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Abstract.
EIT image reconstruction may be performed by a Simulated Annealing algorithm

that minimizes the differences between the superficial impedance behavior of a virtual body
simulated using the Finite Element Method and real data acquired on a physical body. The
evaluation of objective functions - that involve solving FEM linear systems - is responsible for
the majority of the process computational cost. This work presents a strategy for implementing
the Preconditioned Conjugate Gradient algorithm on a GPU in order to benefit from its
massive parallel computing capacities. This strategy takes in account the specificities of the
EIT reconstruction through SA. It involves heavy preprocessing to identify the computations
that may be performed in parallel. Initial results show that this strategy greatly improves not
only on sequential approaches, but also on other generic GPU approaches.

.
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1. INTRODUCTION

This work deals with the acceleration of the reconstruction of Electrical Impedance
Tomography (EIT) images using Graphic Processing Units. Section 2 will present a brief
introduction to Electrical Impedance Tomography, its applications and reconstruction tech-
niques. Section 3 will deal with the so-called “forward problem”, that is, the problem of
determining superficial impedance behaviour when the interior conductivity is known, and
how it can be numerically solved through the Finite Element Method (FEM). Section 4 will
present briefly Simulated Annealing, the probabilistic optimization metaheuristic used here to
reconstruct EIT images by solving forward problems. Section 5 will present the preconditioned
conjugated gradients method, used here to solve the linear systems posed by the Finite Element
Method, and the main object of paralization in this work. Section 6.1 will present the CUDA
architecture. Section

2. Electrical Impedance Tomography

Electrical impedance tomography (EIT) is a noninvasive imaging technique that es-
timates the electrical conductivity distribution within a body when low amplitude current
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patterns are applied to its surface and the corresponding electric potentials at determined points
of that surface are measured [19]. EIT has a wide range of medical applications, detection
of acute cerebral stroke [2], breast cancer [10], monitor cardiac activity [4] and monitor lung
aeration imposed by mechanical ventilation in critically ill patients [9, 19].

The reconstruction of the electrical conductivity distribution within the body is a
fundamentally dificult problem since, in a general case, the electric current cannot be forced
to flow linearly (or even along a known path) in an inhomogeneous conductor. As such,
impedance between two known points on the surface of a body is a composition of the whole
conductivity distribution on the interior, often in an unpredictable way.

2.1. EIT as an optimization problem

A popular method for solving the reconstruction problem is to look at it as an opti-
mization problem[14], where one tries to maximize the superfitial impedance behaviour of a
virtual body and the actual measured impedance data. In this problem, the the optimization
variables are a parametrization of the conductivity inside the domain (for instance, the domain
is divided in continuous segments and the conductivity inside each segment — presumed to be
constant — becomes a parameter) and the optimization function is some measure of how a
computer simulation of the domain — using the same current patterns applied to the physical
body — measured data. One possible objective function E is the Euclidean distance between
the measured electric potentials φi

m and the calculated potentials φi
c obtained as results of

simulations on the virtual body for all the applied current patterns

E =

√
Σ|φi

m − φi
c|

2. (1)

An example of such approach is in [14], where the objective function 1 is minimized by
Sequential Linear Programming yielding estimations of the conductivity distribution. First and
second order optimization methods cannot be easily applied to this problem though, since the
underlying objective function, calculated from the results of a computer simulation, is subject
to numerical errors that are amplified on its derivatives. For that reason, some authors are
turning towards zero order methods that require no gradient, and in particular, metaheuristics
such as Simulated Annealing [8, 13]. The downside of this approach is that it requires many
more objective function evaluations, and, as it will be shown in section 3, those can be quite
costly.

3. The forward problem

The typical forward problem in EIT is of, for a given domain Ω with conductivity
distribution σ and currents J injected through the domain boundary, finding the potential
distribution φ within Ω and in particular the resulting potentials at the measurement electrodes
φm. The frequencies used in EIT are low enough so that the quasi-static approximation holds,
and thus capacitive and inductive effects can be ignored. Under such quasi-static conditions,
the solution of the forward problem is rather simple as it only requires solving the equation

∇ (σ∇φ) = 0. (2)



That is an elliptic equation in the divergence form [3, ch. 6]. The boundary conditions are
given by currents J at the domain frontier

