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Abstract. A numerical code aiming to simulate two-dimentional compressible flow, modeled
by Euler equations with immersed boundaries, was submitted on a verification test using the
Method of Manufactured Solutions. The code was developed to study computational aeroe-
lasticity - flutter analysis by means of forced oscillations on the NACA 0012 airfoil section
modeled by the Immersed Boundary Method. Finite Difference scheme using Steger-Warming
method of second order of accuracy to the spatial discretization and a Runge-Kutta method of
fourth order of accuracy to the time discretization were used. It was created a manufactured
solution that mimics a compressible flow with presence of shock waves. The numerical code
was submitted by a Mesh Refinement Test and a systematic analysis of actual order of accu-
racy was performed. The results indicated that the code was free of programming errors and
the Method of Manufactured Solutions was a good tool for debugging the code.
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1. INTRODUCTION

The method of manufactured solutions (MMS) [7] is a general and very powerful ap-
proach to code verification. Rather than trying to find an exact solution to a system of partial
differential equations, the goal is to “manufacture” an exact solution to a slightly modified set
of equations. For code verification purposes, it is not required (in fact, often not desirable) that
the manufactured solution be related to a physically realistic problem; recall that verification
deals only with the mathematics of a given problem. The general concept behind MMS is
to choose the solution a priori, then operate the governing partial differential equations onto
the chosen solution, thereby generating analytical source terms. The chosen (manufactured)
solution is then the exact solution to the modified governing equations made up of the original
equations plus the analytical source terms. Thus, MMS involves the solution to the back-
ward problem: given an original set of equations and a chosen solution, find a modified set of
equations that the chosen solution will satisfy. The initial and boundary conditions are then



determined from the solution and can be useful if they arendaty conditions previously im-
plemented in the code. In this work, the MMS is employed tdqrer a systematic analysis of
actual order of accuracy of spatial discretization and tdyéd the code was free of program-
ming errors. The code tested simulates two-dimentionaleessible flow, modeled by Euler
equations with immersed boundaries. The code was devetoddy computational aeroe-
lasticity - flutter analysis by means of forced oscillatipos the NACA 0012 airfoil section
modeled by the free-slip Immersed Boundary Method [4]. Eilifference scheme using
Steger-Warming method of second order of accuracy with Mid¥ux limiter to spatial dis-
cretization and a Runge-Kutta method of fourth order of amcyto time discretization was
used. The Immersed Boundary Method (IBM) was developed byiPfko solve problems
involving fluid-structure interaction. In his method, thendain is composed by an Eulerian
mesh, used to represent the fluid domain, and a Lagrangiam omeed to represent the elastic
immersed boundary. The interaction between the elasticeirsed boundary and the fluid is
performed by a suavized Dirac delta function, which is then&kof the IBM. The governing
equations, in the IBM, are discretized in Cartesian computatimeshes, and this is an ad-
vantage of the IBM because simplifies the mesh generationehates the complexity of the
governing equations. Another advantage of this technigulkat the Lagrangian mesh does
not need to be align with the Eulerian mesh, this allows toutate fluid flows with mov-
ing immersed boundaries, complex geometries or topolbgargations [10]. A fixed mesh
can be used even for complex moving geometries. Mesh refimemik be required only if
improvements in a local flow resolution is desired [5].

2. GOVERNING EQUATIONS

Consider flow of inviscid fluid in a rectangular bidimensiodalmainQ with an im-
mersed boundary represented by a closed clirv@escribed byX(s,t), with 0 < s < Ly
and with X(0,t) = X(Ly,t), wherel,, is theI curve length. The Lagrangian variables are
represented by upper case letters. The governing equatierggven by:
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F(s t) = S(X(s 1),1) . (6)



In equations (1) to (6)x = (X, y) € Q is the position vectori(x,t) = (u(x,t), v(x, 1))
is the velocity vectorp(x, t) is the pressurgy(x, t) is the density and(x, t) is the total energy,
given by:

1 2
e:e,+§(u +V7) (7)

whereg is the internal energy. The Eulerian force is givenfby t) = (fi(x,t), fo(x, 1)), and
the Lagrangian force is given biy(s,t) = (Fi(s 1), F2(s t)). Equation (3) is the constitutive
equation for pressure with = 1.4. S(X(s, 1), t), in equation (6), is a function that express the
elasticity of the structure, and represents a free-slimtauy.

