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1. INTRODUCTION 

Buckling has been one of the main concerns in structure design against catastrophic failure for a 
long time.  Naturally the topic has attracted a large group of researchers and engineers in the past 
rendering a rich source of articles in the area.  A few textbooks in theoretical settings as well as 
numerical practices have been published and used in academia, such as [1]~[3], which provide a 
good source of references in the related fields.  Further, the numerical procedures of finding the 
buckling loads have been implemented in a few commercial codes for engineering practices, for 
example, [4] ~ [7].  The study regarding the buckling of the elastic object subject to gravity as 
well as other applied loads has received much less attention.  Roberts and associates [8], [9] 
investigate the lateral buckling of an elastic I-beam subject to uniformly distributed load using 
energy method.  Influence of such parameters as sectional warping rigidity, location of applied 
load with respect to the shear center is thoroughly studied.  Dougherty [10], [11] considers the 
lateral buckling of an elastic beam subject to uniformly distributed load as well as a central point 
load and end moments.  In the studies, gravity load of the beam is modeled as a uniformly 
distributed load applied on the top surface of the beam.   A numerical approach is employed to 
solve for the critical load for the beam. 

The loads applied on the beam in the study [10], [11] appear to be proportional in that the 
point force and the uniformly distributed load, for example, vary at the same rate, if necessary.   
In this currently study, gravitational load and other applied forces are non-proportional.  Thus the 
buckling problem under the influence of gravity is formulated as a constrained eigenvalue 
problem.  Kerstens [12] provides a review of methods employed in solving constrained 
eigenvalue problems.  Cheng et al. [13] present a classic study of the buckling of a thin circular 
plate.  In the study, Ritz method is employed to solve the first buckling load of the circular plate 
with boundary fixed.  The only load is the in-plane gravity.  Kumar and Healey [14] present a 
study of stability of elastic rods.  The generalized eigenvalue problem consists of a set of 
constraint equations imposed on the nodal displacements of the model.  There is no constraint on 
the eigenvalue itself.  Efficient numerical methods are presented to solve the first few lowest 
natural eigenvalues.  Zhou [15] examines an algorithm for the design optimization of structure 
systems subject to both displacement as well as eigenvalue (natural frequency) constraints.  An 
iterative algorithm based on Rayleigh Quotient approximation is shown to be efficient in solving 
the dual constraint eigenvalue problems. 

In this paper, the problem to be tackled is given and formulated in mathematical form in 
Section 2.  The deviation of the current problem from the others is disclosed.  It is shown that 
addressing the current problem using the usual treatment would lead significant errors.  Section 3 
presents a simple algorithm for solving the problem efficiently.  The proposed algorithm is tested 
using three numerical examples in Section 4.  It is seen from the examples that the proposed 
algorithm has achieved excellent accuracy. 
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2. MATHEMATICAL STATEMENT OF THE CURRENT PROBLEM 

To determine the buckling load of a structure, the following eigenvalue problem needs to be 
solved. 

ൣ۹ െ ܃۹௙൧ߣ ൌ ૙ ( 1)

where λ is the eigenvalue or load factor, U is the nodal displacement vector, K is the usual 
stiffness matrix of the structure, and Kf is the stiffness matrix of the same structure due to stress 
stiffening from an externally applied force f of arbitrary magnitude [2], [3].  That is, for a non-
trivial solution to exist, the determinant of the multiplier matrix must be zero. 

ฮ۹ െ ۹௙ฮߣ ൌ ૙. ( 2)

Once the eigenvalues are found, the critical buckling load fc of the structure is given as follows. 

௖݂ ൌ ଵ݂, ( 3)ߣ

where λ1 is the lowest eigenvalue. 

 

Figure 1 Schematic of the present problem – an object subject to both external force fi and 
acceleration ai. 

For the current problem, as depicted in Figure 1, the deformable object is loaded with a 
reference force ݂ ൌ ‖ ௜݂‖ while being subject to a given acceleration motion ܽ଴ ൌ ‖ܽ௜‖.  As a 
result, there would be two stress stiffening matrices due to the applied load and acceleration, Kf 
and ۹௔଴, respectively.  It is our goal to determine the buckling load of the structure while it is 
under the given acceleration.  Thus for the current problem an eigenvalue system to be solved 
may be given below. 

