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Abstract. A numerical code aiming to simulate two-dimentional compressible flow, modeled
by Euler equations with immersed boundaries, was submitted on a verification test using the
Method of Manufactured Solutions. The code was developed to study computational aeroe-
lasticity - flutter analysis by means of forced oscillations on the NACA 0012 airfoil section
modeled by the Immersed Boundary Method. Finite Difference scheme using Steger-Warming
method of second order of accuracy to the spatial discretization and a Runge-Kutta method of
fourth order of accuracy to the time discretization were used. It was created a manufactured
solution that mimics a compressible flow with presence of shock waves. The numerical code
was submitted by a Mesh Refinement Test and a systematic analysis of actual order of accu-
racy was performed. The results indicated that the code was free of programming errors and
the Method of Manufactured Solutions was a good tool for debugging the code.
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1. INTRODUCTION

The method of manufactured solutions (MMS) [7] is a general and very powerful ap-
proach to code verification. Rather than trying to find an exact solution to a system of partial
differential equations, the goal is to “manufacture” an exact solution to a slightly modified set
of equations. For code verification purposes, it is not required (in fact, often not desirable) that
the manufactured solution be related to a physically realistic problem; recall that verification
deals only with the mathematics of a given problem. The general concept behind MMS is
to choose the solution a priori, then operate the governing partial differential equations onto
the chosen solution, thereby generating analytical source terms. The chosen (manufactured)
solution is then the exact solution to the modified governing equations made up of the original
equations plus the analytical source terms. Thus, MMS involves the solution to the back-
ward problem: given an original set of equations and a chosen solution, find a modified set of
equations that the chosen solution will satisfy. The initial and boundary conditions are then
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determined from the solution and can be useful if they are boundary conditions previously im-
plemented in the code. In this work, the MMS is employed to perform a systematic analysis of
actual order of accuracy of spatial discretization and to verify if the code was free of program-
ming errors. The code tested simulates two-dimentional compressible flow, modeled by Euler
equations with immersed boundaries. The code was developedto study computational aeroe-
lasticity - flutter analysis by means of forced oscillations, on the NACA 0012 airfoil section
modeled by the free-slip Immersed Boundary Method [4]. Finite Difference scheme using
Steger-Warming method of second order of accuracy with MinMod flux limiter to spatial dis-
cretization and a Runge-Kutta method of fourth order of accuracy to time discretization was
used. The Immersed Boundary Method (IBM) was developed by Peskin [6] to solve problems
involving fluid-structure interaction. In his method, the domain is composed by an Eulerian
mesh, used to represent the fluid domain, and a Lagrangian mesh, used to represent the elastic
immersed boundary. The interaction between the elastic immersed boundary and the fluid is
performed by a suavized Dirac delta function, which is the kernel of the IBM. The governing
equations, in the IBM, are discretized in Cartesian computational meshes, and this is an ad-
vantage of the IBM because simplifies the mesh generation and reduces the complexity of the
governing equations. Another advantage of this technique is that the Lagrangian mesh does
not need to be align with the Eulerian mesh, this allows to simulate fluid flows with mov-
ing immersed boundaries, complex geometries or topological variations [10]. A fixed mesh
can be used even for complex moving geometries. Mesh refinement will be required only if
improvements in a local flow resolution is desired [5].

2. GOVERNING EQUATIONS

Consider flow of inviscid fluid in a rectangular bidimensionaldomainΩ with an im-
mersed boundary represented by a closed curveΓ, described byX(s, t), with 0 ≤ s ≤ Lb

and withX(0, t) = X(Lb, t), whereLb is theΓ curve length. The Lagrangian variables are
represented by upper case letters. The governing equationsare given by:

∂v
∂t
+
∂s
∂x
+
∂g
∂y
= h , (1)

where:
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(2)

p = (γ − 1)

[

ρe− 1
2
ρ
(

u2 + v2
)

]

, (3)

f (x, t) =
∫ Lb

0
F(s, t)δ2(x − X(s, t))ds , (4)

∂X(s, t)
∂t

= U(X(s, t), t) =
∫

Ω

u(x, t)δ2(x − X(s, t))dx , (5)

F(s, t) = S(X(s, t), t) . (6)



In equations (1) to (6),x = (x, y) ∈ Ω is the position vector,u(x, t) = (u(x, t), v(x, t))
is the velocity vector,p(x, t) is the pressure,ρ(x, t) is the density ande(x, t) is the total energy,
given by:

e= ei +
1
2

(

u2 + v2
)

, (7)

whereei is the internal energy. The Eulerian force is given byf (x, t) = ( f1(x, t), f2(x, t)), and
the Lagrangian force is given byF(s, t) = (F1(s, t), F2(s, t)). Equation (3) is the constitutive
equation for pressure withγ = 1.4. S(X(s, t), t), in equation (6), is a function that express the
elasticity of the structure, and represents a free-slip boundary.