3. NUMERICAL METHOD

The Immersed Boundary Method was implemented using the filfferences ap-
proach for Eulerian and Lagrangian meshes. Consider a catmmal domain : [0, L
Ix[0, L 2]. The fluid variables are defined over an Eulerian mdsk N with x;; = (x;,y;) € Q
fori =0,1,..,M-1andj = 0,1, .., N-1, whereAx; andAy; is the size of each mesh division
at pointx;;. Consider a curvé : [ 0, Ly ], the set ofS Lagrangian pointXy = (Xi, Yx) € I’
withk=0,1,...,S — 1 is used to discretize the immersed boundary, with initisplhcement
between the points set up Asy.

The classical fourth order Runge-Kutta method [8] is empiioyediscretize the time
variables, and the second order Steger-Warming method if8] Min-Mod flux separator
is employed to discretize the spatial variables. Each stdighe Runge-Kutta method is
represented by, andt™?1 = t™ + At represents the instant of time antirepresents the size
of pass in time. According to [8], this numerical scheme @bkt for Courant Friedrichsévi
(CFL) number of 2V2. The numerical method is given by:

¢ Preliminary stage of pass in time:

1. The Lagrangian variables, that represent the immersaddaoy, are set up in
¢ = 0 at timet™ as:

Fo(s)=F7s), Ug(s)=U"(s), Xg(s)=X"(s).
2. The Eulerian variables, that represent the fluid fieldsateip at = 0 as:
fo®) =fP%) . v =vP(x).
¢ Intermediate stages of pass in time fogp = 0,1,2 and 3:

1. The Lagrangian forcE,.1)( s) is calculated in the immersed boundary using the
configuration ofX,,( s), as follows:

F-(S) = S(X(s 1),t7), (8)

Itis necessary that the elastic boundary stays closed twrithi@al configuration of
the structure with very small displacements and represgiatifree-slip boundary
type. This is achieved adequately choosing a forcing ®{s, t), t), as follows:

S(X(S t)’t) =K projn(s,t) (Xe(ss t) - X(S’ t)) + g projn(s,t) (Ue(s’ t) - U(S’ t)) > (9)



wherex > 1 represents elasticity,> 1 represents damping(s, t) is the normal
vector at the poinK(s,t) of the immersed boundary and pyiojis the orthogonal
projection operator of vectdron vectora. Equation (9) connects the poirXgs, t)

of the immersed boundary with the equilibrium poiXt¥s, t) using a generalized
Hooke law.

2. The Lagrangian forcE,.1)( s) is interpolated into the Eulerian field to determine
the value off,.1)(x), as follows:

f(;p+l)(x) = Z F(p+1)( S)éﬁ(x - X(g?)( S)7 n)AS > (10)

where the delta function is given by:

Sa(x,n) =
1 _ nyX N nyy B NyX _ ny (11)
AxAy \ Ax(nZ+n3)  Ax(mZ+nd)’  AymZ+ni) Ay(m+n3))’

wheren = (ny, ny) is the normal vector at the Lagrangian poXy,( s) of the
immersed boundary and

25 , 25,
—= ¥ - = 3)
25 16 16
d(x,3) = Ee - 0<3<5 . (12)
0 otherwise

This delta function interpolates data from external regibthe immersed struc-
ture. This gaussian function can be truncated with radifis@tells nodes. Doing
this, the error between the integral and unit value is

ll - ff_:b(x,a) dx d3

then, truncating this function with radius of five cells nedée errors is ii-
ciently small to avoid excessive rourfland truncation errors and avoid unneces-
sary computational cost.