σ
∂φ

∂n̂
= J (3)

where n̂ is the external normal. The convention adopted here is to have positive J values for
currents exiting the domain. First-derivative boundary conditions such as the formulated in
(3) are called Neumann boundary conditions. The forward problem with Newmann boundary
conditions is particular to scenarios in which the boundary currents are known. Another
possible scenario is that of known boundary potentials, leading to Dirichlet boundary conditions.
Concerning boundary conditions, it is important to notice that integrating (2) over the domain
Ω and applying Gauss’ theorem, ∮

∂Ω

σ∇φ · n̂ ds = 0. (4)

Replacing (3) in (4), ∮
∂Ω

J ds = 0

that is a necessary condition for (2, 3) to have a solution. Physically, it is equivalent to requiring
that the sum of currents entering and leaving the domain is zero.

It is easy to notice that if a given φ∗ is a solution of (2, 3), then so is φ∗ + k, where k is
a constant. This means the problem is undefined minus a constant, which is hardly surprising,
as electric potential is a relative measure. The indetermination is often circumvented in EIT
problems by adopting a ground point x0 such that

φ (x0) = 0. (5)

The point x0 is often taken at the domain boundary.

3.1. Finite Element Method applied to the Forward problem

For an irregular domain and isotropic media, analytical solution to the equation (2) with
boundary condition (3) are unknown; thus, the partial differential equations were approximated
by the Finite Element Method (FEM). The procedure for obtaining a FEM formulation for
the EIT forward problem is the roughly the same as for a regular Poisson equation [1]. A
variational formulation of equations (2, 3) is produced. The potential function φ is expressed
as a linear combination of a base of elementary functions with compact support, transforming
the variational problem on a quadratic optimization problem. Analytical solutions for (2, 3)
for arbitrary domains Ω are not known. An approximated solution of φ̃ may be obtained by
a Finite Element (FEM) formulation. The procedure for obtaining a FEM formulation for
the EIT forward problem is the roughly the same as for a regular Poisson equation [1]. A
variational formulation of (2, 3) is produced. Then the approximated solution φ̃ is chosen from
a linear subspace generated by a set {ψ1, ψ2, . . . , ψn} of base functions. By writing

φ̃ = ΦT ·Ψ (6)



Figure 1. Mesh used in the image reconstruction.

Ψ = [ψ1, ψ2, . . . , ψn]T

replacing it on the variational formulation and finding its minimum on Φ the equation

K (σ) ·Φ−C = 0 (7)

is obtained, where

K (σ)ij =

∫
Ω

σ (∇ψi · ∇ψj) dx (8)

is the stiffness matrix, a symmetric positive definite matrix and C =
∮
∂Ω

Ψ · J ds is the load
vector. By solving the linear system (7) for Φ, one obtains the approximate solution φ̃.

3.1.1 Base functions

The base functions Ψ are chosen so that φ̃ is continuous, with support in the whole
domain and the integrals in 8 are easily calculated. In this particular project, the domain (a
cylindrical container, modeled here as a 2d problem) is divided in triangular segments, as seen
in figure 1. To each node is assigned a φi base function, so that its value at that node is 1 and
zero at all the others. Inside the triangles, the base functions are a 1st degree interpolation
of the values at the vertexes. Under those base functions it can be seen that K (σ) is a very
sparse matrix. Indeed, if i and j are two vertexes that do not share a triangle, K (σ)ij = 0.
By equation (8), one can see that even if i and j are edges of the same triangle, it is possible
to have K (σ)ij = 0, but this is a particular case, uncommon on irregular meshes and can be
ignored here without loss of generality. As such, if one would look at the mesh of figure 1 as a
graph, the matrix K would have the same zero/nonzero structure than its adjacency matrix.

4. Simulated Annealing

Simulated Annealing (SA) [12] is a hill-climbing local exploration optimization heuris-
tic, which means it can skip local minima by allowing the exploration of the space in directions
that lead to a local increase on the cost function. It sequentially applies random modifications
on the evaluation point of the cost function. If a modification yields a point of smaller cost, it
is automatically kept. Otherwise, the modification also can be kept with a probability obtained
from the Boltzman distribution

P (∆E) = e−
∆E
kT (9)



where P (∆E) is the probability of the optimization process to keep a modification that incurs
an increase ∆E of the cost function. k is a parameter of the process (analogous to the Stefan–
Boltzman constant) and T is the instantaneous “temperature” of the process. This temperature
is defined by a cooling schedule, and it is the main control parameter of the process. The
probability of a given state decreases with its energy, but as the temperature rises, this decrease
(the slope of the curve P (∆E)) diminishes.

