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Abstract. The development of a CFD tool based on Discontinuous Galerkin discretization is
reported. This tool solves the compressible, Reynolds-Averaged Navier-Stokes equations for
three-dimensional, hybrid unstructured meshes. This tool is aimed at complex aerospace ap-
plications, thus requiring advanced turbulence models and an efficient numerical framework
to enhance computational performance and numerical accuracy for high Reynolds number,
high Mach number flows. Inviscid fluxes are computed by upwind Roe or HLLC schemes
and viscous fluxes are computed using BR1 or BR2 formulations. A 2nd-order accurate, 5-
stage, explicit Runge-Kutta time-stepping scheme is used to march the equations in time. The
solver computational efficiency, convergence, accuracy and parallel scalability are addressed
through flow simulations over typical validation test cases. Convergence rates for increas-
ing degrees of freedom are shown to be asymptotic, with numerical errors compatible to DG
schemes. Parallelism is shown to be conformant with the expected scalability behaviour. For
the aerospace applications considered in this paper, acceptable agreement with theoretical or
experimental results is obtained at adequate computational costs.

Keywords: Discontinuous Galerkin, compressible RANS, hybrid meshes, aerospace applica-
tions

1. INTRODUCTION

Viscous, turbulent flow simulations at high Reynolds numbers and at high Mach num-
bers are typical for aerospace applications. Such flight conditions, however, are still demand-
ing cases for computational tools due to the numerical difficulties related to the flow complex-
ities. The main flow phenomena that exercise the numerical scheme accuracy and robustness
are shock waves and turbulent boundary layers, and the interaction between them.

The rapid flow changes provoked by the shock waves usually require some sort of
local artificial dissipation in the region to avoid wiggles in the flow field. In finite volume
techniques, it is usual that the levels of dissipation applied has strong drawbacks in the solu-
tion, such as the spreading of the shock wave in typical centred schemes, or the decrease of the
order of the scheme for limiting operations typical of monotonic second-order finite volume
schemes, as reported in [9, 8]. When it comes to the final application of numerical tools to the
aerospace industry, this will have severe impact in aerodynamic forces, such as lift and drag
coefficients.

Regarding turbulent flow simulations, the computational resources required consid-
erably increase because of the need for more near-wall grid refinement. Along with the in-
creased mesh refinement, numerical stiffness, inaccuracy, and lack of robustness due to cell
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skewness are also undesirable side effects. Within this context, simple numerical schemes are
neither robust enough nor computationally efficient enough to allow solutions under accept-
able computational costs. Such issue also impacts aerodynamic force computations due to
spurious errors of the numerical scheme.

Hence, the numerical framework of a successful computational tool must be accurate
and robust enough to treat these problems. One of such numerical frameworks that consis-
tently cope with these issues is the Discontinuous Galerkin approach. As an strong feature of
this framework, the switch between mesh refinement and polynomial order increase, termed
hp method in the literature [12], allows for exponential numerical convergence with the total
number of degrees of freedom for nonlinear problems [12].

Another very important aspect of DG schemes is that, by a consistent polynomial treat-
ment of property distribution within the elements, the numerical framework is less sensitive to
mesh quality than other numerical approaches, which is also an indication of strong numerical
convergence. In a practical sense, this advantage directly translates into numerical robustness
and aerodynamic force computation accuracy.

It should also be mentioned that DG schemes, because of their very own discontinu-
ous nature, are very localized in terms of spatial discretization of differential operators. This
compactness property results in a small communication footprint during the parallelism syn-
chronization step.

Summing up these advantages, the end user is potentially able to obtain accurate re-
sults even for drag results, with proved robustness and convergence without losing too much
high-valued human-hour in laborious mesh creation and quality enforcement.

The current DG formulation is constructed over an orthogonal, hybrid-element, poly-
nomial basis as proposed in [12]. Such basis is orthogonal in both Cartesian and local co-
ordinate systems, allowing for great simplicity in treating hybrid mesh elements, such as
hexahedra, tetrahedra, prisms and pyramids, while still providing simple mass matrices that
are easily invertible.

