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Abstract. An atomistic potential based (AP-based) cohesive modeling methodology is briefly
presented. For this purpose, pair potentials and and multi-body potential such as EAM are
considered and their softening characteristics are shown. Based on the AP-based hyperela-
sicity with softening mechanism, the cohesive law in terms of cohesive traction and separation
displacement is obtained. The presented method is feasible and a few remarks are given.
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1. INTRODUCTION

Mechanical deformation and failure of structure and material could be classified as
inherently intrinsic multiscale behavior in which the observed macroscopic material behavior
is dominated by the procedure of different spatial and temporal scales (Curtin and Miller[1]).
Continuum mechanics performs poor at the atomistic scale. Atomistic model is viewed as
a precise model that could describe complex material behavior. However, the application of
atomistic model for engineering problems has been restricted by its insuperable computational
complexity as well as the limitation of the existing computing capacity and algorithm.

Though immature, multiscale approach as a possible solution that could combines both
the advantages of continuum and atomistic methods is in the ascendant. Molecular Dynamics
(including Car-Parrinello[2] MD and Born-Oppenheimer MD) is one of the most important
models for atomistic simulation. Kohlhoffa et al (1991)[3] proposed the first MD-FEM coupled
method with the boundary stress compatibility conditions. After that, a lot of MD-continuum
coupled methods had been given in literature. Though the MD-Continuum coupled methods
possess a lot of advantages, they still are beset by several difficulties including existing of
ghost forces, efficiency restriction imposed by the MD part etc.

Cauchy-Born rule was firstly seen in Cauchy’s derivation of linear elastic modulus
from atomistic potentials (Stakgold (1950)[4]). Born and Huang (1954)[5] systematically in-
vestigated the local homogenization kinematics theory and presented the modern form of
Cauchy-Born rule. Based on Cauchy-Born rule, Tadmor and Ortiz (1996)[6] established Quasi-
continuum theory. Dupuy and Tadmor (2005)[7] reformed the Quasi-continuum such that the
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embedded lattice in the FEM mesh is eliminated. Besides, Coarse-Grained MD by Rudd and
Broughton (1998)[8], Virtual Internal Bond theory by Gao and Klein (1998)[9] Bridge Scale
Decomposition method by Wagner and Liu (2003)[10] etc. are also important contributions.
Xiang and Cui et al (2011)[11] presented a nonlocal atomistic based continuum model in which
high order deformation gradient tensors are considered.

Cohesive laws that describes the evolution relationship between cohesive traction and
separation displacement are vital for cohesive modeling[12]. By assuming that the formation of
new solid surfaces (i.e. crack etc.) is driven by the evolution of atomistic lattice, a generalized
atomistic potential based (AP-based) cohesive modeling method is established.

2. AP-based Energy Density Function

To utilize the Atomistic Pontentials (AP), a lattice structure is needed for calculating
the system energy. In physics, the lattice could be decomposed as simple Bravais lattice and
complex lattice formed by multi simple Bravais lattices. A simple Bravais lattice is expressed
as

L̃a=
{

Xa(Î) | Xa(Î) =
∑

aieai + Oa, ai ∈ Z+
}

(1)

where {eai }i=1,2,·,d are the Bravais base vectors (see Weinan and Ming (2007)[13]). For complex
lattice, the expression is given as a combination of multiple simple Bravais lattices:

L∗
a =

{
L̃a + p1

}∪{
L̃a + p2

}
· · ·
∪{

L̃a + pk

}
(2)

where pk is the translation vector, and k is an integer.
The notion of dilative open set Ωm is introduced (see Friesecke et al (2008)[14]): Given

an arbitrary open set Ω0 ∈ Rd, where d = 1, 2, 3 and m > 0, then the dilative open set Ωm is
given as:

Ωm = {mX | ∀X ∈ Ω0, m > 0} (3)

Then the finite lattice La is given as:

La = La(m) = L∗
a

∩
Ωm (4)