4.1. Applying Simulated Annealing to EIT

As seen in section 2.1, the EIT inverse problem can be formulated as an optimization
problem, and as such, can be approached with SA. Indeed, in [8] Herrera et al. applied SA
to the minimization of objective function (1) and by doing so managed to reconstruct very
accurate conductivity distributions of the body, but at a very high computational cost. This is
unsurprising, as each step of the SA involves the solution of a full FEM problem in order to
evaluate the objective function.

The application of SA in this work is derived from the work of Martins et al. [13].
In that work, the conductivity is parametrized using the same base functions described in
3.1.1, that also are used for the electric potential, This greatly simplifies the calculation of the
integrals in (8) since, inside a triangle, the conductivity may be replaced by a constant equal to
the average of the conductivity at each node. At each iteration, SA modifies the conductivity of
at most two nodes. As seen from (8), if the conductivity in node k is modified, a coefficient
Kij will be modified only if i and j share an edge with k.

5. The Conjugated Gradients Algorithm

The Conjugated Gradients Algorithm is a methodo for obtaining the numerical solution
of linear systems like

Ax− b = 0 (10)

where A is a symmetric positive definite matrix. That makes it particularly suitable for
solving the linear systems (7) posed by the FEM method described particularmente apropriado
in section 3.1.

It is an iterative process that starts from an initial solution x0 and at each iteration i
produces a new solution xi successively closer to the exact solution. In exact arithmetic, it can
be shown that the algorithm recovers the exact solution in at most n iterations, where n is the
rank of A [18]. In general, it is computationally inviable to work with exact arithmetic. Even
so, the method is numerically stable and able to find acceptable numerical solutions with finite
precision arithmetic [15, cap.8].

The algorithm iterations are as follows: (adapted from [18]):

d0 = r0 = b− Ax0

αi =
ri

T ri

di
TAdi

(11)

xi+1 = xi + αidi (12)



ri+1 = ri − αiAdi (13)

βi+1 =
ri+1

T ri+1

riT ri
(14)

As one can see, the most expensive operation in a iteration is the matrix × vector
product in (11) (Notice it may be reused in (13)).

5.1. Convergence and preconditioning

Let εk the error at the k-th iteration, and ‖εk‖A = εk
TAεk its A-norm.

Than it can be shown that ([18]):

‖εk‖A ≤ 2

(√
κ− 1√
κ+ 1

)
‖ε0‖A (15)

Where κ = λmax/λmin is the condition number of A, defined as the ratio between its
largest and smallest eigenvalues.

Let now M be a symmetric positive definite matrix that approaches A. One expects
that the eigenvalues of M−1A are closer than those of A and its condition number is smaller.
As such, the convergence of GC applied to the system

M−1Ax−M−1b = 0 (16)

will be faster. Notice that the solution of system (16) is the same as that of system (10).
The issue is that M−1A may not be symmetric nor positive definite, so it may not be

possible to apply the Conjugated Gradient Method to system (16).
Now suppose it is possible to find a decomposition of matrix M = EET . In this

case, the eigenvalues of M−1A and E−1AE−T are the same, but this last matrix is symmetric,
enabling the application of CG to the system.

E−1Ax̂E−T − E−1b = 0 (17)

and
x̂ = ETx

The Preconditioned Conjugated Gradients Algorithm is (adapted from [18]):

r0 = b− Ax0

Mz0 = r0

d0 = z0

αi =
ri

T zi

di
TAdi

(18)

xi+1 = xi + αidi (19)

ri+1 = ri − αiAdi (20)

Mzi+1 = ri+1 (21)



βi+1 =
zi+1

T ri+1

ziT ri
(22)

di+1 = zi+1 + βi+1di (23)

The calculation of zi+1 in step (21) requires the solution of a whole linear system!
It is thus fundamental that M−1ri+1 may be calculated quickly, since this operation will be
executed once per iteration of the Conjugated Gradients Algorithm (clearly a generic matrix
M is unacceptable, since the cost of a single iteration of the method would be equivalent of
solving a whole system).