The interface inviscid fluxes are computed by the upwind Roe [16] or HLLC schemes
[7]. For the viscous flux computation, special treatment must be applied to account for the
face jumps. In the present work BR1 or BR2 schemes [6] are applied. Time marching is
performed by a 2nd-order accurate, 5-stage, explicit Runge-Kutta time-stepping scheme [11].

In the present paper, the numerical accuracy and computational efficiency of the present
DG numerical framework are evaluated. Invariably, numerical errors decay exponentially with
the degrees of freedom, as expected for a DG scheme. Typical aerospace applications are also
evaluated, regarding shock wave capturing and laminar boundary layers. Good agreement is
found with reference data from theory and other CFD results.

This paper is the result of a major R&D project made by Thorus Scisoft company.
With the present numerical framework, Thorus Scisoft aims to produce an efficient, robust
and accurate tool for industrial applications, with focus on the aerospace area.

The introduction section describes the motivation for the current DG framework de-
velopment. In the second section of this paper, the theoretical formulations embedded in
the numerical tool are briefly presented. In the third section, a description of the DG spatial
discretization scheme is highlighted. Evaluation of numerical simulation results is presented
in the fourth section. A concluding remark section closes the paper summarising the main
achievements and future developments from the current effort.



2. NOMENCLATURE

The following nomenclature will be used along the text.

a Speed of sound
e Total energy per unit of volume
ei Internal energy
F = FE − FV Flux vector
FE Inviscid flux vector
FV Viscous flux vector
ı̂ = {ı̂x, ı̂y, ı̂z} Cartesian unit vector
M Mach number
n = S/|S| Area unit vector
p Static pressure
Pr Prandtl number
q Heat transfer vector
Q Conserved variable vector
Re Reynolds number
S Area vector
vn = v · n Face normal velocity
V = {u, v, w} Cartesian velocity vector
α Angle of attack
δij Kronecker delta
µ Dynamic viscosity coefficient
ρ Density
τ ` Shear-stress tensor
τ t Reynolds-stress tensor

Subscript
i, nb Left and right cells that share the kth face
i, j = {x, y, z} Indices used within the Einstein indexing notation
, j Differential in the jth coordinate-system component
` Face index
∞ Freestream

Superscript
˜ Face operator
e Element index
`(e) Element index neighbouring the eth element by its `th face

3. THEORETICAL FORMULATION

The flows of interest in the present context are modelled by the 3-D compressible
Reynolds-Averaged Navier-Stokes (RANS) equations, written in dimensionless form and as-
suming a perfect gas, as

∂Q

∂t
+∇ · (FE − FV ) = 0 Q =

[
ρ ρ u ρ v ρw e

]T (1)



The inviscid and viscous flux vectors are given as

FE =


ρV

ρ uV + p ı̂x
ρ vV + p ı̂y
ρwV + p ı̂z
(e+ p)V

 FV =
1

Re


0(

τ `xi + τ txi
)
ı̂i(

τ `yi + τ tyi
)
ı̂i(

τ `zi + τ tzi
)
ı̂i

βi ı̂i

 (2)

The shear-stress tensor is defined by

τ `ij = µ`

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂um
∂xm

δij

]
,

where ui is the Cartesian velocity component, and xi is the Cartesian coordinate. The viscous
force work and heat transfer term, βi, is defined as βi = τijuj − qi, where the heat transfer
component is defined as

qj = −γ
(
µ`

Pr
+

µt

Prt

)
∂(ei)

∂xj
.

It is important to remark that, for the flow conditions of interest here, the Reynolds analogy
for the turbulent heat transfer as before is adequate and numerically robust. The molecular
dynamic viscosity coefficient, µ`, is computed by the Sutherland law [1]. The dimensionless
pressure can be calculated from the perfect gas equation of state.

