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Abstract. A method has been developed for detection of arbitrarily oriented multiple open 
cracks in a slender shaft or beam of circular section. The method is based on changes in the 
natural frequencies of torsion vibrations. It has been verified based on finite element data for 
shafts with two, three and four cracks. Case studies are presented for shafts with fixed-free 
and free-free end conditions. Maximum error in the prediction of location is 2 % and size is 
~23%. The method can be useful for detection of arbitrarily oriented multiple cracks.  

Keywords: Multiple crack detection in long shaft, Detection of arbitrarily oriented cracks in 
long shaft, Vibration of long shaft with multiple cracks. 

1. INTRODUCTION 

Detection of crack in shafts and beams has been the focus of number of researchers in 
the last few decades [1-21]. Changes in mechanical behaviour of a component due to presence 
of a crack facilitate its detection. Among the various methods available in the literature, 
vibration based non-destructive techniques have been shown to have potential for practical 
applications. Most of the methods based on vibration response consider the component as one 
dimensional and change in natural frequency [2 - 9] or mode shape [14,17] as the basis. Out of 
the two, the first one is more widely considered. Ruotolo and Surace [18] have used weighted 
combination of these two in developing an optimization algorithm for the detection. Some 
investigators [10,11] have used change in forced vibration responses for the same purpose. 

A review of the methods for detection of multiple cracks is presented by Sekhar [19]. 
Liang et al. [9], Hu and Liang [4] and Patil and Maiti [16] indicate that the problem of 
detection of multiple cracks of the same orientation in rectangular beams can be handled in 
two stages. In the first stage the focus is on localisation of a crack; in the second stage, the 
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determination of exact location and size are addressed. Xiaoqing et al. [20] and Khiem and 
Lien [6] have formulated the forward problem of finding frequency of beams with multiple 
cracks by transfer matrix method. For solving the inverse problem an optimization method is 
given by Khiem and Lien. In methods based on sensitivity analysis [3,7], sensitivity of the 
frequency to the unknown crack parameters is first established. The crack details are predicted 
subsequently through an inverse analysis. Of late, researchers [1, 10] have reported usefulness 
of wavelet based transformation of mode shapes for detection of multiple cracks. 

With an increase in number of cracks, number of unknown parameters increases. This 
adds to the complexity of the problem. Although multiple crack problems are widely 
encountered in practice, relatively few methods of solution are available. If these cracks have 
different orientation angles the problem gets further complicated; bending, torsion and axial 
vibrations get coupled [12,15]. Chasalevris and Papadopoulos [1] have addressed such 
problems with two arbitrarily oriented breathing cracks in a continuously rotating shaft. They 
have used wavelet based transformation of deflected shape of the rotating shaft with cracks to 
identify the crack locations. They have employed frequencies of vibration to predict further 
the depths and orientations of the individual cracks. Detection of such cracks for components 
other than rotating shafts has not yet been addressed. In the present study, detection of 
arbitrarily oriented multiple open cracks in slender circular shafts (with length/diameter ratio 
> 12) is examined.  

2. METHOD OF DETECTION 

A slender shaft with two arbitrarily oriented cracks with straight front is considered 
(Figure 1). Cracks are assumed to remain always open during a cycle of vibration. 

 

Figure 1. Schematic of a slender shaft with arbitrarily oriented two cracks. 



 
 

Papadopoulos and Dimarogonas [15] and Naik and Maiti [12] have shown that for 
short (i.e. Timoshenko) shafts or beams with arbitrarily oriented cracks, flexural vibrations in 
two mutually perpendicular directions are coupled. Further the torsion and longitudinal 
vibrations are also coupled with the flexural vibrations. However, for slender (i.e. Euler-
Bernoulli) shafts or beams the shear deformations are negligible. Therefore, though the 
flexural vibrations in the two orthogonal planes are coupled, the torsion vibration remains 
uncoupled with the flexural vibrations. This issue is utilized here to detect arbitrarily oriented 
multiple cracks. In the procedure followed, the cracks are localized in the first stage of 
solution, and, in the second stage, location and size of individual crack are determined.  