There are several canditates for a suitableM . In [14] and [13] the incomplete Choleksy
Decomposition was used with Preconditioned Conjugated Gradients for reconstruction of EIT
images.

The Incomplete Cholesky Decomposition is an approximated LLT decomposition for
sparse symmetric positive definite matrices. It produces for a given matrix A a lower triangular
matrix E such that A ≈ EET and Ai,j = 0⇒ Ei,j = 0, that is, E keeps the sparse structure
of A. Incomplete Choleksy Decomposition may be performed by algorithm 1.

Algorithm 1 Incomplete Cholesky Decomposition (Reproduced from [6]).
1: function INCOMPLETECHOLESKY(A)

Input: A is an n× n matrix
Output: A lower triangular E that is the Incomplete Cholesky Decomposition of A

2: Initialize E with the lower triangular part of A
3: for k = 1 to n do
4: Ek,k ←

√
Ek,k

5: for i = k + 1 to n do
6: if Ei,k 6= 0 then
7: Ei,k ← Ei,k/Ek,k

8: end if
9: end for

10: for j = k + 1 to n do
11: for i = j to n do
12: if Ei,j 6= 0 then
13: Ei,j ← Ei,j − Ei,kEj,k

14: end if
15: end for
16: end for
17: end for
18: return E
19: end function

When using M = EET from the Incomplete Cholesky Decomposition, the calculation
of zi+1 in step (21) is equivalent of solving two sparse triangular systems.



6. Implementation in GPU

6.1. The CUDA architecture

GPUs are nowadays specialized processors with huge computing capability. Their role
in computer graphics is mainly to stock big and complex sets of triangles in an ideal three
dimensional environment, to assemble several of them as the CPU commands. In the last years
GPUs grew capable of doing the most amazing graphic effects, like blur for foggy environment,
transparencies for glasses, windows and liquids, reflections as well as partial reflections, for
water effects. As the possibilities increased, instead of producing different hardware for each
effect, the graphic units manufacturers started conceiving programmable graphic units, which
could run arbitrary user defined programs in order to manipulate images in some of the key
steps of the graphic rendering [16].

Recent graphic processing units are able of generic massively parallelized computations.
The CUDA architecture [11] (see figure 2), created by NVIDIA, implements what is called
the SIMT (Single Instruction Multiple Thread) architecture, that is, all processing nodes are
expected to execute the same instruction at the same time. This is a similar to the classic
SIMD (Single Instruction Multiple Data) architecture where the same operation is applied to
a data set. The differences between SIMT and SIMD is that SIMT is able to accommodate
unstructured data (although performance increases with regular data accesses) and SIMT can
handle thread divergence, that is, threads running simultaneously that execute different code.
CUDA architecture handles thread divergence by transparently allocating different fetch cycles
for processing nodes that are executing different instructions. Such divergence can, however,
incur severe performance reductions.

A typical CUDA computation involves the execution of a single function, called a
kernel across many processing nodes such that each node receives slightly different parameters,
its grid coordinates. Since every node is executing exactly the same kernel, it relies on its grid
coordinates for differentiation.

6.2. Accelerating the objective function evaluation with CUDA

As stated in section 4.1, the evaluation of the objective function is responsible for
almost all the computational cost of the EIT image reconstruction using Simulated Annealing.
Inspecting this evaluation, it is clear that the computational power is spent on CG iterations and
Preconditioner calculations. Within CG, the most expensive operations are the product Sparse
Matrix × Vector and particularly, the two triangular solve operations. It then our priority to
accelerate using the GPU the following operations:

• Sparse Matrix × vector product

• Triangular Solver

• Incomplete Choleksy Decomposition

while keeping in mind that the structure of the stiffness matrix K (σ) do not change
between SA iterations, that is, its zeroed coefficients remain so for every σ produced by SA.
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Figure 2. Architecture of the GPU streaming multiprocessor.

6.3. Sparse Matrices

As seen in section 3.1.1, the stiffness matrices K (σ) produced by the Finite Element
Method are very sparse, that is, they have most of its coefficients zeroed.

There are several schemes for efficiently storing sparse matrices. The scheme adopted
here is CSR (Compressed Sparse Row). It stores a sparse matrix with three vectors, here called
data, column and ptr. The vector data stores the nonzero elements of the matrix. The vector
column stores at the corresponding position the number of the column for the element. The
{ptr vector has as many entries as M has rows, and stores at its i-th entry the position in data
of the first nonzero element at the i-th row of M (see figure 3 for an example).