4. NUMERICAL FORMULATION

4.1. Spatial integration

General formulation

We consider a system of equations that generically represent the RANS equations plus
additional transport equations and source terms. This generic system represents the RANS
equations coupled to turbulence model equations, such as

∂Q

∂t
+∇ · FE (Q)−∇ · FV (Q,∇ ·Q) = S (Q,∇ ·Q) .

The terms which depend on the gradient of the property ∇ · Q can be linearised as
Av = ∂FV /∂∇ ·Q and As = ∂S/∂∇ ·Q.

Rewriting the RANS equations as a set of first-order equations and using the previous
linearisations, one gets

∂Q

∂t
+∇ · FE −∇ · (Av ·P) = As ·P

P = ∇ ·Q

To apply the Discontinuous Galerkin formulation to these equations, we restrict them
to a single element Ωe of the complete domain, and we multiply them by weighting functions v
and w, which are continuous within the domain but discontinuous through adjacent elements.
By integrating the fluxes in the RANS equations by parts, the resulting weak solution to the
RANS equations in a DG approach is



∫
Ωe

ve∂Q
e

∂t
dΩe = −

Ne
f∑

`=1

∫
∂Ω`

v∂e f̃E`
· n dS` +

∫
Ωe

∇ · ve Fe
E dΩe

+

Ne
f∑

`=1

∫
∂Ω`

v∂e

(
Av` · p̃`

)
· n dS` −

∫
Ωe

∇ · ve Ae
v ·Pe dΩe

+

∫
Ωe

veAe
s ·Pe dΩe (3)

∫
Ωe

wePe dΩe =

Ne
f∑

`=1

∫
∂Ω`

w∂e q̃` · n dS` −
∫

Ωe

∇ ·we Qe dΩe, (4)

where e superscript represents the eth element of the mesh, and ` subscript represents the `th
face of the eth element.

Inviscid fluxes

In the discontinuous Galerkin formulation, jump of properties are allowed through the
interface. This approach hinders the computation of the physical flux in that region since
the property is doubly valued in the face, coming from the left and the right neighbouring
elements of the face. Hence, numerical fluxes are necessary in the faces to account for such
jumps. In the previous formulation, the numerical fluxes in the faces are represented by f̃E`

and f̃V`
for the inviscid and viscous fluxes, respectively. For the computation of the inviscid

numerical flux, any upwind scheme, such as the Roe [16] or HLLC [7] Riemann solvers, can
be used. In the present implementation, both schemes are currently considered.

Viscous fluxes

The viscous flux computation is composed basically by two steps, firstly the deter-
mination of the auxiliary variable P in Eq. (4), and subsequently its use in the computation
of the actual viscous flux in Eq. (3). These two steps must be carefully defined in order to
avoid numerical inaccuracy and instability arising from the property jumps in the faces for the
elliptic viscous fluxes [3].

Equation (4) can be integrated by parts again resulting in the following equivalent
form: ∫

Ωe

we Pe dΩe =

Ne
f∑

`=1

∫
∂Ω`

w∂e (q̃` −Qe) · n dS` +

∫
Ωe

we ∇ ·Qe dΩe. (5)

Moving the volume integral on the right hand side to the left, one gets

∫
Ωe

we δe dΩe =

Ne
f∑

`=1

∫
∂Ω`

w∂e (q̃` −Qe) · n dS`, (6)

where δe = Pe − ∇ · Qe can be understood as a correction of the state gradients that takes
into account the effect of the interface discontinuities.



The solution of the viscous terms in the RANS equations now relies on the definition
of q̃ in Eq. (6) and p̃ in Eq. (3). Various options are available to define these fluxes, as ad-
dressed in [3]. Among these methods, one that presents advantageous numerical performance,
convergence and accuracy is the BR2 scheme [6]. The definitions for the BR2 scheme are

q̃` ≡ {Q}` (7)

p̃` ≡
{
∇ ·Q

}
`
− η
{
δe (`)

}
`

(8)

with the average operator defined as {·}` = 1
2

(
(·)e + (·)`(e)

)
, where the notation `(e) indicates

the neighbouring element of the eth element by the `th face. Variable η is a stabilisation
parameter that represents, in essence, the number of faces per element [4].

