ratio ν = 0.3 and t = 3 is the wall thickness. The system is loaded
with two opposing radial forces F = 1 . Both ends of the cylinder are constrained by a rigid
diaphragm. Due to symmetry only one eighth of the system is modeled. More details can be
found in [2]. The deformations given in Figure 4 are normalized to a value of 1.83 · 10−5.

Figure 4. Pinched cylinder: System sketch and comparison of deformations.

Computations with the present formulation show improved accuracy with rising order p of
the NURBS basis functions, whereas in the reference computations order p = 4 outperforms
p = 5. Furthermore the accuracy of the present approach is superior to the reference results
when the same order of basis functions and mesh discretization is used.

7. CONCLUSION

In this contribution a Reissner-Mindlin shell formulation employing NURBS basis
functions for the description of geometry and director vectors and the interpolation of defor-
mations is introduced. The formulation allows for an exact evaluation of the initial director at
an arbitrary point of the shell geometry. The proposed interpolation of the variated local rota-
tions is more accurate than the common interpolation of the variated director vector. Whereas
the difference in standard finite element formulations is negligible, the provided numerical



examples have shown that the accuracy of isogeometric formulations with higher order is
massively impaired by such an approach. The present approach yields superior results and
thus allows the use of coarse meshes with high orders of basis functions.

The extension of the presented formulation to nonlinear computations is straight-
forward and will be treated in a subsequent paper. Further research will be necessary to
handle shell with kinks. Measures against the various effects of locking and the consideration
of second order curvatures could further improve the results for coarse meshes with high order
basis functions.
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