2.1. Damage Localization 

For the analysis, a given component is virtually split into a convenient number of 
segments of equal size. In the presence of cracks, the potential energy of each segment 
reduces, which depends on the crack size. This reduction is represented by a dimensionless 
parameter, whose value varies from 0 to 1. Value 0 corresponds to no crack and 1 corresponds 
to full separation of the segment. Through the procedure given by Patil and Maiti [16] it is 
possible to relate under purely linear elastic situation these damage parameters linearly to the 
change in natural frequency in a given mode. Knowing the changes in a set of natural 
frequencies these parameters can be solved for. In turn, the unknown crack location and size 
corresponding to each of the damage parameters can be determined. The linear relationships 
between the changes in natural frequencies and the damage parameters are obtained as 
follows. 
  The natural frequency ωn of mode n of a crack-free shaft is given by Rayleigh 
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θn is nth torsion mode shape of the shaft, G  is rigidity modulus, J is polar moment of inertia of 
cross-section, Imx is the mass moment of inertia of a unit length of the shaft about the bending 
axis and L is the shaft length. In Eqn.(1), Un represents maximum potential energy of the 
crack-free shaft in the natural mode n and Dn represents the maximum kinetic energy divided 
by 2

nω  in the same mode. Change in ωn due to crack/cracks in mode n, nωΔ ,  is given by 
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It can be assumed that there is negligible difference between overall torsion mode shapes of 
the component with and without cracks. Further, the kinetic energy of the shaft in a particular 
mode does not change appreciably due to presence of a crack or cracks. Therefore  
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ΔUn represents the reduction in potential energy due to all the cracks. Following Patil and 
Maiti [16], the shaft is virtually divided into m number of segments. Each of these segments 
may have a crack. Therefore the maximum number of cracks that can be handled 
simultaneously by this method is m. If a shaft or beam segment has a crack, its energy reduces 
from the level corresponding to the crack-free geometry. Representing this reduction by a 
fraction Si for segment i, Eqn. (3) is rewritten as follows. 
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Uni is the potential energy of shaft segment i when it is crack-free.  

The damage parameters are independent of the mode of torsion vibrations and are 
dependent only on crack size. Considering N number of modes, a set of simultaneous 
equations is obtained. 
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It may be noted here that changes in frequencies of the number of modes (N) to be 
provided as input is a function of the number of cracks to be detected. For any crack its 
location and size are the two unknowns, if the orientation is ignored. For detecting therefore, 
nc number of cracks, changes in minimum (2nc+1) number of frequencies are required as 
input. The number of segments in the shaft for such a case should at least be nc, because each 
segment can have at the most one crack.  

A typical element hni of matrix [H] corresponding to mode n and segment i of the shaft 
is as follows. 
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The integration limits Li and Li-1 are the end coordinates along the shaft axis of segment i. 

Natural frequencies obtained by either experiment or numerical simulations are the 
basis to obtain the left hand side of the set of Eqn.(5). In the present study, the natural 
frequencies of shafts with and without cracks were obtained by finite element analysis using 
ANSYS10 and the shafts were split into ten segments for all the cases reported here. The 



 
 

coefficients of [H] matrix were evaluated through Eqn.(6).  The set of equations obtained 
through Eqn.(5) were solved to obtain the damage parameters. The number of nonzero 
damage parameters thus obtained indicates the number of cracks present. 

2.2. Prediction of Crack Location and Depth 

To find out the crack location and size of a crack corresponding to a non-zero damage 
parameter, in the second stage of solution, the changes in natural frequencies are obtained 
from Eqn.(5) by setting all other damage parameters except the one under consideration as 0.  
The given shaft is now considered with a single crack. Vibration of each segment is governed 
by a second order partial differential equation [12]. 
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ρ and G is density and rigidity modulus of shaft or beam material respectively. Its solution can 
be written in the following form. 

( , ) ( sin cos )( sin cos )x t A x B x C t D tψ λ λ ω ω= + + .    (8) 

G
ρλ ω= , ω  is circular natural frequency, A, B, C and D are arbitrary constants. The 

expression within the first set of brackets represents the mode shape. The mode shapes for the 
two segments of a shaft with a crack (Figure 2) can be represented separately as follows. 