ൣ۹ െ ൫۹௙ߣ ൅ ۹௔బ൯൧܃ ൌ ૙, ( 4)



4 
 

After the eigenvalue problem is solved, the critical buckling load of the structure can be 
determined using Eqn. ( 3).  Meanwhile, there would be a “critical acceleration” which in 
combination with the critical load would cause the structure to be in an unstable state.  The 
acceleration under the critical condition ac is no longer equal to the original acceleration a0.  
Rather it is the one determined as follows. 

ܽ௖ ൌ ଵܽ଴. ( 5)ߣ

Unless λ1 = 1, ܽ௖ ് ܽ଴.  Clearly, the above methodology does not provide the correct solution to 
the problem. 

Consider the following constrained eigenvalue problem. 

ൣ۹ െ ൫۹௙ߣ ൅ ܃۹௔൯൧ߙ ൌ ૙, ( 6)

where K, Kf are the same matrices as before, ۹௔ is the stress stiffening matrix using a reference 
acceleration a, and α is an unknown participation factor.  One of the eigenvalues ߣ௞, typically ߣଵ, 
of the above eigenvalue problem is subject to the following condition / constraint. 

௞ߣܽߙ ൌ ܽ଴, ( 7)

where a0 is the given constant acceleration. Of concern is the buckling load fc of the structure 
while the acceleration remains at a0.  Since a is a reference number, we may choose a = 1 for 
convenience. 

Other constrained eigenvalue problem is given below [14], [12]. 

൤ۯ ܂۰

۰ ૙
൨ ቄ܃
܄
ቅ ൌ ߣ ቂ۱ ૙

૙ ૙
ቃ ቄ܃
܄
ቅ. ( 8)

Or, 

܃ۯ ൅ ܄܂۰ ൌ (9 ) ,܃۱ߣ

subject to 

܃۰ ൌ 0. ( 10)

The above problem sees its applications in determination of the vibration modes of a structure 
when there are a few equality constraints imposed on the some nodal displacements in the model. 

3. NUMERICAL ALGORITHM 

For a given structure, the total stiffness matrix K can be readily formed first.  The stress stiffening 
matrix Kf can be obtained by selecting an arbitrary f which remains the same throughout the 
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4.1 Buckling of a Beam under Gravitational Force 

As depicted in Figure 4, an elastic beam is subjected to a point force F at the upper free end as 
well as the gravitational pull.  The theoretical solution of the buckling load is given 
approximately as [1]. 

௖௥ܨ ൎ
గమாூ

ସ௅మ
െ (14 ) ,ܮܣ݃ߩ0.3

where EI is the flexural rigidity,  the density, A the cross-sectional area, and L the length of the 
elastic beam.  In the numerical example, a wide-flange beam is used.  The magnitude for the 
gravity is g = 9.81 m/s2.  Note that the beam would buckle due to its own weight if the following 
equation holds [1]. 

ሺܮܣ݃ߩሻ௖௥ ൎ
଻.଼ଷ଻ாூ

௅మ
, ( 15)

 
 

Figure 4 An elastic steel (E = 200 GPa,  = 7,870 kg/m3) beam subject to gravitational force and 
an axial force F.  Length of beam L = 5 m.  For the wide-flange beam: cross-sectional area A = 

158×10-6 m2 and moment of inertia Izz = 2.725×10-9 m4. 

In the finite element model, twenty five two-dimensional beam elements are used to model 
the vertical beam in Figure 4.  Each node of the beam element has three degrees of freedom: two 
translational displacements and one rotation.  Table 1 reveals a few calculation steps used to trap 
the desired acceleration g = 9.81 m/s2 between the 4th and the 5th steps.  Here, the reference load 
selected is F = 10 N.  Therefore, 

ܽସ ൌ 9.7455;	ܽହ ൌ 10.3071. 

A

F

L A A - A

g

.
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From Eqn. ( 12)the natural coordinate corresponding to the gravitational acceleration g is: 

ξ ൌ െ0.7701. 