For the BR2 scheme, δe is defined for the `th face of the eth element and can be
mathematically written as∫

Ωe

we δe (`) dΩe =
1

2

∫
∂Ω`

[Q]` w∂e · n dS`, (9)

where the jump operator [·]` is defined in the `th face of the eth element as [·]` = (·)e n −
(·)`(e) n. This definition indicates that only the jump contribution pertinent to the `th face
as required by the flux operator p̃` is computed. With such definition, it is guaranteed that
only the face neighbours of the eth element will be considered in the assembly of the element
system matrix, thus avoiding greater stencils and still guaranteeing numerical accuracy and
convergence, and also keeping the parallelism communication overhead at a minimum.

It is worthy to remark here that an option in the code is also available that defines the
auxiliary problem as P = Av∇ ·Q [5]. With that definition and assuming that w = ∇ · v,
the auxiliary problem in Eq. (5) can be substituted back into the main problem, Eq. (3), if no
source terms are considered [5].

4.2. Polynomial bases

One fundamental part of a DG framework is the polynomial basis for the solution
representation. These requirements translate into a basis which is orthogonal at least in the
local coordinate system, so as mass matrices are easily invertible, yet generic enough to treat
different cell types, such as hexahedra, tetrahedra, prisms and pyramids that are found in
daily meshes for engineering applications. One should note that such requirements are really
demanding when considering 3-D applications. Under such requirements, practical high-order
capability is readily achieved with a DG framework with adequate computational efficiency
and robustness.

One of such basis is the hierarchical tensor-type one proposed in [12]. Such basis is
orthogonal in both Cartesian and local coordinate systems, allowing for great simplicity in
treating hybrid discretizations which combines structured and unstructured domains consist-
ing of polymorphic subdomains such as tetrahedra, hexahedra, triangular prisms, and pyra-
mids. One should note that the chosen polynomial expansion is of a modal type [12] instead
of a nodal one [10]. Such option is critical to deal with practical applications which rely upon
3D hybrid unstructured meshes. It has also many benefits from the computational point of
view contributing heavily for an efficient and robust numerical framework [12].

4.3. Artificial dissipation for shock waves

Although DG formulations naturally combine high-order discretizations with consis-
tent shock wave treatment, in practice this framework is still prone to wiggle formation near



discontinuities. In other words, the numerical dissipation already provided by the jumps and
the flux scheme choice are not enough to counterpart the Gibbs phenomenon close to the
shock waves when solving with high-order discretization.

Capturing shock waves with high-order discretization is also a demanding task in finite
difference and finite volumes formulations. Several approaches such as switched centred ar-
tificial dissipation [13] or MUSCL-like reconstruction techniques [17] with property limiting
are usual in such discretization formulations. Switched artificial dissipation terms or limit-
ing can be understood as both decreasing the order of the formulation nearby discontinuities.
More advanced schemes, such as WENO-type polynomials, have not proved very practical in
multidimensional formulation. Switched artificial dissipation formulations are also known to
spread the shock wave through 2 or more cells within the domain, which is a strong drawback
for such type of scheme.

In a DG framework, nevertheless, it can be shown [14] that sub-cell shock capturing
for high-order polynomials can be achieved for a simple viscosity artificial dissipation model.
This is a very favourable observation since the simple viscosity model avoids the large com-
putational difficulties associated with reconstruction or WENO-type methods, while avoiding
the loss of accuracy of the inner-cell polynomials as found in reconstruction schemes. In order
to further avoid extra dissipation due to the viscosity model, a shock wave sensor can be used
to trigger dissipation near the discontinuity [14]. The implementation of the artificial dissipa-
tion scheme in the present numerical framework follows the shock indicator formulation and
viscous flux modification suggested in [5].