 

Figure 2. Representation of crack by equivalent rotational spring 
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θ1 and θ2 represent the modal rotation amplitudes of the two segments, cn cn G
ρλ ω= , and 

cnω stands for circular natural frequency of shaft with a crack in mode n. A1, A2, B1 and B2 are 
arbitrary constants. By ensuring that the two mode shapes satisfy the boundary conditions and 
the continuity and compatibility conditions at the crack section the characteristic equation of 
vibration of the shaft with single crack is obtained. The continuity of torque and compatibility 
of rotation at the crack location is given by the following relations.  
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β1 is the crack location and k is the spring stiffness representing the crack. The characteristic 
equation of a shaft with a single crack, for example, with fixed-free end conditions, has the 
following form. 
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Eqn.(11) can be employed to plot the variation of K with β1 for at least three natural 
frequencies calculated using changes in the damage parameter. The intersection of three 
curves gives the required crack location and the corresponding spring stiffness K. To obtain 
the crack size from K, the following relation based on the compliance coefficients given by 
Naik and Maiti [12] is used.  
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ν is Poisson’s ratio. The proposed method has been tested for shafts with two, three and four 
cracks and fixed-free and free-free boundary conditions. 

3. CASE STUDIES 

3.1. Fixed-free End Conditions 

A steel cantilever shaft with Young’s modulus 210GPa and Poisson’s ratio 0.33 is 
considered for the numerical experiments. Length of the shaft is 0.8m and diameter is 0.04m. 
These shaft dimensions correspond to a slender configuration. Cases with two, three and four 
cracks have been studied. The case details and the input natural frequencies, obtained by finite 
element analysis (ANSYS 11), are given in Table 1. 

For a fixed-free shaft, matrix [H] is obtained noting that its typical element  
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βl and βr  are the dimensionless coordinates of the left and right ends respectively of the 
segment i. Using the finite element data, Eqn.(5) is solved for the damage parameters Si using 



 
 

Table 1. Input data for prediction of of multiple cracks in fixed–free shaft. 

Crack parameters 
Torsion natural frequencies (Hz) 

Location  
(β/L) 

Depth 
(a/h) 

Orientation 
with vertical 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

No crack 981.44 2944.33 4907.25 6870.22 8833.26 10796.41 12759.64 14723.03 16686.57 

0.15 0.3 0 
970.78 2930.22 4898.85 6842.00 8780.53     0.25 0.25 0 

0.15 0.3 0 
970.88 2930.26 4898.92 6842.71 8780.97     0.25 0.25 45 

0.15 0.3 0 
970.84 2930.27 4898.92 6842.20 8779.68     

0.25 0.25 90 

0.15 0.3 0 

969.14 2930.42 4888.08 6833.35 8779.74 10704.88 12638.82     0.25 0.25 45 

0.35 0.2 0 

0.15 0.3 0 

968.97 2930.25 4888.11 6832.28 8777.61 10704.43 12637.62     0.25 0.25 90 

0.35 0.2 0 

0.15 0.3 0 

967.61 2928.27 4877.23 6831.42 8754.77 10704.70 12606.67 14555.89 16488.43 
0.25 0.25 90 

0.35 0.2 0 

0.45 0.2 0 



 
 

‘lsqnoneg’ command of MATLAB. Number of nonzero damage parameters represents 
number of cracks present in the shaft. The total number of input frequencies is kept as 
(2nc+1), when nc is the number of unknown cracks. Corresponding to a damage parameter the 
first three natural frequencies of the shaft with crack are obtained through Eqn.(5). Employing 
one frequency at a time, λcn is obtained and it is given as input to the characteristic equation 
Eqn.(11)  to plot a variation of K vs. β1 (Figure 3). 
                   Three such variations corresponding to the three frequencies intersect at a point to 
give the crack location and the spring stiffness K. If the three curves do not intersect at a 
point, the centre of gravity of the smallest triangle formed by the three paired intersections is 
taken as the approximate intersection point [12, 13]. The chance of getting the intersection or 
the smallest triangle improves through the zero setting [13]. The crack size is obtained using 
K and Eqn.(13). Similar exercise is carried to obtain the details of the other cracks. 