The participation factor determined through Eqn. ( 13) is: 

ߙ ൌ 2.7787. 

Table 1 Numerical calculation of finding the buckling load for the elastic beam in Figure 4. 

No. F, N   a, m/s2 

1 10 2 3.9121 7.8242
2  2.25 3.7813 8.5079
3  2.5 3.6588 9.1470
4  2.75 3.5438 9.7455
5  3 3.4357 10.3071

 

With the combination of F = 10 N and α = 2.7787, the eigenvalue problem Eqn. ( 6) gives λ1 = 
3.5311.  Consequently, the beam is subject to the acceleration a = αλ1 = 2.7787×3.5311 = 
9.812m/s2, which is the gravitation acceleration now.  And, the buckling load for the beam is: 
௖௥ܨ ൌ ଵߣܨ ൌ 35.311	N.  The approximate theoretical solution to the problem according to Eqn. ( 
14) is 

௖௥ܨ ൎ 35.141 N. 

The difference between the two solutions is less than 0.48%. 

4.2 Buckling of a Truss Structure 

Figure 5 shows a plane truss of a simplified crane.  It has three point masses at three different 
locations.  The mass m1 at point A represents the mass of a counterweight, while m2 = m3 are the 
masses of the control unit of the crane at points D and E.  The truss is constrained from 
translational movement at points A and B.  Note that all members of the truss and the two cables 
are made of steel (E = 200 GPa,  = 7,870 kg/m3).  It is our intent to determine the maximum 
load Wc that the truss can carry at point F prior to buckling. 



9 
 

 

Figure 5 A plane truss with three concentrated masses m1, m2, m3 = m2 at points C, D, and E, 
carries a payload W.  Given masses are m1 = 1,000 kg, m2 = 2,000 kg.  Truss is fabricated by 

pinning bars with circular cross-section r1 = 25 mm, and radius of cable r2 = 25 mm. 

In this example, 74 link elements are used for the bars and cables.  Each node has two 
translational degrees of freedom.  Three point elements are used to model the masses at points C, 
D, and E.  In the numerical calculation shown in Table 2, the first value chosen for α overshoots 
the target acceleration g = 9.81m/s2.  Its value is decreased to α = 0.0011 and a proper acceleration 
is realized.  Therefore, 

ܽସ ൌ 9.3238;	ܽହ ൌ 10.0955. 

Table 2 Numerical calculation of finding the buckling load for the plane truss in Figure 5. 

No. W, KN   a, m/s2 

1 1.0 0.002 7738.3 15.4766
2  0.0015 7757.9 11.6369
3  0.0011 7773.7 8.5511
4  0.0012 7769.8 9.3238
5  0.0013 7765.8 10.0955

 

 
From Eqn. ( 12) the natural coordinate corresponding to the gravitational acceleration g is: 

ξ ൌ 0.260. 

A B

C D E

W

m2m1 m2
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G
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Figure 7 A plane frame with a stationary mass m1 and a traveling hoist of mass m2 carries a 
payload W.  Given dimensions h = 6 m, w = 4 m, a1 = 1 m, a2 = 3 m, and masses are m1 = 100 kg, 
m2 = 200 kg.  Cross-sections of beams, A-A: A1 = 484×10-6 m2 and I1= 4.204×10-8 m4, and B-B: 

A2 = 384×10-6 m2, and I2 = 9.620×10-8 m4. 

As indicated in Table 3 steps 4 and 5 trap the target acceleration g = 9.81 m/s2 when the 
reference load selected is W = 1,000 N.  Therefore, 

ܽସ ൌ 9.6274;	ܽହ ൌ 10.0128 

From Eqn. ( 12) the natural coordinate corresponding to the gravitational acceleration g is: 

ξ ൌ െ0.05241. 

The participation factor determined through Eqn. ( 13) is: 

ߙ ൌ 10.9476. 

Table 3 Numerical calculation of finding the buckling load for the plane frame in Figure 7. 

No. F, N   a, m/s2 

1  1000  4  1.7874  7.1496

2    6  1.3904  8.3424

3    8  1.1377  9.1016

4    10  0.9627  9.6274

5    12  0.8344  10.0128
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