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Abstract. The study is aimed at developing a numerical algorithm for solving a constrained
eigenvalue problem (CEVP). The CEVP sees its engineering applications in the determination of
the buckling load of structures when the body force plays a critical role. As opposed to some
CEVP in which some eigenvectors are coerced to a specific manner, the mathematical statement
of the current CEVP is completed with a generalized eigenvalue problem containing an unknown
parameter. An equality constraint on one of the eigenvalues is identified. The algorithm
presented is a method of trial and error with which an interval embracing the target eigenvalue is
determined. Through linear interpolation, the eigenvalue satisfying the constraint is calculated.
The algorithm is applied to several engineering problems including determination of the buckling
loads of a 2D crane structure under gravitational effect, and the critical payload a plane frame
can hoist under the influence of gravitational acceleration. The accuracy is demonstrated using
an example whose classical solution exists. The significance of the equality constraint in the EVP
is shown by comparing the solutions without the constraint on the eigenvalue. Effectiveness and
accuracy of the numerical algorithm are presented.
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1. INTRODUCTION

Buckling has been one of the main concerns in structure design against catastrophic failure for a
long time. Naturally the topic has attracted a large group of researchers and engineers in the past
rendering a rich source of articles in the area. A few textbooks in theoretical settings as well as
numerical practices have been published and used in academia, such as [1]~[3], which provide a
good source of references in the related fields. Further, the numerical procedures of finding the
buckling loads have been implemented in a few commercial codes for engineering practices, for
example, [4] ~ [7]. The study regarding the buckling of the elastic object subject to gravity as
well as other applied loads has received much less attention. Roberts and associates [8], [9]
investigate the lateral buckling of an elastic I-beam subject to uniformly distributed load using
energy method. Influence of such parameters as sectional warping rigidity, location of applied
load with respect to the shear center is thoroughly studied. Dougherty [10], [11] considers the
lateral buckling of an elastic beam subject to uniformly distributed load as well as a central point
load and end moments. In the studies, gravity load of the beam is modeled as a uniformly
distributed load applied on the top surface of the beam. A numerical approach is employed to
solve for the critical load for the beam.

The loads applied on the beam in the study [10], [11] appear to be proportional in that the
point force and the uniformly distributed load, for example, vary at the same rate, if necessary.
In this currently study, gravitational load and other applied forces are non-proportional. Thus the
buckling problem under the influence of gravity is formulated as a constrained eigenvalue
problem. Kerstens [12] provides a review of methods employed in solving constrained
eigenvalue problems. Cheng et al. [13] present a classic study of the buckling of a thin circular
plate. In the study, Ritz method is employed to solve the first buckling load of the circular plate
with boundary fixed. The only load is the in-plane gravity. Kumar and Healey [14] present a
study of stability of elastic rods. The generalized eigenvalue problem consists of a set of
constraint equations imposed on the nodal displacements of the model. There is no constraint on
the eigenvalue itself. Efficient numerical methods are presented to solve the first few lowest
natural eigenvalues. Zhou [15] examines an algorithm for the design optimization of structure
systems subject to both displacement as well as eigenvalue (natural frequency) constraints. An
iterative algorithm based on Rayleigh Quotient approximation is shown to be efficient in solving
the dual constraint eigenvalue problems.

In this paper, the problem to be tackled is given and formulated in mathematical form in
Section 2. The deviation of the current problem from the others is disclosed. It is shown that
addressing the current problem using the usual treatment would lead significant errors. Section 3
presents a simple algorithm for solving the problem efficiently. The proposed algorithm is tested
using three numerical examples in Section 4. It is seen from the examples that the proposed
algorithm has achieved excellent accuracy.



2. MATHEMATICAL STATEMENT OF THE CURRENT PROBLEM

To determine the buckling load of a structure, the following eigenvalue problem needs to be
solved.

[K-2K/|[U=0 (1)

where 1 is the eigenvalue or load factor, U is the nodal displacement vector, K is the usual
stiffness matrix of the structure, and K, is the stiffness matrix of the same structure due to stress
stiffening from an externally applied force f of arbitrary magnitude [2], [3]. That is, for a non-
trivial solution to exist, the determinant of the multiplier matrix must be zero.

|K— 2K/ || = 0. (2)
Once the eigenvalues are found, the critical buckling load f; of the structure is given as follows.

fe=Mf, (3)

where 4, is the lowest eigenvalue.
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Figure 1 Schematic of the present problem — an object subject to both external force f; and
acceleration a;.