Let us establish a lattice La(m) made of natom atoms for calculating the energy density
function WAP. Let’s denote the boundary the a open set Ω as ∂Ω. Likewise, the lattice
boundary of La(m) is denoted as ∂La(m). The deformation mapping ϕLa

for a given lattice is
expressed as follow

xa(Î)
= ϕLa

(
Xa(Î)

, t
)

(5)

.
Apply an given deformation gradient F in terms of displacement boundary on the

lattice, then the deformation of the internal part La − ∂La is subject to the same deformation
based on classical Cauchy-Born rule:

∀Xa(Î) ∈ ∂La

xa(Î) − oa = F
(

Xa(Î) − Oa
) } ⇒ xa(Î) − oa = F

(
Xa(Î) − Oa

)
, Xa(Î) ∈ La (6)



where Xa(Î) and xa(Î) are the Material coordinates and Eulerian coordinates of the lattice La(m).
Likewise, the Oa and oa denote the the material coordinates and Eulerian coordinates of the
reference atom a(O) in La.

Invoking Cauchy-Born rule, the AP-based energy density function WAP is expressed
as follow:

WAP (F) = lim
m→∞

∑
a(Î)Ea(Î)

|Ωm|

= lim
m→∞

∑
xa(Î), xa(ĵ)∈FLa

∑
Î ̸=ĵ

1
k
ϕ
(k)
AP

(
xa(Î), · · · , xa(ĵ), · · ·

)
|Ωm|

(7)

where |Ωm| is the volume of Ωm; FLa represents the deformed lattice under deformation F;.
Let’s denote the volume of any given atom a(Î) on the initial configuration as V0(a(Î)),

then the respective energy density function W a(Î)
AP is given as:

W
a(Î)
AP =

Ea(Î)

V0

(
a(Î)

) (8)

The volume of the finite lattice La could be obtained as:

|Ωm| =
∑

a(Î)∈La(m)

V0

(
a(Î)

)
(9)

Then equation (7) is rewriten as:

WAP (F) = lim
m→∞

∑
a(Î)∈La(m) V0

(
a(Î)

)
W

a(Î)
AP∑

a(Î)∈La(m) V0

(
a(Î)

)
= lim

m→∞

∑
a(Î)∈La(m) V0

(
a(Î)

)
W

a(Î)
AP

|Ωm|
=
⟨
W

a(Î)
AP

⟩
a(Î)∈La(m)

(10)

where ⟨·⟩ is a averaging operator. For any given finite lattice La, the respective WAP is the
total contribution of each W a(Î)

AP for a single atom.

2.1. Hyperelasticity for Continuum and Direct Coupling

For the path independent hyperelasticity model of continuum (i.e. Green Elasicity,
see Belytschko et al (2000)[15]), the respective potential functional Π could be expressed on
the initial configuration Ω0 with repect to the displacement field u:

Π(u) =
∫
Ω0

(
We

(
∂u
∂X

)
− fext(X) · u(X)

)
dΩ0 (11)

where We is the elastic strain energy density. For the general case of finite deformation, the
symmetric second Piola-Kirchhoff stress tensor S and Green strain tensor E has the following
relation:

S =
∂We(E)
∂E

= 2
∂ψe(C)

∂C
(12)



whereψe(C) is the deformation potential with respect to C and C is the right Cauchy-Green de-
formation tensor.

The hyperelasticity based on Cauchy-born rule could be derived by directly coupling
WAP and We:

We := WAP(E) (13)

By substituting equation (10) into equation (13), the second Piola-Kirchhoff stress tensor SAP

for Ωm is given as:

SAP =
∂WAP

∂E
=

∑
a(Î)∈La(m) V0

(
a(Î)

)
∂W

a(Î)
AP

∂E∑
a(Î)∈La(m) V0

(
a(Î)

) (14)

The second Piola-Kirchhoff stress tensor Sa(Î) at the position of atom a((̂I) is given
as:

Sa(Î) =
∂W

a(Î)
AP

∂E
(15)

The expression for lattice La(m) is simplified as:

