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Abstract. An abstract framework for constructing finite element multiscale methods is pre-
sented. Using this framework we propose and compare two different multiscale methods,
one based on the continuous Galerkin finite element method and one on the discontinuous
Galerkin finite element method. In these multiscale methods the solution is split into coarse
and fine scale contributions. The fine scale contribution is obtained by solving localized con-
stituent problems on patches and is used to obtain a modified coarse scale equation. The
localized constituent problems are completely parallelizable i.e, no communication between
the different problems are needed. The modified coarse scale equation has considerably less
degrees of freedom than the original problem. Numerical experiments are presented where
the effect of the patch size of the local constituent problems as well as the convergence of the
multiscale methods are investigated and compared for the proposed multiscale methods. We
conclude that for a given accuracy and a fixed number of patches, smaller patches can be
used for the discontinuous Galerkin multiscale method compared to the continuous Galerkin
multiscale method.
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1. INTRODUCTION

There are numerous applications which involves solutions that varies over several dif-
ferent scales, for example flow in porous media such as oil reservoir simulations and CO2

storage. These, so called multiscale problems, are often impossible to solve with standard
single mesh methods since the finest scale needs to be resolved to get a reliable result, see e.g.
[5].

To resolve this problem several multiscale methods have been developed during the
last two decades e.g., the Multiscale Finite Element Method (MsFEM) by Hou and Wu [9] and
the Variational Multiscale Method (VMS) by Hughes [10]. See also [8,7,12] and references
therein for recent development and exposition. Using the framework of the Variational Mul-
tiscale Methods Larson and Målqvist introduced the Adaptive Variational Multiscale method
[11]. This method has further been developed in [12], where the framework for constructing
multiscale methods used in this paper is presented and further discussed.
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Lately, there have been a lot of interest in discontinuous Galerkin multiscale methods.
Discontinuous Galerkin (DG) methods appeared in the 1970s; see [3,6] for some early work
for elliptic problem and [4,14,15] for a literature review. A desired property with DG methods
is that they admits good conservation properties of the state variable and are ideally suited for
application to complex and irregular meshes. Conservation is a crucial property for multiscale
problems. Recently proposed multiscale discontinuous Galerkin methods include e.g., [1]
based on the MsFEM, and [2] based on the Heterogeneous Multiscale Method.

In this paper a continuous Galerkin multiscale method and a discontinuous Galerkin
multiscale method for solving Poisson’s equation with rapidly variable heterogeneous coef-
ficients are studied. The continuous Galerkin version was first presented in [11], while the
DG version is new. In the proposed multiscale method the solution is split into coarse and
fine scale contributions. The fine scale contribution is obtained by solving localized con-
stituent problems on patches and is used to obtain a modified coarse scale equation. Both a
symmetric and a non-symmetric version of the modified coarse scale equation are presented.
Numerical experiments are presented, where the size needed for the constituent problems to
get a sufficient approximation as well as the convergence of the different multiscale meth-
ods, are investigated. We conclude that for a given accuracy and a fixed number of patches,
smaller patches can be used for the discontinuous Galerkin multiscale compared to the contin-
uous Galerkin multiscale method. On the coarse scale the discontinuous Galerkin multiscale
method is approximating the L2-projection, rather than the nodal values, which is the case for
continuous Galerkin multiscale method. The property of approximating the L2-projection is
preferable in a multiscale setting. Also, DG has better conservation properties than CG.

The precise setting of the paper is the following. We consider the following model
problem:

−∇ · α∇u = f u ∈ Ω,

n · ∇u = 0 u ∈ ∂Ω,
(1)

where Ω ⊂ Rd for d = 1, 2, 3, is a polygonal domain and α ∈ L∞(Ω), such that α > β >

0, β ∈ R has multiscale structure. Equation (1) has a unique solution u ∈ H1(Ω) up to a
constant for each f ∈ L2(Ω) provided that

∫
Ω
f dx = 0 is satisfied. Defining the L2-scalar

product as (·, ·)L2(ω) on a domain ω ⊆ Ω, the weak formulation of (1) reads: find u ∈ V = H1

such that
(α∇u,∇v)L2(Ω) = (f, v)L2(Ω), ∀v ∈ V . (2)

The rest of the paper is organized as follows. In Section 2, we present the different
finite element methods needed to construct the multiscale methods. In Section 3 an abstract
framework for constructing multiscale methods as well as the specific multiscale methods
used in the numerical examples are proposed. Section 4, is devoted to some implementation
details. Finally, in Section 5 numerical experiment are presented.