 
Zero Setting 
 
 The natural frequencies, which are given as input for the detection of single crack 
details to Eqn.(11) are principally based on finite element analysis.  Since the changes in the 
frequencies are mainly due to the cracks in the shaft, the frequencies of the corresponding 
crack-free shaft obtained by the finite element analysis should tally with the theoretical values 
obtained from Eqn.(11) using K=∞. In most cases this does not happen. To settle this 
discrepancy, correction is applied to the frequencies obtained by the finite element analysis 
through the shear modulus. This is termed as zero setting [13]. The modified shear modulus 
utilized to calculate the dimensionless natural frequency parameter λcn, which goes as input in 
the second stage to Eqn.(11), corresponding to a case with a crack in a particular mode n, is 
obtained as follows. 
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,
uncrack
fea nω = natural frequency of crack-free shaft in mode n obtained by finite element analysis, 

,
uncrack
theor nω = theoretical natural frequency of crack-free shaft in mode n calculated from Eqn.(11) 

using K=∞, ,
crack
cal nω = natural frequency of shaft with crack in mode n obtained using (S1=0, 

S2=0,…..,Si≠0, Si+1=0, …….) and Eqn.(5), and ,cor nG = corrected modulus of rigidity G. This 

zero setting must be applied at the second stage of locating an individual crack. 
Table 2 lists results for six cases. The absolute error (~0.75%) in the prediction of 

location of a crack is higher than that (~19%) in its size. This observation is consistent with 
that reported by earlier investigators, e.g. Patil and Maiti [16].  
 
 



 
 

 

(a) 

 

(b) 

Figure 3. K Vs β1 plots for (a) 1st crack and (b) 2nd crack for case 2 of Table 1. 

3.2 Free-free End Conditions 

Material and geometric properties have been taken the same as in the earlier case of 
fixed-free shaft or beam. Again, problems of two, three and four cracks were considered. 
Details of these cases are included in Table 3. In this case, typical element hni of matrix [H] 
has the form 
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Table 2. Accuracy of prediction of location and size of multiple cracks 
 in fixed–free shaft. 

Crack parameters Predicted crack parameters 

Location Depth Relative 
angle 

Location Depth 
Value % Error Value % Error 

0.15 0.3 0 0.1465 -0.3520 0.4708 17.0811 
0.25 0.25 0 0.2519 0.1903 0.3897 13.9677 
0.15 0.3 0 0.1465 -0.3521 0.4707 17.0748 
0.25 0.25 45 0.2519 0.1927 0.3856 13.5647 
0.15 0.3 0 0.1465 -0.3502 0.4691 16.9083 
0.25 0.25 90 0.2519 0.1897 0.3909 14.0940 
0.15 0.3 0 0.1463 -0.3714 0.4897 18.9692 
0.25 0.25 45 0.2522 0.2167 0.3493 9.9337 
0.35 0.2 0 0.3575 0.7542 0.2937 9.3676 
0.15 0.3 0 0.1463 -0.3720 0.4903 19.0294 
0.25 0.25 90 0.2521 0.2084 0.3608 11.0806 
0.35 0.2 0 0.3574 0.7444 0.2877 8.7658 
0.15 0.3 0 0.1463 -0.3698 0.4880 18.8039 
0.25 0.25 90 0.2520 0.2025 0.3696 11.9632 
0.35 0.2 0 0.3563 0.6268 0.2404 4.0415 
0.45 0.2 0 0.4518 0.1829 0.3172 11.7207 

 

The integration limits βl and βr are the dimensionless coordinates of the left and right ends 

respectively of segment i. 

Because of the symmetric nature of mode shape of crack-free shaft or beam in this 

case, only one half virtually split into five segments is analysed. Again the MATLAB 

command ‘lsqnonneg’ is used to obtain the values of the damage parameters. To obtain the 

locations and sizes of cracks, the following characteristic equation involving K, β1 and λcn has 

been employed.  
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For this case too the input data for six cases were obtained by finite element analysis. 
These are given in Table 3. Typical variations of normalized spring stiffness with crack 
location obtained using Eqn.(17)  in the second stage after the zero setting are shown in 
Figure 4. From such plots crack location and K are obtained. Crack size is then obtained using 
Eqn.(13). Table 4 presents the absolute error in prediction of crack location is again smaller 
(~2%) than that (~23%) in depth.  



 
 

Table 3. Input data for prediction of multiple cracks in free–free shaft. 
 