<02x10'7,

3. The Euler equations given by (1) are solved using the ftawef,.1)(X) at stage
(9 +1) of Runge-Kutta method and with the second order Stegerarscheme
with Min-Mod flux separator. Consider the governing equatiby that can be
represented by:

ov
4PV =0, (13)
where P
pv) =2+ % . (14)
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At stage p + 1), v(,.1) iS given by:

At
V(1) = V(o) - EP(V(Q))

At
Vi2) = Vo) — = P(v
@=Vo~ 5 (V) (15)

V(3) = V(o) — AtP(V(z))
At
Vi =V~ & [P(v(g) + 2P(v(y)) + 2P(v(2)) + P(v(3))]

wherev ), V(1), V(2), V(3) andv s are the fluid variables defined by equation (2) in
the intermediate stage of the Runge-Kutta time integratiethod.

The external boundaries of the Eulerian domain are treaithdRieman invariants
representing open atmosphere to avoid reflection [1].

4. The Eulerian velocity,.1)(x), calculated by the previous pass, is interpolated
into the immersed boundary as follows:

Upin(S) = D Upen(R)SZ(X = X( 8), N)AXAY . (16)

wheres?(x, n) is the delta function defined by equation (11).

5. The new position of the points that represents the immda@reandaryX,.1)( S),
are updated using the Runge-Kutta method in the correspbenl) pass:

At
X = Xy + ?¢(U(0))

At
X@) = Xo) + E‘P(U(l))
X(3) = X(0) + Atg(U(2))

At
Xy =X + 5 [6(U(0) + 26(U()) + 26(U(2)) + ¢(U(a))]

(17)

whereg(V) = projysy V(s t).
¢ Final stage: the fluid variables are updated at timet™%):
1. The Lagrangian variables are set upat) as follows:
FMO(s)=Fu(s), U™I(s)=Uyg(s), X™(s)=Xu(s).
2. The Eulerian variables are set ug@t® as follows:
FO) = fay() . VD) = vig(x) -
4. CODE VERIFICATION

The code developed using the numerical algorithm presentéus work was im-
plemented usin@** language and verified using the Method of Manufactured Bwist



[2, 3, 7]. One manufactured solution was constructed by thiaas for density, velocity
components, vand pressure as follows:

1 ifx<?$
px.0) = 505X 800y3+_ where ’7:{1.1 ifx>3 (18)
. n . A n [1 ifx<$
u(x,O)_§S|n(§y)+§sm(§ x)+§ where 77_{1.1 ifx >3 (19)
_n Ui 4n (1 ifx<?
v(x,O)_Zcos(éy)+—coséx)+7 where n_{l.l ifx >3 ° (20)
p(x, 0) = —sm( X+ Lel4)  where g = 1 ifx<y (21)
7 11 ifX>§

Although the manufactured solution involves the soft fiotd sin(x), cogx) and
ex[(X), it is interesting for this proposal because of the highvagive terms presented in
the discretization terms from the numerical solution arenudis. It allows a systematic study
of order of accuracy of the code via a mesh refinement tesgjglires 1 show the plot of the
manufactured solutions of equations (18)-(21). The sougeas are given by:

0s ag
F = —h, 22
7 ax ay (22)
where:
F pu oV 0
F pu+p puv fy
o — — — —
P =7 3T v | pV+p | (23)
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W+ VP 24
“o-n " ( ) (&9

The values of%,, .%,, %3 and.%, are determined inserting the valuesopiu, v and
p given by equations (18) to (21) in equation (22). The souecen$ are obtained using the
software of algebra manipulation Maple V. Figures 2 showptlo¢ of the source terms.

The code verification was performed using seven cartesiamese withAx = Ay =
04,Ax = Ay =02,Ax = Ay = 0.1, Ax = Ay = 0.05,Ax = Ay = 0.025,Ax = Ay = 0.0125
andAx = Ay = 0.00625, denoted by Mesh 1, Mesh 2, ..., and Mesh 7 in a rectandaimain
3 x 3. The numerical error analysis in these meshes was perfbusiag the mean norm:

19, = o D, i
0<ij<MN
and the maximum norm:
19]lco =, . Max 19 -
<i,j < MN

according to [3].