2. FINITE ELEMENT METHODS

Let K = {K} be a shape-regular mesh and let Γ denote the set of all edges (or faces
in 3D) of the mesh K. The set Γ is the union of two disjoint subsets Γ = ΓI ∩ ΓB, where ΓI

is the union of the interior edges and ΓB the union of the boundary edges. Given an interior



edge e = ∂K+ ∩ ∂K− ⊂ ΓI for K+, K− ∈ K, denote K+ the element with the higher index
and n as the outward unit normal of K+ on e. Defining v+ := v|∂K+ and v− := v|∂K− , we set
the average and jump operator as,

{v} =
1

2
(v+ + v−), [v] = v+ − v−, (3)

for e ∈ ΓI and
{v} = v+, [v] = v+, (4)

for e ∈ ΓB. Also, for a non negative integer p, we denote by Pp(K), the set of all polynomials
on K of total degree at most p.

2.1. Continuous Galerkin method

In the continuous Galerkin (CG) finite element discretization we are using a conform-
ing approximation of the test space i.e., Vh = {v ∈ V : v|K ∈ Pp(K), ∀K ∈ K} ⊂ V .
Given a bilinear form Bcg : V × V → R and a linear functional Fcg : V → R, the continuous
Galerkin method reads: find uh ∈ Vh such that

Bcg(uh, v) := (α∇uh,∇v)L2(Ω) = (f, v)L2(Ω) =: Fcg(v), ∀v ∈ Vh. (5)

2.2. Discontinuous Galerkin method

In the discontinuous Galerkin method discretization we use a non-conforming approx-
imation i.e., Sh = {v ∈ L2(Ω) : v|K ∈ Pr(K),K ∈ K} 6⊂ V . The discontinuous Galerkin
method reads: find uh ∈ Sh such that

Bdg(uh, v) = Fdg(v), ∀v ∈ Sh, (6)

where the bilinear form Bdg : Sh × Sh → R and the linear functional Fdg : Sh → R are given
by

Bdg(v, z) :=
∑
K∈K

(α∇v,∇z)L2(K) −
∑
e∈ΓI

(
(n · {α∇v}, [z])L2(e) (7)

+ (n · {α∇z}, [v])L2(e) −
σe
he

([v], [z])L2(e)

)
,

Fdg(v) :=(f, v)L2(Ω), (8)

respectively; here he := diam(e), and σe ∈ R is a positive constant, depending on the variable
α, large enough to make the bilinear form (7) coercive with respect to the natural energy norm.
We refer, e.g., to [14,4] and references therein for details on the analysis of DG methods for
elliptic problems.

3. ABSTRACT MULTISCALE METHOD

In the VMS framework, the fine scale finite element space, Wh, is decoupled into
coarse and fine scale contributions Wh = Wc ⊕ Wf , where Wc is associated with a coarse



mesh Kc. The split between the coarse and the fine scales is determined by an inclusion
operator Ic :Wh →Wc. The coarse and fine scale contributions are defined as,Wc := IcWh

andWf := (I − Ic)W = {v ∈ W : Icv = 0}. There are several different chooses of Ic e.g.
the L2-projection ontoWc or the nodal interpolant onto the coarse mesh. Let B :W×W → R
be a bilinear form, we can then define a multiscale map T :Wc →Wf from the coarse to the
fine scale as

B(T vc, vf ) = −B(vc, vf ) ∀vc ∈ Wc and ∀vf ∈ Wf . (9)