3. NUMERICAL METHOD

The Immersed Boundary Method was implemented using the finitedifferences ap-
proach for Eulerian and Lagrangian meshes. Consider a computational domainΩ : [ 0, L 1

]×[ 0, L 2 ]. The fluid variables are defined over an Eulerian meshM ×N with xi j = (xi , yj) ∈ Ω
for i = 0,1, ...,M−1 andj = 0,1, ...,N−1, where∆xi j and∆yi j is the size of each mesh division
at pointxi j . Consider a curveΓ : [ 0, Lb ], the set ofS Lagrangian pointsXk = (Xk,Yk) ∈ Γ
with k = 0,1, ...,S − 1 is used to discretize the immersed boundary, with initial displacement
between the points set up as∆sk.

The classical fourth order Runge-Kutta method [8] is employed to discretize the time
variables, and the second order Steger-Warming method [9] with Min-Mod flux separator
is employed to discretize the spatial variables. Each stageof the Runge-Kutta method is
represented by℘, andt(n+1) = t(n) + ∆t represents the instant of time and∆t represents the size
of pass in time. According to [8], this numerical scheme is stable for Courant Friedrichs-Ĺevi
(CFL) number of 2

√
2. The numerical method is given by:

• Preliminary stage of pass in time:

1. The Lagrangian variables, that represent the immersed boundary, are set up in
℘ = 0 at timet(n) as:

F(0)( s ) = F(n)( s ) , U(0)( s ) = U(n)( s ) , X(0)( s ) = X(n)( s ) .

2. The Eulerian variables, that represent the fluid field, areset up at℘ = 0 as:

f(0)(x) = f (n)(x) , v(0)(x) = v(n)(x) .

• Intermediate stages of pass in time for℘ = 0,1,2 and 3:

1. The Lagrangian forceF(℘+1)( s ) is calculated in the immersed boundary using the
configuration ofX(℘)( s ), as follows:

F(℘+1)( s ) = S(X(℘)(s, t), t
(n)) , (8)

It is necessary that the elastic boundary stays closed to theoriginal configuration of
the structure with very small displacements and representing a free-slip boundary
type. This is achieved adequately choosing a forcing termS(X(s, t), t), as follows:

S(X(s, t), t) = κ projn(s,t) (Xe(s, t) − X(s, t)) + ζ projn(s,t) (Ue(s, t) − U(s, t)) , (9)



whereκ ≫ 1 represents elasticity,ζ > 1 represents damping,n(s, t) is the normal
vector at the pointX(s, t) of the immersed boundary and projab is the orthogonal
projection operator of vectorb on vectora. Equation (9) connects the pointsX(s, t)
of the immersed boundary with the equilibrium pointsXe(s, t) using a generalized
Hooke law.

2. The Lagrangian forceF(℘+1)( s ) is interpolated into the Eulerian field to determine
the value off(℘+1)(x), as follows:

f(℘+1)(x) =
∑

s

F(℘+1)( s )δ2h(x − X(℘)( s ),n)∆s , (10)

where the delta function is given by:

δ2h(x,n) =

1
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d
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−
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∆y (n2
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x)

)

,
(11)

wheren = (nx, ny) is the normal vector at the Lagrangian pointX(℘)( s ) of the
immersed boundary and
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This delta function interpolates data from external regionof the immersed struc-
ture. This gaussian function can be truncated with radius offive cells nodes. Doing
this, the error between the integral and unit value is
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then, truncating this function with radius of five cells nodes the errors is suffi-
ciently small to avoid excessive roundoff and truncation errors and avoid unneces-
sary computational cost.

3. The Euler equations given by (1) are solved using the forceterm f(℘+1)(x) at stage
(℘+1) of Runge-Kutta method and with the second order Steger-Warming scheme
with Min-Mod flux separator. Consider the governing equation(1), that can be
represented by:

∂v
∂t
+ P(v) = 0 , (13)

where

P(v) ≡ ∂s
∂x
+
∂g
∂y
− h . (14)



At stage (℘ + 1), v(℘+1) is given by:

v(1) = v(0) −
∆t
2

P(v(0))

v(2) = v(0) −
∆t
2

P(v(1))

v(3) = v(0) − ∆tP(v(2))

v(4) = v(0) −
∆t
6

[

P(v(0)) + 2P(v(1)) + 2P(v(2)) + P(v(3))
]

(15)

wherev(0), v(1), v(2), v(3) andv(4) are the fluid variables defined by equation (2) in
the intermediate stage of the Runge-Kutta time integration method.