 
Crack parameters Torsion natural frequencies (Hz) 

Location  
(β/L) 

Depth 
(a/h) 

Orientation 
with vertical 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

No Crack 981.44 2944.33 4907.25 6870.22 8833.26 10796.41 12759.64 14723.03 16686.57 

0.15 0.3 0 
970.78 2930.22 4898.85 6842.00 8780.53     0.25 0.25 0 

0.15 0.3 0 
970.88 2930.26 4898.92 6842.71 8780.97     0.25 0.25 45 

0.15 0.3 0 
970.84 2930.27 4898.92 6842.20 8779.68     0.25 0.25 90 

0.15 0.3 0 

969.14 2930.42 4888.08 6833.35 8779.74 10704.88 12638.82   0.25 0.25 45 

0.35 0.2 0 

0.15 0.3 0 

968.97 2930.25 4888.11 6832.28 8777.61 10704.43 12637.62   0.25 0.25 90 

0.35 0.2 0 

0.15 0.3 0 

967.61 2928.27 4877.23 6831.42 8754.77 10704.70 12606.67 14555.89 16488.43 
0.25 0.25 90 

0.35 0.2 0 

0.45 0.2 0 



 
 

4. CONCLUSIONS  

Presence of arbitrarily oriented multiple cracks in a component results in coupling of 
axial flexural and torsion vibrations. For slender components however, the torsion vibrations 
remain decoupled. This fact is utilized to develop a method based on changes in torsion 
natural frequency to detect arbitrarily oriented multiple open cracks in slender shafts. The 
approach can be applied to beams of circular cross-sections. The performance of the method 
proposed has been demonstrated through numerical studies in the case of fixed-free and free-
free shafts involving two, three and four cracks simultaneously. More case studies are 
reported in [5].  The maximum error in prediction of location and size of crack is less than 2% 
and 23% respectively. It is recommended that the number of input frequencies be kept as 
(2nc+1) for detecting nc number of cracks. Since the torsion natural frequencies are not 
dependant on the orientations of the cracks, the method proposed cannot predict the crack 
orientations. Further studies are required to facilitate the predictions of individual crack 
orientations.  
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Table 4 Accuracy of prediction of location and size of multiple cracks 
 in free–free shaft. 

Crack parameters Predicted crack parameters 

Location 
(β/L) 

Depth 
(a/h) 

Relative 
angle (o) 

Location Depth 
Value % Error Value % Error 

0.15 0.3 0 0.1549 0.4940 0.4583 15.8290 
0.25 0.25 0 0.2501 0.0140 0.4001 15.0050 
0.15 0.3 0 0.1550 0.4980 0.4601 16.0080 
0.25 0.25 45 0.2502 0.0150 0.3948 14.4830 
0.15 0.3 0 0.1550 0.5003 0.4611 16.1100 
0.25 0.25 90 0.2501 0.0144 0.3976 14.7570 
0.15 0.2 0 0.1299 -2.0110 0.2616 6.1560 
0.25 0.25 45 0.2498 -0.0170 0.4811 23.1110 
0.35 0.3 0 0.3584 0.8440 0.3991 9.9070 
0.15 0.2 0 0.1338 -1.6200 0.2682 6.8200 
0.25 0.25 90 0.2498 -0.0160 0.4794 22.9440 
0.35 0.3 0 0.3584 0.8440 0.3990 9.8990 
0.15 0.2 0 0.1443 -0.5700 0.3042 10.4240 
0.25 0.2 90 0.2501 0.0090 0.2774 7.7370 
0.35 0.25 0 0.3583 0.8250 0.3836 13.3550 
0.45 0.3 0 0.4449 -0.5130 0.4967 19.6700 

 
 

[15] Papadopoulos C.A. and Dimarogonas A.D., “Coupled  longitudinal and  bending  
        vibrations of a rotating  shaft  with an open crack”.  J. of Sound and Vibration, 117(1),  
        81–93, 1987.  
[16] Patil D.P. and Maiti S.K., “Detection of multiple cracks using frequency measurements”. 
        Eng. Fracture Mechanics, 70(12), 1553–1572, 2003. 
[17] Rizos P.F., Aspragathos N. and  Dimarogonas A.D.,  “ Identification of crack location 
        and magnitude in a cantilever  beam  from the  vibration modes”. J. of Sound and 
       Vibration, 138(3), 381–388, 1990. 
[18] Ruotolo R. and Surace C., “Damage assessment  of multiple  cracked  beams:Numerical 
        results and experimental validation”. J. of Sound and Vibration, 206(4), 567–588, 1997. 
[19] Sekhar A.S., “Multiple crack effects and identification”, Mechanical Systems and Signal  
        Processing, 22(4), 845-878, 2008. 
[20] Xiaoqing Z., Qiang H. and  Feng L.,  “Analytical  approach  for detection  of multiple 
        cracks in a beam”. J. of Engineering Mechanics, 136(3), 345–357, 2010. 