For the current problem, as depicted in Figure 1, the deformable object is loaded with a
reference force f = ||f;|| while being subject to a given acceleration motion a, = ||a;||. As a
result, there would be two stress stiffening matrices due to the applied load and acceleration, K
and K, respectively. It is our goal to determine the buckling load of the structure while it is
under the given acceleration. Thus for the current problem an eigenvalue system to be solved
may be given below.

[K—-2A(K; +Kg,)]JU=0, (4)



After the eigenvalue problem is solved, the critical buckling load of the structure can be
determined using Eqn. ( 3). Meanwhile, there would be a “critical acceleration” which in
combination with the critical load would cause the structure to be in an unstable state. The
acceleration under the critical condition a. is no longer equal to the original acceleration aj.
Rather it is the one determined as follows.

a. =/11a0. (5)

Unless 4; = 1, a, # ay. Clearly, the above methodology does not provide the correct solution to
the problem.
Consider the following constrained eigenvalue problem.

[K—A(K; + aK,)|U = 0, (6)

where K, Kyare the same matrices as before, K, is the stress stiffening matrix using a reference
acceleration a, and a is an unknown participation factor. One of the eigenvalues Ay, typically 4,
of the above eigenvalue problem is subject to the following condition / constraint.

aal, = ao, (7)

where ay is the given constant acceleration. Of concern is the buckling load f. of the structure
while the acceleration remains at ag. Since a is a reference number, we may choose a = 1 for

convenience.
Other constrained eigenvalue problem is given below [14], [12].
A BT[(Uy_ ,[C 07(U g
B O {V}_A[O O{V}' (8)
Or,
AU + BTV = ACU, (9)
subject to
BU = 0. (10)

The above problem sees its applications in determination of the vibration modes of a structure
when there are a few equality constraints imposed on the some nodal displacements in the model.

3. NUMERICAL ALGORITHM

For a given structure, the total stiffness matrix K can be readily formed first. The stress stiffening
matrix Ky can be obtained by selecting an arbitrary f which remains the same throughout the
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following numerical scheme until the unknown « is determined. To obtain the stress stiffening
matrix K,due to acceleration, we may choose a = 1 for convenience. In the following numerical
scheme, the value of the participation factor a is varying by an increment of choice. In essence,
the acceleration is also varying by the same increment.

A trial-and-error method is presented to solve the constrained eigenvalue problem Eqns. ( 6)
and ( 7). In the trapping scheme seen in Figure 2, the eigenproblem is solved using a series of
guessed values of a;. For each a;, once the smallest eigenvalue 4; is found, the value a; is
calculated using Eqn. ( 7) a; = 21ja;. The computing cycle continues until the target value ay is
trapped within the interval: a; < ag < a;41.

a=a

Figure 2 The trapping scheme for finding unknown a.

It is more convenient to introduce a natural coordinate ¢, —1 < £ < +1. From the following
linear interpolation, we can determine the natural coordinate ¢ corresponding to the target value
aop.

aOZ%(l_f)ai-}'%(l-}'f)aHl- (11

§=Q2ay—a;—aj41)/(—a; + aj4q). (12)

Upon substituting this natural coordinate into the following interpolation equation, the unknown
participation factor can be determined.

a=2(1-a;+5 1+ Hap. (13)

The eigenproblem Eqn. ( 6)is solved one last time using the participation factor found from Eqn. (
13). The eigenvalue found together with the participation factor in Eqn. ( 13) constitute the
solution to the constrained eigenvalue problem. The algorithm of this numerical scheme is given



in the flowchart in Figure 3. In the following section, we use three examples to demonstrate the
accuracy and efficiency of the algorithm presented here.
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Figure 3 Flow chart for determination of buckling load.

4. APPLICATION EXAMPLES

All the examples presented in this section are two-dimensional; the algorithm can be extended to
three-dimensional cases easily. A theoretical solution in approximate form exists for the first
example, which serves as the guide for validating the accuracy of the proposed algorithm. In the
other two examples, the purpose is to demonstrate the efficiency of the numerical algorithm. It is
not intended to identify the worst case scenario.