The external boundaries of the Eulerian domain are treated with Rieman invariants
representing open atmosphere to avoid reflection [1].

4. The Eulerian velocityu(℘+1)(x), calculated by the previous pass, is interpolated
into the immersed boundary as follows:

U(℘+1)( s ) =
∑

x

u(℘+1)(x)δ2h(x − X(℘)( s ),n)∆x∆y . (16)

whereδ2h(x,n) is the delta function defined by equation (11).

5. The new position of the points that represents the immersed boundary,X(℘+1)( s ),
are updated using the Runge-Kutta method in the correspondent (℘ + 1) pass:

X(1) = X(0) +
∆t
2
φ(U(0))

X(2) = X(0) +
∆t
2
φ(U(1))

X(3) = X(0) + ∆tφ(U(2))

X(4) = X(0) +
∆t
6

[

φ(U(0)) + 2φ(U(1)) + 2φ(U(2)) + φ(U(3))
]

(17)

whereφ(V) ≡ projn(s,t)V(s, t).

• Final stage: the fluid variables are updated at timet(n+1):

1. The Lagrangian variables are set up att(n+1) as follows:

F(n+1)( s ) = F(4)( s ) , U(n+1)( s ) = U(4)( s ) , X(n+1)( s ) = X(4)( s ) .

2. The Eulerian variables are set up att(n+1) as follows:

f (n+1)(x) = f(4)(x) , v(n+1)(x) = v(4)(x) .

4. CODE VERIFICATION

The code developed using the numerical algorithm presentedin this work was im-
plemented usingC++ language and verified using the Method of Manufactured Solutions,



[2, 3, 7]. One manufactured solution was constructed by the authors for densityρ, velocity
componentsu, v and pressurep as follows:

ρ(x,0) =
η

800
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η

800
y3 +

3η
4

where η =

{

1 i f x ≤ 3
2

1.1 i f x > 3
2

, (18)

u(x,0) =
η

3
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1
5

y) +
η

3
sin(

1
5

x) +
η

2
where η =
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1 i f x ≤ 3
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, (19)

v(x,0) =
η

4
cos(

1
5

y) +
η

4
cos(

1
5

x) +
4η
7

where η =

{

1 i f x ≤ 3
2

1.1 i f x > 3
2

, (20)

p(x,0) =
η

7
sin(

1
5

x) +
η

7
e(1/4y) where η =

{

1 i f x ≤ 3
2

1.1 i f x > 3
2

. (21)

Although the manufactured solution involves the soft functions sin(x), cos(x) and
exp(x), it is interesting for this proposal because of the high derivative terms presented in
the discretization terms from the numerical solution are not nulls. It allows a systematic study
of order of accuracy of the code via a mesh refinement test [3].Figures 1 show the plot of the
manufactured solutions of equations (18)-(21). The sourceterms are given by:

F =
∂s
∂x
+
∂g
∂y
− h , (22)

where:
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e=
p

ρ (γ − 1)
+

1
2

(

u2 + v2
)

, (24)

The values ofF1, F2, F3 andF4 are determined inserting the values ofρ, u, v and
p given by equations (18) to (21) in equation (22). The source terms are obtained using the
software of algebra manipulation Maple V. Figures 2 show theplot of the source terms.

The code verification was performed using seven cartesian meshes, with∆x = ∆y =
0.4, ∆x = ∆y = 0.2, ∆x = ∆y = 0.1, ∆x = ∆y = 0.05,∆x = ∆y = 0.025,∆x = ∆y = 0.0125
and∆x = ∆y = 0.00625, denoted by Mesh 1, Mesh 2, ..., and Mesh 7 in a rectangular domain
3× 3. The numerical error analysis in these meshes was performed using the mean norm:

‖H‖L1 ≡
1

MN

∑

0 ≤ i, j < M,N

Hi j .

and the maximum norm:
‖H‖∞ ≡ max

0 ≤ i, j < M,N
|Hi j | .

according to [3].
In this work, tests involving analysis of Euler and Lagrangeforces are not performed.