Since, as mentioned in section 6.2, the structure of matrix K (σ) is constant, its column
and ptr vectors may be stored in the constant memory of the CUDA GPU. The constant memory


1 0 2 0 0
0 7 1 0 0
0 0 3 0 0
0 0 0 4 8
9 0 0 0 7


ptr =

[
0 2 4 5 7

]
data =

[
1 2 7 1 3 4 8 9 7

]
column =

[
0 2 1 2 2 3 4 0 4

]
Figure 3. Example of CSR matrix storage



is a special memory location on the GPU used to store data that may not be changed by a kernel.
It may in exchange be aggressively cached by the CUDA multiprocessors, greatly increasing
its data throughput.

6.4. Sparse Matrix × Vector product

While the Sparse Matrix × Vector product is computationally cheaper than the Triangu-
lar Solver, it still caries a considerable cost. Fortunately, the its implementation is very simple
under a CSR representation. Algorithm 2 describes its implementation on a serial (non-parallel)
processor.

Algorithm 2 CSR matrix × vector multiplication.
Input: Vectors data, column and ptr of the sparse matrix Am×n, vector x
Output: a vector y such that y = Ax

1: for i = 0 to m− 1 do
2: y [i]← 0
3: for l = ptr[i] to ptr[i+ 1]− 1 do
4: y[i]← y[i] + data[l] · x[column[l]]
5: end for
6: end for

The algorithm 2 can be trivially parallelized. Indeed, it suffice to send each line of
matrix A to a kernel. The grid coordinates are set up to match the range of i variable in the
outer loop. The kernel is just algorithm 2 stripped of its outer vector.

Algorithm 3 CSR matrix × vector Kernel.
Input: Vectors data, column and ptr of the sparse matrix Am×n, vector x and the grid

coordinate i ∈ {0..m− 1}
1: y [i]← 0
2: for l = ptr[i] to ptr[i+ 1]− 1 do
3: y[i]← y[i] + data[l] · x[column[l]]
4: end for

At the end of the grid execution of the kernel depicted in 3, vector y will contain the
product Ax. While the sum operations in line 3 could also be parallelized using a round-based
reduction [11, sec. 6.1], the small number of non-zero elements at each line does not justify it
(see figure 1). Thread divergence isn’t a serious issue either, since there’s not a huge difference
in the number of nonzero elements at each row.

Indeed, this almost trivial kernel is able to outperform in our particular case the one
provided by NVIDIA for CSR matrix × vector operations in CUBLAS [17] (CUBLAS
outperforms it for generic sparse matrices).

6.5. Triangular Solver

The two triangular linear system solutions, performed to obtain the value of zi+1 in step
(21) (remembering that M = EET from the Incomplete Cholesky Decomposition), are the
most costly operations performed on a iteration of the Preconditioned Conjugated Gradients
Algorithm.



Lower triangular systems like Lx = y can be solved using forward substitutions [6, Ch.
3](see Algorithm 4). An analogous algorithm for upper triangular systems Ux = y is called
back-substitution.

Algorithm 4 Serial Forward substitution.
Input: A lower triangular matrix L and a vector y
Output: a vector x such that Lx = y

1: x[0] = b[0]/L[0, 0]
2: for k = 1 to n− 1 do
3: σ = 0
4: for j = 0 to k − 1 do
5: σ = σ + L[k, j]x[j]
6: end for
7: x[k] = (b[k]− σ) /L[k, k]
8: end for

A trivial parallelization of the outer loop in algorithm 4 is no longer viable, since
the operations at line 5 require the previously computed values of x[j]. At least, the (costly)
floating point division operations in line 7 can be eliminated by taking a D as a diagonal
matrix containing the diagonal of L and observing that the solution of D−1Lx = D−1y is the
same of Lx = y. By replacing L by D−1L and y by D−1y in algorithm 4, there’s no longer
need for any floating point division (notice that the diagonal of D−1L has only ones). The
calculations of D−1L and D−1y can be trivially parallelized using the GPU. Even better, D−1

can be precomputed only once for all CG iterations for all simulated current patterns at a SA
iteration, leaving only the much faster floating point multiplications to be performed by the
GPU.