4.1 Buckling of a Beam under Gravitational Force

As depicted in Figure 4, an elastic beam is subjected to a point force F at the upper free end as
well as the gravitational pull. The theoretical solution of the buckling load is given
approximately as [1].

m2El
412

Q

E,, — 0.3pgAL, (14)

where EI is the flexural rigidity, p the density, 4 the cross-sectional area, and L the length of the
elastic beam. In the numerical example, a wide-flange beam is used. The magnitude for the
gravity is g = 9.81 m/s>. Note that the beam would buckle due to its own weight if the following
equation holds [1].

7.837EI
2

(PgAL)¢er = (15)
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=

Figure 4 An elastic steel (E = 200 GPa, p= 7,870 kg/m’) beam subject to gravitational force and
an axial force F. Length of beam L =5 m. For the wide-flange beam: cross-sectional area 4 =
158x10° m? and moment of inertia 1.=2.725x% 10° m*.

In the finite element model, twenty five two-dimensional beam elements are used to model
the vertical beam in Figure 4. Each node of the beam element has three degrees of freedom: two
translational displacements and one rotation. Table 1 reveals a few calculation steps used to trap
the desired acceleration g = 9.81 m/s” between the 4™ and the 5t steps. Here, the reference load
selected is /=10 N. Therefore,

a, = 9.7455; as = 10.3071.



From Eqn. ( 12)the natural coordinate corresponding to the gravitational acceleration g is:
§=-0.7701.
The participation factor determined through Eqn. ( 13) is:

a = 2.7787.

Table 1 Numerical calculation of finding the buckling load for the elastic beam in Figure 4.

No. F,. N a A a, m/s’
1 10 2 39121 7.8242
2 2.25 3.7813  8.5079
3 2.5 3.6588 9.1470
4 2.75 3.5438 9.7455

5 3 3.4357 10.3071
With the combination of F' = 10 N and a = 2.7787, the eigenvalue problem Eqn. ( 6) gives 4, =
3.5311. Consequently, the beam is subject to the acceleration a = ai; = 2.7787%3.5311
9.812m/s*, which is the gravitation acceleration now. And, the buckling load for the beam is:

F., = FA; = 35.311 N. The approximate theoretical solution to the problem according to Eqn. (
14) is

F., ~ 35.141N.

The difference between the two solutions is less than 0.48%.

4.2 Buckling of a Truss Structure

Figure 5 shows a plane truss of a simplified crane. It has three point masses at three different
locations. The mass m; at point A represents the mass of a counterweight, while m, = m3 are the
masses of the control unit of the crane at points D and E. The truss is constrained from
translational movement at points A and B. Note that all members of the truss and the two cables
are made of steel (E = 200 GPa, p = 7,870 kg/m’). It is our intent to determine the maximum
load W, that the truss can carry at point F prior to buckling.
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Figure 5 A plane truss with three concentrated masses m;, m,, m3 = m; at points C, D, and E,
carries a payload W. Given masses are m; = 1,000 kg, m> = 2,000 kg. Truss is fabricated by
pinning bars with circular cross-section | = 25 mm, and radius of cable r, = 25 mm.

In this example, 74 link elements are used for the bars and cables. Each node has two
translational degrees of freedom. Three point elements are used to model the masses at points C,
D, and E. In the numerical calculation shown in Table 2, the first value chosen for o overshoots
the target acceleration g = 9.81m/s”. Its value is decreased to & = 0.0011 and a proper acceleration
is realized. Therefore,

a, = 9.3238; as = 10.0955.

Table 2 Numerical calculation of finding the buckling load for the plane truss in Figure 5.

No.  W,KN a A a, m/s’
1 1.0 0.002 7738.3 15.4766
2 0.0015 7757.9 11.6369
3 0.0011 7773.7 85511
4 0.0012 7769.8  9.3238
5 0.0013 7765.8 10.0955

From Eqn. ( 12) the natural coordinate corresponding to the gravitational acceleration g is:
& =0.260.
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The participation factor determined through Eqn. ( 13) is:
a =0.001263.