SAP =
∂WAP

∂E
=

∑
a(Î)∈La(m) V0

(
a(Î)

)
Sa(Î)∑

a(Î)∈La(m) V0

(
a(Î)

) =
⟨

Sa(Î)

⟩
a(Î)∈La(m)

(16)

2.2. General Form of Pair Potential based Hyperelasticity

Let’s denote pair potential as ϕAP. For lattice La, the energy density of a single
atom a(Î) could be obtained as:

Ea(Î) =
1

2

∑
a(Ĵ)∈La\a(Î)

ϕAP

(
ra(Î)a(Ĵ)

)
W

a(Î)
AP =

1

2V0(a(Î))

∑
a(Ĵ)∈La\a(Î)

ϕAP

(
ra(Î)a(Ĵ)

) (17)

where ra(Î)a(Ĵ) = |ra(Î)a(Ĵ)| is the distance between atom a(Î) and a(Ĵ); V0(a(Î)) is the initial
volume occupied by atom a(Î) on initial configuration. Then the volume V0(La) of La is given
as:

V0(La) =
∑
a(Î)

V0(aÎ) =
natom∑
Î=1

V0(aÎ) (18)

So the energy density function WAP of lattice La is given as:

WAP =
⟨
W

a(Î)
AP

⟩
a(Î)∈La

=
1

2V0(La)

natom∑
Î=1

∑
a(Ĵ)∈La\a(Î)

ϕAP

(
ra(Î)a(Ĵ)

)
(19)

For pair potential, the second Piola-Kirchhoff stress tensor Sa(Î) is given as

Sa(Î) =
1

2V0(a(Î))

∑
a(Ĵ)∈La\a(Î)

ϕ′
AP

(
ra(Î)a(Ĵ)

) Ra(Î)a(Ĵ) ⊗ Ra(Î)a(Ĵ)

ra(Î)a(Ĵ)
(20)



2.3. Multi Body Potential and EAH

EAM is a typical multi-body potential for calculating the energy density WEAM
a(Î)

for

atom a(Î):

WEAM
a(Î)

=
1

V0

(
a(Î)

)
zα

(
ϑa(Î)

)
+

∑
a(Ĵ)∈La\a(Î)

1

2
ϕAP

(
ra(Î)a(Ĵ)

) (21)

By substituting WEAM
a(Î)

into equation (16), EAH Embedded atom hyperelasticity model in

terms of the second Piola-Kirchhoff stress tensor could be obatained (see He et al (2012)[16]).

3. Softening Check for AP-based Hyperelasticity

Hyperelasitcity theory is important in fracture mechanics. Volokh (2007)[17] point-
ed out that the traditional hyperelastic model has a defect: as the deformation increases (in
terms of right Cauchy-Green deformaton tensor C), the respective deformation energy densi-
ty ψe(C) could approach to infinity:

∥C∥ → ∞ ⇒ ψe (C) → ∞ (22)

where ∥C∥ is the tensor norm for deformation tensor C. It is not true for real material.
Volokh (2007)[17] named the traditional hyperelasticity as intact hyperelasticity and soften-
ing hyperelasticity with upper limit ψ∗ is defined as:

∥C∥ → ∞ ⇒ ψe (C) → ψ∗ = materialproperties (23)

It is easy to prove the existence of an upper limit ψ∗
LJ for Lennard-Jones potential by

adding a positive DAP to it:

ψ∗
LJ = lim

∥C∥→∞
WAP=

1

2V0(La)

natom∑
Î=1

∑
a(Ĵ)∈La\a(Î)

DAP (24)

Likewise, the deformation energy density is determined by EAM such that ψEAM =

WEAM. AndWEAM could by decomposed asWAP andWzα with respect to embedded energy:

WEAH =WAP +Wzα (25)

whereWzα is contributed by embedded atom energy. For the local support properties ofϖa(Ĵ)

lim
ra(Î)a(Ĵ)→∞

ϖa(Ĵ)

(
ra(Î)a(Ĵ)

)
= 0 (26)

and ra(Î)a(Ĵ) = Ra(Î)a(Ĵ)∥C∥

lim
∥C∥→∞

ϖa(Ĵ)

(
ra(Î)a(Ĵ)

)
= 0 (27)

When ∥C∥ → ∞, ϑa(Î) → 0. For any given zα, the following relation is satisfied:

lim
∥C∥→∞

zα → 0 (28)

Then the softening characteristics of the estabilsed EAH is found which makes it more suitable
for fracture analysis and cohesive modelling.