On the parallelized execution of the substitution step, the matrices L in this case are the
result of an Incomplete Cholesky Decomposition, and as consequence have the same sparse
structure of the system stiffness matrix K. As such, the operations in line 7 of algorithm 4 do
not depend on all previously calculated x[j], but on only those for which L[k, j] is nonzero.
One can create a substitution schedule for a parallel algorithm in order to . A substitution
schedule is a sequence of sets S = {s1, s2, . . . , sn} where si is a set of indexes k for which the
values of x[j] in line 5 are already calculated. A greedy algorithm can be written to cerate a
substitution schedule

Algorithm 5 Serial Forward substitution.
Input: A lower triangular matrix Lm×m

Output: a substitution schedule S = {s1, s2, . . . , sn}
1: A← {0, 1, . . . ,m− 1}
2: B ← ∅
3: i← 1
4: while A 6= ∅ do
5: di ← {k ∈ A | ∀j < k, L[k, j] 6= 0⇒ j ∈ B}
6: B ← B ∪ si
7: A← A \ si
8: i← i+ 1
9: end while



The algorithm 5 greedily computes a substitution schedule S by taking at each iteration
the set of rows of L that have nonzero entries only at positions that correspond to already taken
rows. The algorithm finishes when there’s no more rows to take.

Algorithm 6 Serial Forward substitution Kernel.
Input: A lower triangular matrix L, a vector y, a substitution schedule S and a grid coordinate

i
Output: a vector x such that Lx = y

1: for r = 1 to n do
2: if i+ 1 ≤ |sr| then
3: k ← i -th element of sr
4: for j ∈ {j ∈ j < k | L[k, j] 6= 0} do
5: σ = σ + L[k, j]x[j]
6: end for
7: x[k] = b[k]− σ
8: end if
9: end for

The algorithm 6 describes the kernel that performs parallel forward substitution using a
substitution schedule. The grid must be set up so that there’s as much threads as the cardinality
of the largest si. Notice that thread divergence occurs in line 2 (when there are more threads
running than the cardinality of sr, meaning that some threads have nothing to work on) and
in line 4 where the number of nonzero entries may vary from row to row. The sets in line 4
may be precomputed along with the substitution schedule. Also all index references may be
transformed to positions in the data vector of the sparse representation of L. Since the structure
of the matrix L do not change (as it follows the immutable structure of K), this preprocessing
need to be performed only once for all CG iterations of all simulated current patterns of all SA
iterations, and this data may be stored in the constant memory of the GPU.

Unfortunately, initial tests with the approach above reveal a disappointing performance.
Indeed, the performance of the GPU triangular solvers is so weak that it almost nullifies the
benefits of having a preconditioner in the first place. A closer inspection reveals that the
original structure of L allows for very little parallelization.

6.5.1 Node Numbering

Figure 4. FEM model with 5 nodes numbered sequentially.

The structure of L, ill-suited for parallel forward substitution, is a result of a naive
numbering scheme of the nodes of the FEM mesh. Indeed, consider the simple unidimen-
sional FEM model with 5 nodes in figure 4. Its nodes are numbered sequentially, and the
corresponding lower triangular portion of its stiffness matrix has the following structure:




∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗


The substitution schedule produced by algorithm 5, when applied to such a matrix,

would produce the following result:

S =


{1}
{2}
{3}
{4}
{5}


This substitution schedule allows for absolutely no parallelization at all. A parallel

kernel performing under this schedule would run on a single thread, performing exactly the
same steps of the serial algorithm 6.

Now consider a coloring of the graph in figure 4 so that to each node is assigned a
color that is different from those of its neighbors. It is easy to show that the nodes of an
unidimensional model can be colored using only two colors.

If the nodes of this graph would be numbered color-wise, that is, each color has its
nodes numbered in sequence, the resulting graph would be like in figure 5.

Figure 5. FEM model with colored nodes and numbered color-wise.

The corresponding lower triangular structure of the stiffness matrix would be
∗
∗
∗

∗ ∗ ∗
∗ ∗ ∗


and now the substitution schedule would be.

S =

{
{1, 2, 3}
{4, 5}

}
This substitution schedule allow for the processing of the triangular solver in just two

passes of algorithm 6, exactly the number of colors used in the coloring of the mesh graph.
It can be shown that a planar graph like the mesh used on our model can be colored

using at most 4 colors. In this work, an algorithm from [5] was used. This particular algorithm
guarantees to use at most 5 colors, but often is capable of better. Indeed, in figure 7 there’s the
structure of the preconditioner after the mesh used here was colored with that algorithm. Only
four colors were used, and the triangular solver requires only four passes (the original matrix
structure is in figure 6).