The reference solution and the test function can be decomposed into a coarse and fine-scale
contribution; uh = uc + T uc + uf , v = vc + vf where uc, vc ∈ Wc and (T uc + uf ), vf ∈ Wf .
The multiscale problem reads: find uc ∈ Wc and vf ∈ Wf such that

B(uc + T uc + uf , vc + vf ) = F(vc + vf ), ∀vc ∈ Wc and ∀vf ∈ Wf . (10)

The fine scale component uf can be computed by letting vc = 0 in (10) and using the multi-
scale map (9). We arrive to the problem: find uf ∈ Wf such that

B(uf , vf ) = F(vf ), ∀vf ∈ Wf . (11)

The coarse scale solution is obtained by letting vf = 0 in (10): find uc ∈ Wc such that

B(uc + T uc, vc) = F(vc)− B(uf , vc), ∀vc ∈ Wc. (12)

In (12), T uc and uf are unknown and obtained by solving (9) and (11). Note that B(uc +

T uc, T vc) = 0 and B(uf , T vc) = F(T vc). Then a symmetric formulation of the coarse scale
problem is obtained by considering

B(uc + T uc, vc + T vc) = F(vc + T vc)− B(uf , vc + T vc), ∀vc ∈ Wc. (13)

The linear systems (12) and (13) has dim(Wc) unknowns, but (9) and (11) are equally hard to
solve as the original problem and need to be approximated.

3.1. Localization of the multiscale method

Let N be the index set of all nodes, {xi}, in the mesh Kc. Further, given that the
coarse space is spanned by basis functionsWc = span{φj}, letMi be the index set of all φj

such that φj(xi) = 1, in the continuous settingMi = {i} and in the discontinuous caseMi

have several entries. For each basis function φj we solve: find T φj ∈ Wf such that

B(T φj, vf ) = −B(φj, vf ), ∀vc ∈ Wf , (14)

where φj + T φj can be viewed as a modified basis function. Because the fast decay of
φj + T φj away from supp(φj), see [13] for the conforming case, we can solve (9) on small
overlapping patches ωi ⊂ Ω for each basis function φj where j ∈ Mi. DefiningWf (ωi) to
be Wf restricted to the patch ωi, (9) is transformed to: for each i ∈ N and j ∈ Mi find
T̃ φj ∈ Wf (ωi) such that

B(T̃ φj, vf ) = −B(φj, vf ), ∀vf ∈ Wf (ωi) (15)

The term (11) can be handled in i similar fashion by splitting the right hand into local contri-
butions using a partition of unity. The size of the patches is determined by adding a superscript
L, ωL

i , as in Definition 1.



Definition 1 Let {φj : j = 1, . . . , dim(Wc)} be the Lagrange basis (continuous or discontin-
uous) ofWc. The sum Φi :=

∑
j∈Mi

φj constructs a standard continuous Lagrangian basis
function. We say that ω1

i is an 1-layer patch, if ω1
i = supp(Φi). Further, we say that ωL

i is an
L-layer patch if

ωL
i = ∪{i:supp(Φi)∩ωL−1

i }6=Øsupp(Φi), L = 2, 3, . . . . (16)

Finally, the set ωL
i \ωL−1

i will be referred to as an L-ring. This is illustrated in Figure 2.

ω
1

i
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i

ω
2

Figure 1. Example of a 1 layer patch ω1
i and 2 layer patch ω2

i around node i.

3.2. Continuous Galerkin multiscale method

The split between the coarse and fine scale spaces, Vh = Vc ⊕ Vf , is realized by
choosing the inclusion operator to be the nodal interpolant; Ic = Πc. To keep the conformity
of the method the fine scale problem is solved on patches using Dirichlet boundary condition.
The multiscale problem reads: for all i ∈ N find T̃ φi, Uf,i ∈ Vf (ωL

i ) such that

Bcg(T̃ φj, v) = −Bcg(φj, v), ∀vf ∈ Vf (ωL
i ),

Bcg(Uf,i, v) = Fcg(φiv), ∀vf ∈ Vf (ωL
i ).