In this work, tests involving analysis of Euler and Lagrafgees are not performed.
The proposal of this study was to reach reliability that pamgming errors were negligible.
Study of performance ayat ability of this code to simulate immersed boundary cowddab
good test and the authors classify it as solution verificatigst and should be performed after
a code verification test [7]. Further, test of the choice efrtieshes and preliminar tests to the
problem of interest can be found in [4].
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5. RESULTS

The main interest in this test was to verify the implementadiof the equations at-
tempting to eliminate implementation errors in the code falt, the chosen manufactured
solution can be manipulated to perform a good test of boyndandition implementations
and evaluation of discretization error through of mesh egfiant. The computational code
using the forcing termsr;, .%,, %3 and %, was executed until the convergency stop cri-
terion ||¢® — ¢&-D)|, < 1012 has been reached. Whegerepresents the fluid variables
andk represents the present time step. Figures 6a to 6d show tivergency for meshes
1 to 4 using the code executed with order one and two with tiseatginuity not present
(.,e.,n = 1, forx € R), and with MinMod flux limiter with descontinuity presentdi,

n =1, forx < %andn = 1.1 otherwise). In all cases, the convergency is achieveds It i
important to note that the convergency for order 2 code isenfaster than for order 1 code
because of the discretization errors and the velocity ofeaency with MinMod flux limiter
remained between order 1 and order 2, as expected. The alma fdfix limiter is decrease the
code order from two to one in the regions where there is highlignt of the fluid variables,
like at shock waves, to ensure that the solution is physicalhsistent.

Figures 3 to 5 show the errors in the solution for the fluid allesp, pu, pv and
p using the codes of order 1 and 2 with= 1, for x € R, and with MinMod flux limiter
usingn = 1, for x < g andn = 1.1 otherwise at meshes 1 to 4. These figures show that the
magnitude of the error in the fluid variables reduces withrtlesh refinement, this pattern
IS necessary so that the code is free of implementationsertoraddition, the magnitude of
the error in the code of order 1 is greater than the magnit@itteecerror in the code of order
2. This pattern is also expected. The complete code with flaidr presented errors with
magnitude close to magnitude obtained for code of order&aritbe observed that the errors
distribution is higher at regions close to descontinuityeveithe order 1 is applied by the flux
limiter. Using these error, shown by figures 3 to 5 in all maskienulated, the numerical
code orders fop, pu, pv and p variables using the mean norm executed with order 1, 2 and
with flux limiter codes was calculated and them is shown byrégy and using the maximum
norm is shown by figure 8.

Interestingly, in most cases, for the coarser mesh, the betzaves with higher order
than the expected theoretical order, but in some casesdkeistess, see figures 7d and 8d for
order 2 code. However, in all cases, the decaiment of the tanals to the theoretical order
of the numerical discretization. According to these figutes code using the flux limiter
presents errors higher than the errors obtained by the daoteler 2 and lower then order 1.
But is interesting to note, that the errors in the code with fimiter decay at order 2. The
orders obtained by use of mean norm are consistent with ugeahaximum norm. But in
some cases, the results obtained by applying these normartiierent due to discretization
errors prevalent in some regions of the domain, like walldescontinuities, according to [3].
In this case, the correct order is obtained using the maximarm. That diference in the
results has not happened in the tests performed in this work.
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6. CONCLUSIONS

In this work, the code that simulates compressible flow mediély Euler equations

with a descontinuity that simulates a shock wave was testaddans of the manufactured
solutions method. It was shown that the theoretical ordéh@humerical method employed
for the discretization of spatial variables is consisteithwhe order calculated numerically.
It was also shown that the orders obtained by the use of mean ae consistent with the
use of the maximum norm. The results obtained indicate blieatdde is free of programming
errors for the problem simulated and the order of the nuraenethod tends to theoretical
order and is very close after mesh 4.
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