5. COMPUTATIONAL ASPECTS

The numerical framework is implemented in C++ an can be roughly decomposed in
the following components:

Problem setup and data covers the specification and API for both a high-performance, mul-
tiplataform, binary data format able to handle hybrid meshes and result fields of varying
h and p, and a XML and DTD schema for material properties, boundary conditions and
solver parameters. It should be noted that converters to and from the major pre and post
processors are provided, or are easy to implement;

Mesh services provide all mesh related manipulation, including partitioning for parallel exe-
cution;

Numerical core implements all DG related numerical operations, including volumetric and
facial quadratures, diferentiation, reconstructions and so on. It’s the cornerstone of the
solver;

Modelling core represents the highest level of abstraction, orchestrating the functionalities
of the previous modules into full blown CFD models.

State of the art, tried and proven computational libraries — Boost, OpenMPI, Eigen
and Xerces, to name but a few — are used wherever and whenever convenient.

6. RESULTS AND DISCUSSION

In this section, the results obtained with the previously presented DG framework are
discussed. Firstly, a solver verification analysis is performed to assess the actual order of



accuracy and the sensitivity to mesh topology of the current numerical framework. Shock
wave capturing is evaluated with a 1-D shock tube problem. The laminar boundary layer over
a flat plate is, then, used to further validate the viscous flux computations.

6.1. Solver verification — Euler equations

An accurate method for performing strong code verification is presented in [15]. A
source term carrying information of a preliminarily known solution for the system of equations
is explicitly added to the code formulation in order to drive the numerical solution to the
known one. The difference between the converged computational solution and the original one
can be a measure of the accuracy of the method as well as a confirmation of the correctness
of the implementation.

The analytical functions are here prescribed for the primitive variables of the formu-
lation. The solution for these variables in a generic ith quadrature point is chosen as

ρ
u
v
w
p


i

=


1 + tanh(x+ y + z)i
1 + tanh(x+ y + z)i
1 + tanh(x+ y + z)i
1 + tanh(x+ y + z)i
5 + tanh3(x+ y + z)i

 , (10)

where xi, yi and zi are the dimensionless Cartesian coordinates of the quadrature point. These
definitions for the primitive variables are substituted into the Euler equation residue, there-
fore defining the source terms that are expected to steer the numerical solution towards the
prescribed one before. Boundary conditions of the Dirichlet type are used, which means that
the values of the conserved properties must be provided at the boundaries for the verification
tests.

The chosen physical domain is a hexagonal block with unit sides. The L2 norm of the
difference between the converged computational solution and the original one is assumed as a
measure of the accuracy of the method. A set of successively refined tetrahedra and uniform
hexahedra meshes is used, ranging from 2 to 25 points, at each edge. It is worthy to stress
that the prescribed solution is not aligned with any normal-to-face vectors. With the chosen
computational meshes, the authors attempt to address the behaviour of the numerical code
with typical grid characteristics such as refinement and topology. A view of the meshes with
4 elements at each edge can be found in Fig. 1. The data presented was computed with the
upwind Roe scheme. Similar results were obtained with the HLLC scheme.

Figure 2 presents the logarithm of the mean error curves for polynomial orders ranging
from p = 0 to 5 plotted against the logarithm of the cell size. It can be clearly seen in these
results the faster decrease in numerical errors with the increase of the polynomial order, as
expected for a DG formulation. In general, the rates of convergence with polynomial order
are a bit larger than the theoretical estimation P + 1. Figure 2 also compares the actual
rate of convergence (lines with solid circles) compared with the theoretical estimation (small
triangles). Away from the machine error bottom line, convergence rates are consistent with
the polynomial orders for the two mesh types.

It is worthy to note, nevertheless, the difference observed in the error levels between
tetrahedra and hexahedra meshes. This difference relates to the polynomial space spanned at
the element, which differs depending on the element type. In the case of hexahedra of order
P , the generated polynomial space has polynomials of order up to 3P , although they do not



Figure 1. Computational meshes with 4 elements along each cube edge.