4. AP-based Cohesive Law

In order to establish the cohesive law based on atomistic potentials, the separation dis-
placement in terms of atomistic separation could be considered. Let’s denote the distance to
the first neighbour atom as R0, then the normal separation and tangential separation repre-
senting cracking are denoted as un and ut. Take EAH as example, the respective cohesive law
is obtained.

Take a EAM for demonstration. The chosen EAM is given as follow (Holian et al
(1995)[18] ): 

Ea(Î) =
χ

2

∑
a(Ĵ)∈La/a(Î)

ϕAP + (1− χ)zα

(
ϑa(Î)

)
zα

(
ϑa(Î)

)
=
d(d+ 1)

2

DAP

exp(1)
ϑa(Î) lnϑa(Î)

(29)

where χ is the weight of the modified pair potential ϕAP, ranges from 0 to 1; d = 2, 3 stands
for the dimension; DAP is the depth of the energy well; the backgound energy density ϑa(Î)

at the position of atom a(Î) could be obtained by summing up the ϖa(Ĵ) of the surrounding
atoms a(Ĵ):

ϖa(Ĵ)

(
ra(Î)a(Ĵ)

)
=


exp(−1)

d(d+ 1)

(
r2max − r2

a(Î)a(Ĵ)

r2max − 1

)2

0 < ra(Î)a(Ĵ) < rmax

0 rmax < ra(Î)a(Ĵ)

(30)

4.1. Normal cohesvie law w.r.t EAH

Apply normal separation in terms of deformation gradient F on the lattice La:

F (un) = I +
(
un
R0

)
e1 ⊗ e01 (31)

where e1 is the base vector on the current configuration and e01 is the respective base vector
on referential configuration. Then th Green strain tensor E(un) caused by normal separation
un is given as:

E (un) =

((
un
R0

)2

+ 2
un
R0

)
e01 ⊗ e01 (32)

Then the normal cohesive law with respect to the atomistic potential is given:

T coh
n (un) = S(E(un)) :

(
e01 ⊗ e01

)
(33)

where e1 denotes the normal direction for the separation. The obtained normal cohesive law
is shown in Fig. 1.

4.2. Tangential cohesvie law w.r.t EAH

Apply tangential separation in terms of deformation gradient F on the lattice La:

F (un) = I +
(
1 +

ut
R0

)
e1 ⊗ e02 (34)
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Figure 1. Normal cohesive law (EAH).
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Figure 2. Tangential cohesive law (EAH).

where e1 and e2 denote the normal and tangential directions. The Green strain tensor E(ut)
caused by normal separation displacement ut is given as:

E (ut) =

(
un
R0

)2

e02 ⊗ e02 +
un
R0

(
e01 ⊗ e02 + e02 ⊗ e01

)
(35)

The respective tangential cohesive with respect to EAH is expressed as:

T coh
t (ut) = S (E (ut)) :

(
e01 ⊗ e02

)
(36)

The obtained normal cohesive law is shown in Fig. 2.

5. Remarks

By the brief dicussion set out above, it is concluded that atomistic potential based
(AP-based) cohesive modeling is feasible. For further investigation, the accuracy for such AP-
based methods should be improved and validated. The AP-based cohesive modeling depends
on the material or the atomistic potentials. For different material system, it is vital to evaluate
their differences and explore their specific behavior. The cohesion between the surfaces in
front of the propagating crack tip originates from the interaction between atoms or material
particles, which makes deriving the cohesive law from APs reasonable.
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