(17)

The modified coarse scale equations is then formulated as: find Uc ∈ Vc such that

Bcg(Uc + T̃ Uc, vc) = Fcg(vc)− Bcg(Uf , vc), ∀vc ∈ Vc, (18)

for the non-symmetric formulation and as

Bcg(Uc + T̃ Uc, vc + T̃ vc) = Fcg(vc + T̃ vc)− Bcg(Uf , vc + T̃ vc), ∀vc ∈ Vc, (19)

for the symmetric formulation. The solution to the multiscale problem is U = Uc + T̃ Uc +Uf

where Uf =
∑

i∈N Uf,i.



3.3. Discontinuous Galerkin multiscale method

Exploiting the discontinuous nature of Sh the split between the coarse and fine spaces,
Sh = Sc ⊕ Sf , is realized by choosing the inclusion operator to be the element wise L2-
projection onto Sc; Ic = Pc. This is more natural in a multiscale setting since the coarse scale
solution approximate the average on each coarse element rather than the nodal values. The
discontinuous nature of Sh also allows for using Neumann boundary conditions on the fine
scale problems. With Vc = span{φj}, we need to solve the fine scale problem: for all i ∈ N
and j ∈Mi where Φi =

∑
j∈Mi

φj find T̃ φj, U
f
i ∈ Sf (ωL

i ) such that

Bdg(T̃ φj, v) = −Bdg(φj, v), ∀vf ∈ Sf (ωL
i ),

Bdg(U f
i , v) = Fdg(Φiv), ∀vf ∈ Sf (ωL

i ).
(20)

The modified coarse scale equations are formulated as: find Uc ∈ Sc such that

Bdg(Uc + T̃ Uc, vc) = Fdg(vc)− Bdg(Uf , vc), ∀vc ∈ Sc, (21)

for the non-symmetric formulation or

Bdg(Uc + T̃ Uc, vc + T̃ vc) = Fdg(vc + T̃ vc)− Bdg(Uf , vc + T̃ vc), ∀vc ∈ Sc, (22)

for the symmetric formulation. The solution to the multiscale problem is U = Uc + T̃ Uc +Uf

where Uf =
∑

i∈N Uf,i.

4. IMPLEMENTATION

In the proposed multiscale method, the fine scale problem is perfectly parallelizable
i.e., no communication between different fine scale problems are required. Algorithm 1 shows
how the multiscale methods can be implemented. Note that the outer for-loop is perfectly
parallel. An schematic overview is given in Figure 2 where the lines between the boxes
represent communication. Also, note that the assembly of the coarse stiffness matrix and load
vector is also done in parallel, in the fine scale problems. The extra constraints on the fine
scale problems are realized using Lagrange multipliers

Algorithm 1 Multiscale Method
1: Initialize the coarse mesh with mesh size H .
2: Let the fine mesh size be h = H/2n and the size of the patches L.
3: for i ∈ N do
4: Determine the patch ωL

i .
5: for j ∈Mi do
6: Compute the fine scale contribution for the modified basis functions T̃ φj .
7: end for
8: Compute the right hand side correction U f

i .
9: end for

10: Solve the modified coarse scale problem to obtain Uc.
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Figure 2. Implementation scheme of the discontinuous Galerkin multiscale method.

5. NUMERICAL EXPERIMENTS

5.1. Decay of modified basis functions

Consider the domain ωL
i , for L = 1, . . . , N . On ωN

i for N = 8, let Kc be a coarse
mesh consisting of 16× 16 elements and Kf be a fine mesh consisting of 128× 128 elements.
Let T̃ Lφj ∈ Wf (ωL

i ) be the solution of

B(T̃ Lφj, v) = −B(φj, v), ∀v ∈ Wf (ωL
i ), (23)