The proposal of this study was to reach reliability that programming errors were negligible.
Study of performance and/or ability of this code to simulate immersed boundary could be a
good test and the authors classify it as solution verification test and should be performed after
a code verification test [7]. Further, test of the choice of the meshes and preliminar tests to the
problem of interest can be found in [4].



a)

0
1

2
3 0

1

2

3

 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92

Y

X

b)

0
1

2
3 0

1

2

3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

Y

X

c)

0
1

2
3 0

1

2

3

 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

Y

X

d)

0
1

2
3 0

1

2

3

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

Y

X

Figure 1. Analitical solutions,ρ,u, v, p.
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5. RESULTS

The main interest in this test was to verify the implementations of the equations at-
tempting to eliminate implementation errors in the code. Infact, the chosen manufactured
solution can be manipulated to perform a good test of boundary condition implementations
and evaluation of discretization error through of mesh refinement. The computational code
using the forcing termsF1, F2, F3 andF4 was executed until the convergency stop cri-
terion ‖ξ(k) − ξ(k−1)‖∞ ≤ 10−12 has been reached. Whereξ represents the fluid variables
andk represents the present time step. Figures 6a to 6d show the convergency for meshes
1 to 4 using the code executed with order one and two with the descontinuity not present
(i.e., η = 1, for x ∈ R), and with MinMod flux limiter with descontinuity present (i.e.,
η = 1, for x ≤ 3

2 andη = 1.1 otherwise). In all cases, the convergency is achieved. It is
important to note that the convergency for order 2 code is more faster than for order 1 code
because of the discretization errors and the velocity of convergency with MinMod flux limiter
remained between order 1 and order 2, as expected. The aim of the flux limiter is decrease the
code order from two to one in the regions where there is high gradient of the fluid variables,
like at shock waves, to ensure that the solution is physically consistent.

Figures 3 to 5 show the errors in the solution for the fluid variablesρ, ρu, ρv and
p using the codes of order 1 and 2 withη = 1, for x ∈ R, and with MinMod flux limiter
usingη = 1, for x ≤ 3

2 andη = 1.1 otherwise at meshes 1 to 4. These figures show that the
magnitude of the error in the fluid variables reduces with themesh refinement, this pattern
is necessary so that the code is free of implementation errors. In addition, the magnitude of
the error in the code of order 1 is greater than the magnitude of the error in the code of order
2. This pattern is also expected. The complete code with flux limiter presented errors with
magnitude close to magnitude obtained for code of order 2. Itcan be observed that the errors
distribution is higher at regions close to descontinuity where the order 1 is applied by the flux
limiter. Using these error, shown by figures 3 to 5 in all meshes simulated, the numerical
code orders forρ, ρu, ρv and p variables using the mean norm executed with order 1, 2 and
with flux limiter codes was calculated and them is shown by figure 7, and using the maximum
norm is shown by figure 8.

Interestingly, in most cases, for the coarser mesh, the error behaves with higher order
than the expected theoretical order, but in some cases the order is less, see figures 7d and 8d for
order 2 code. However, in all cases, the decaiment of the error tends to the theoretical order
of the numerical discretization. According to these figures, the code using the flux limiter
presents errors higher than the errors obtained by the code of order 2 and lower then order 1.
But is interesting to note, that the errors in the code with fluxlimiter decay at order 2. The
orders obtained by use of mean norm are consistent with use ofthe maximum norm. But in
some cases, the results obtained by applying these norms maybe different due to discretization
errors prevalent in some regions of the domain, like walls ordescontinuities, according to [3].
In this case, the correct order is obtained using the maximumnorm. That difference in the
results has not happened in the tests performed in this work.
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Figure 3. Errors using the order 1 code for mesh 4.
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Figure 4. Errors using the order 2 code for mesh 4.
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Figure 5. Errors using the MinMod flux limiter code for mesh 4.
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Figure 6. Convergency for mesh 1 to mesh 4.
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Figure 7. Code order forρ, ρu, ρv andp fluid variables using the mean norm.
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Figure 8. Code order forρ, ρu, ρv andp fluid variables using the maximum norm.



6. CONCLUSIONS

In this work, the code that simulates compressible flow modeled by Euler equations
with a descontinuity that simulates a shock wave was tested by means of the manufactured
solutions method. It was shown that the theoretical order ofthe numerical method employed
for the discretization of spatial variables is consistent with the order calculated numerically.
It was also shown that the orders obtained by the use of mean norm are consistent with the
use of the maximum norm. The results obtained indicate that the code is free of programming
errors for the problem simulated and the order of the numerical method tends to theoretical
order and is very close after mesh 4.
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