(a) Hexahedra mesh. (b) Tetrahedra mesh.

complete the polynomial space of order 3P . In the case of tetrahedra, the generated polyno-
mial space is up to P complete. In the literature, these extra polynomial modes associated to
hexahedra elements are sometimes referred to as spurious modes.

Despite the differences between the polynomial spaces in tetrahedra and hexahedra
elements, the results show that it is possible to choose a combination of element size and
polynomial order for each type of element that leads to the intended solution accuracy.

6.2. Solver verification — Navier-Stokes equations

Following the same method presented in the previous section, an analytical solution of
the form given below was prescribed for each quadrature point i to exercise the implemented
viscous flux schemes.

ρ
u
v
w
T


i

=


1 + 0.1 sin(ωx)i

1 + 0.04 cos(ωx) sin(ωy) cos(ωz)i
0
0

(84 + 28y + 10z2)i

 , (11)

The Navier-Stokes equations were then integrated using the previously described consistent
source term and adequate Dirichlet boundary conditions. 1000 time steps of size 10−5 of an
explicit Euler integrator were performed for time integration. This example, as proposed in
[12], is tailored to validate the code and demonstrate the spectral convergence property of the
DG formulation in hybrid meshes.

The physical domain is a cubic block having each coordinate spanning the interval
[−1, 1]. This block was then spatially discretized by five different meshes as the following:
the first four are homogeneus meshes of hexahedra (8 elements), prisms (32 elements), pyra-
mids (48 elements) and tetrahedra (96 elements)1. The last mesh is a 14-element hybrid one,
containing all four elemental topologies. The mesh choices are made to illustrate the flexi-
bility of the method as well as its exponencial convergence insensitivity with respect to the

1The prisms and tetrahedra meshes are nested inside the hexahedra mesh with 8 elements. The pyramids
mesh is nested inside a different hexahedra mesh with only 4 elements.



Figure 2. Mean errors for different mesh topologies and sizes, and different polynomial orders.
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mesh discretization. The maximum (the L∞ norm) of the difference between the converged
computational solution and the analytical one is used as a measure of accuracy of the method.

Figures 3 and 4 show results for the four homogeneous meshes using BR1 and BR2
DG viscous formulations respectively. In this problem, BR1 and BR2 formulations give al-
most identical results, being the BR2 slightly more precise in all cases. It can be observed
that: spectral convergence occurs for all element shapes; the results from the prisms and the
hexahedra meshes were identical (P -order prisms have polynomials up to order 2P which
seems sufficient for the element size selected); the tetrahedra mesh behaved very closely to
the hexahedra mesh up to order 7 (the spurious modes were only decisive above that order);
the pyramids mesh probably needs a further refinement to match te results of the other meshes
(as the polynomial space of tetrahedra and pyramids is the same).

Figure 5 presents the results obtained with the hybrid mesh and BR1 formulation. It
can be noted that spectral convergence is also achieved even for a coarse hybric mesh without
no special characteristics.

6.3. Shock tube validation

Computations of a 1-D shock-tube flow case is considered. The initial condition is
applied with a jump of 20 between the left and and right states for density and pressure. Equal
temperatures are assumed at both sides of the shock tube. Numerical results are compared to
the analytical solution at time instant t = 2.5 × 10−4. Refinements in mesh and polynomial
orders are evaluated.

Pressure and density distributions along the tube are presented in Fig. 6 for successive
h refinements. Consistent solution enhancement is achieved with mesh refinement. It is also
worthy to point out that no oscillation in the solution is found for all h, indicating that both
sub-cell dissipation and viscous flux schemes are stable even for a transient problem. Similar
plots for successive p refinement are presented in Fig. 7. Similar conclusions from Fig. 6 can
be extended to p variation.