Figure 6. Preconditioner structure for the original numbering scheme

Figure 7. Preconditioner structure for the collored graph



The performance impact is huge. Indeed, benchmarks show that the triangular solver
performs more than twenty times faster with the new numbering scheme. The graph coloring
step can be performed in a preprocessing step and its cost is negligible.

6.6. Preconditioner

While the preconditioner calculation is performed only once per SA iteration, it is still
interesting to perform it inside the GPU for two reasons:

• It is a quite computationally expensive step, more costly than a whole CG iteration

• Bandwith between host computer and GPU is limited, so the upload of a preconditioner
produced by the CPU to the GPU at each SA iteration would impact negatively the
reconstruction speed.

As seen in algorithm 1, the Incomplete Cholesky Decomposition can be performed
column-wise by the repeated iteration of three steps:

1. Calculate the square root of the first element of the current column

2. Divide the whole column by the square root of its first element

3. Propagate the result to next column

the propagation is done on all column for which there’s a corresponding non-zero
element on the current row. This means that in the calculation of the Incomplete Cholesky
Decomposition for matrix K, the j-th column will be affected by the results of the processing
of the i-th column only if Ki,j 6= 0.

The implications of this fact are that the dependency pattern on operations on rows
for the Incomplete Choleksy Decomposition are exactly the same of those for the rows on the
lower triangular solver. As such, the same strategy adopted of section 6.5 can be adopted here.
Create a scheduler that greedly constructs a schedule for the three steps above in parallel and
create a Kernel that follow those steps. The schedule format, scheduler and kernel (Actually
three kernels were implemented, one for each step above) are more complex than those of
section 6.5, but roughly the same ideas were followed. As expected, the performance benefits
also from the node numbering scheme of section 6.5.1. Even better, since the coloring scheme
effectively creates a “propagation hierarchy” (a color can only propagate preconditioner values
to the next colors), it is possible to quickly “update” the preconditioner from one SA iteration
to another by creating “propagation schedules” for each possible σ modification (this mode
was not implemented on this work)

7. Results

The evaluation of the objective function on the reconstruction process performed by
Martins et al. in [13] was reproduced here using the same datasets. Since the method in [13]
uses an l2 error based stopping criteria on the evaluation of the objective funtion, it is interesting
to compare the evolution of the l2 error for The Preconditioned Conjugated Gradient Algorithm
for our code and the host-only code.

The host code conjugated gradients algorithm uses the Eigen2 library [7], was was
compiled with GCC and executed on a intel i7 processor at 3.3 Ghz. The GPU code was



Figure 8. l2 norm of the error × time on the objective function evaluation for host-only code
(Eigen), NVIDA CUSPARSE libraries (NVIDIA) and the presented approach (TIE).

executed on a NVIDIA GTX 480 GPU. Both used double precision floating point. The
comparison also included NVIDIA’s CUSPASE library, that has primitives for both Matrix ×
vector operations and triangular solver using sparse matrix.

The results are presented in figure 8. Our approach greatly outperforms the host code,
presenting an almost tenfold increase in performance. This result is even more impressive if
one cosiders the GTX 480 GPU does not have the fast double precision feature. Our approach
also outperforms NVIDIA’s CUSPARSE library, showing the merits of optimizing the routines
for this particular application.

The Incomplete Cholesky Decomposition also presents a similar tenfold increase in
speed when compared to the host-only code.

8. Conclusions and Future work

We proposed here an approach to the parallelization of the evaluation of the objective
function for the reconstruction of EIT images using Simulated Annealing. The approach
involves identifying at a preprocessing step operations that may be performed in parallel and
producing calculation scripts that may be followed by the GPU. The FEM mesh structure used
to solve the EIT forward problem greatly affects the throughput of the proposed approach. A
node numbering scheme based on graph coloring can be adopted to obtain a more favorable
structure.

Future works involve the exploitation of the symmetry of the stiffness matrix K on the
matrix × vector operation and replacement of the full preconditioner calculation by updates
that take in account the modifications performed by SA on the matrix K
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