The eigenvalue problem Eqn. ( 6) is solved one final time using ' = 1.0 KN and o = 0.001263
which results in A} = 7767.3. The downward acceleration the plane truss subject to is @ = ad; =
0.001263 x 7767.3 =9.810 m/s>. And, the buckling load for the beam is:

W, =WA, =7767.3 KN.

Figure 6 The 2D truss buckles in the first mode when W, = 7767.3 KN.

The truss in the first buckling mode is shown in Figure 6. Note that upon solving the eigenvalue
problem from Eqn. ( 1) using the stress stiffening matrix K of the truss structure stemming from
the reference force F = 1.0 KN and the gravitational acceleration g = 9.810 m/s>, the eigenvalue is
A1 = 145.03. This indicates that the buckling load would have been W, = WA; = 145.03 KN,
which is only 2% of the buckling load using the current algorithm. To cause the truss structure to
buckle at this load the gravitational acceleration would have to be a = g4; = 9.81 x 145.03 =
1422.72 nys’.

4.3 Buckling of a Plane Frame

In the third example, a traveling hoist installed on a plane frame is carrying a payload W. In
addition to the mass of the hoist at point D, m,, there is another mechanism at point C with mass
m;. The upper horizontal beam of the frame is of a C-shaped cross-section, while the vertical
beams are of wide-flange. It is of interest to know the buckling load W, of the frame when the
hoist is located at point D.
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Figure 7 A plane frame with a stationary mass m; and a traveling hoist of mass m, carries a
payload W. Given dimensions 2 =6 m, w =4 m, a; = | m, a, =3 m, and masses are m; = 100 kg,
my =200 kg. Cross-sections of beams, A-A: 4; = 484% 10° m? and 1= 4.204x% 10 m4, and B-B:
Ay =384x10° m?, and I, = 9.620x10" m*,

As indicated in Table 3 steps 4 and 5 trap the target acceleration g = 9.81 m/s* when the
reference load selected is W= 1,000 N. Therefore,

a, =9.6274; ag = 10.0128
From Eqn. ( 12) the natural coordinate corresponding to the gravitational acceleration g is:
§ =—-0.05241.
The participation factor determined through Eqn. ( 13) is:

a = 10.9476.

Table 3 Numerical calculation of finding the buckling load for the plane frame in Figure 7.

No. F, N a A a, m/s’
1 1000 4 1.7874 7.1496
2 6 1.3904 8.3424
3 8 1.1377 9.1016
4 10 0.9627 9.6274
5 12 0.8344 10.0128
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With the combination of W= 1,000 N and o = 10.9476, the eigenvalue problem Eqn. ( 6) gives 4;
=0.8974. It yields the beam being subject to the acceleration a = a; = 10.9476x0.8974 = 9.824,
which is the gravitation acceleration now. And, the buckling load for the frame is: W, = WA, =
897.4 N. It is seen from Table 3 the increment used for the calculation is Aa = 2.0. If Aa = 1.0
is used, the buckling load for the frame would be W, = 901.4 N, which represents a 0.4%
change. The deformed shape of the frame in the first buckling mode when W, = 901.4 N is
shown in Figure 8.

Figure 8 The plane frame in Figure 7 in the first buckle mode.

It is worth noting that, had the current algorithm been ignored, the buckling load of the frame
would have been W, = 977.0 N as a result of using o = 9.81 in Eqn. ( 6). It represents 8.4%
higher than the critical load predicted using the current algorithm.

5. CONCLUSION

The determination of the buckling load of an elastic structure in the presence of gravitational
force is formulated as an eigenvalue problem subject to an equality constraint correlating an
unknown participation factor and the gravitational acceleration. A methodology of solving the
constrained eigenvalue problem is presented. In the numerical algorithm, the eigenvalue problem
is solved incrementally until the desired participation factor falls within an interval. Interpolation
is employed to extract the accurate solution for the unknown. Three examples are used to
demonstrate the accuracy of the numerical algorithm. Among them, one has an approximate
theoretical solution. The solution predicted by the proposed algorithm is in excellent agreement
with the theoretical solution. From the other two examples involving two-dimensional truss and
frame, it is shown that the critical buckling loads predicted from the proposed algorithm are lower
than those from the usual procedure by a relatively significant amount. The procedure involves
some manual intervention and is laborious. It is necessary to develop an automatic numerical
scheme for the problem in the future.
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