6.4. Laminar Boundary Layer Validation

The laminar boundary layer that develops over a flat plate is also used for the code
validation, since an analytical solution exists for this problem [2]. Here, a subsonic flow with
M∞ = 0.2 and Re = 105 based on the plate length is considered. The plate length is fixed to
one, and the grid extends to two units upstream the plate leading edge, and one unit along the
normal direction. Points are clustered near the flat plate leading edge in order to account for
the larger gradients that are expected in this region. Here, 20 elements are placed within the
boundary layer along the whole plate extension, which means that the normal spacing varies
with the plate length, and 30 cells are placed outside the boundary layer. All grids have 60
points along the longitudinal direction over the plate extension. Figure 8 presents the boundary
layer obtained with the present numerical code with polynomial order of 1 compared to the
theoretical solution. A very good agreement between the numerical and the reference solution
is observed, which is indicative of the quality of the numerical solution even for a relatively
low polynomial order achievable with a DG methodology.

6.5. PARALLEL SCALABILITY

Parallel scalability was assessed using a wind-body geometry consisting of 612526
tetrahedra (Figure 9). Polynomial orders, total number of degrees of freedom and integrations
points can be appreciated on Table 1.

Table 1. Approximation orders, degrees of freedom and integration points for the wing-body
geometry.

Order Dof Int. Points

0 612526 612526
1 2450104 16538202
2 6125260 76565750

Figure 10 ilustrates the speedup, defined as the ratio between the parallel execution
time and the serial execution time (one processor), for several processor numbers ranging
from 2 to 48. For each number of processors, 50 time iterations over the Euler solver were
made in order to measure execution time.

The scalability of the DG numerical framework is within the expected bounds. Higher
orders tend to perform a little better in parallel because they demand more raw processing
power per computing node, without a corresponding increase on inter-node communication.



Figure 3. Maximum errors for different mesh topologies and different polynomial orders
using the BR1 DG viscous formulation.
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(c) Pyramids mesh results.
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Figure 4. Maximum errors for different mesh topologies and different polynomial orders
using the BR2 DG viscous formulation.
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(a) Hexahedra mesh results.
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(b) Prisms mesh results.
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(c) Pyramids mesh results.
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(d) Tetrahedra mesh results.
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Figure 5. Maximal errors for the hybrid mesh and different polynomial orders using the BR1
DG viscous formulation.
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Figure 6. Property distributions along the shock tube obtained with different mesh refine-
ments.
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Figure 7. Property distributions along the shock tube obtained with different polynomial
refinements.
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Figure 8. Numerical and analytical laminar boundary layer profiles over a flat plate.
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Figure 9. Tetrahedral mesh with 612526 elements used for the assessment of parallel scala-
bility.

Figure 10. Parallel speedup for the wing-body configuration.



7. CONCLUDING REMARKS

The development of a CFD tool based on the Discontinuous Galerkin method for 3-D,
compressible, inviscid and viscous flows has been reported. The inviscid fluxes are computed
by upwind Roe or HLLC schemes, whereas the viscous fluxes are computed by BR1 or BR2
formulations. Gibbs phenomenon close to shock waves with high-order discretization are
damped with constant sub-cell dissipation.

The code accuracy has been validated by the method of the manufactured solution,
where a source term carrying information of a prescribed analytical field for the solution
is used as a source term to drive the numerical solution towards the prescribed one. The
difference between the converged numerical solution and the prescribed one is the measure of
the code accuracy. Error levels were shown to consistently converge with the polynomial order
for meshes with any elemental topology, such as hexahedra, tetrahedra, prisms and pyramids,
demonstrating the code insensitivity to the mesh element type in that criterion.

Further validation assessment was performed for a laminar boundary layer and a shock
tube problems. The numerical framework consistently reproduced the laminar boundary layer
of a flat plate. It also adequately represented the shock and expansion wave structures and
travelling speeds for a shock tube problem, for polynomial orders up to 10. The numerical
framework also shows good parallel execution behaviour. This sequence of validation stud-
ies and the obtained results strongly indicate the consistency, robustness and computational
performance of the presented framework, as well as its suitability to aerospace application.

Acknowledgments

The authors would like to acknowledge Fundação de Amparo à Pesquisa do Estado
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