computed on ωL
i and extended by 0 in Ω \ ωL

i , where φj ∈ Mi, is a basis function on the
coarse scale. Three types of permeabilities, called Ones, Period, and SPE, are used. For One,
a = 1, for Period, α = 1 or α = 0.1 with a period of 1/64 in x-direction, and SPE, data is
taken from the 31st layer permeability data in the tenth SPE comparative solution project1 and
illustrated in Figure 3. The aspect ration is amax/amin = 5.9823 ·105. The decay of the coarse
modified basis function φj + T̃ Lφj is illustrated by computing T̃ Lφj for L = 1, . . . , N − 1

using T̃ Nφj as a reference solution. The spaceWf and the bilinear form B(·, ·), are defined
as Vf and Bcg(·, ·) for the continuous Galerkin multiscale method, and as Sf and Bdg(·, ·) for
the discontinuous Galerkin multiscale method. Exponential decay, in the broken energy norm

|||v|||2 =
∑
K∈Kf

‖
√
α∇v‖2

L2(K), (24)

for L = 1, . . . , N when N = 4, is observed in Figure 4. The fast decay motivates us to solve
the constituent problems on patches ωL

i ⊂ Ω using a small number of L-rings. This, in turn,
means less computational work and a smaller overlap between the localized problems. The
DG method converges faster than CG to to the reference solution in the relative broken energy

1Tenth SPE comparative solution project http://www.spe.org/web/csp/



Figure 3. Permeability structure for SPE (c) in log scale.
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Figure 4. Convergence in the relative energy norm (24) when L = 1, 2, 3 in equation (23)
for different permeability using continuous Galerkin (solid line) and discontinuous Galerkin
(dashed line).

norm (24). Hence, smaller patches are needed for solving the local problems using DG than
CG to achieve the same accuracy.

5.2. Comparison of the continuous and discontinuous Galerkin multiscale methods

Consider the model problem (1) on the unit square Ω = (0, 1) × (0, 1). Let K be a
reference mesh with MN ×MN elements, and Kc a coarse mesh of N × N elements i.e.,
each coarse elements is further subdivided intoM×M elements. In the numerical experiment
N = 16 and M = 8. Let, f(x, y) = −1 for {0 < x, y < 1/128}, f(x, y) = 1 for {127/128 <

x, y < 1}, and f = 0 otherwise, be the forcing function. The same permeabilities, Ones, Rand
and SPE, as in Section 5.1 are used. In the numerical experiments all patches, ωL

i , are of the
same size, L, and for each iteration L is increased by one. The continuous Galerkin multiscale
method and the discontinuous Galerkin multiscale method are compared, see Figure 5. We
conclude:
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Figure 5. Convergence in the broken relative energy norm (24) when L = 1, 2, . . . , 8 for
different permeability using continuous Galerkin multiscale method (solid line) and discon-
tinuous Galerkin multiscale method (dashed line).

• To obtain a given accuracy, in the relative broken energy norm (24), the discontinuous
Galerkin multiscale method requires approximately one layer less than the continuous
Galerkin multiscale method. For a comparison of the degrees of freedom required for
the fine scale problems, see Table 1.

• This is a bit unfair comparison since the reference solution is the DG respectively CG
solution computed on the fine scale. DG has a more enriched test and trial space and
may give a better approximation than CG because of the discontinuous permeability
coefficients.

• On the coarse scale the discontinuous Galerkin multiscale method is approximating the
L2-projection rather than the nodal values, which is the case for continuous Galerkin
multiscale method. This is preferable in a multiscale setting.

• The DG method has better conservation properties which is an important property in
many multiscale applications.

Table 1. Degree of freedom for the fine scale problems
layers CGMM DGMM

1 (2n+ 1)d (4n)d

2 (4n+ 1)d (8n)d

3 (6n+ 1)d (12n)d

4 (8n+ 1)d (16n)d
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[12] A. Målqvist, “Multiscale methods for elliptic problems”. Multiscale Model. and Simul.
9, 1064-1086, 2011.

[13] A. Målqvist, D. Peterseim “Localization of elliptic multiscale problems”.
arXiv:1110.0692. Submitted, 2011.

[14] D. A. Di Pietro, A. Ern, “Mathematical aspect of discontinuous Galerkin methods”.
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