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Abstract. A semi-analytical variational model for the formation of wrinkles following con-
solidation of a carbon fibre composites over an external radius is presented. Understanding
how wrinkles form in the manufacturing of carbon fiber composites during the debulk and
curing processes is important because, depending on their severity, they may compromise the
structural integrity of the final part. A nonlinear elastic model is described, and energy min-
imization of the resulting potential energy is achieved using a gradient flow approach. The
critical conditions for the appearance of wrinkles and the complex post-buckling behaviour
are derived and their implications to the manufacturing processes are discussed. .
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1. INTRODUCTION

Although the formation of wrinkles in carbon fibre composites (Fig. 1 left) and fold-
ing sedimentary rocks (Fig. 1 right) appear two disparate systems, both are examples of
layered systems which are strongly influenced by geometrical constraints of layers fitting to-
gether [6]. From a modelling perspective much can be gained from the cross-fertilization of
ideas between each field [10]. In this paper we adapt an energy based gradient flow method,
previously applied to the modelling folding of sedimentary rocks, to the wrinkling of carbon
fibre composites during manufacture.

Multilayered structures found in the Earth’s crust may arise from a sequence of sed-
imentary deposits, subsequently held together by pressure from additional overlying layers.
Tectonic plate movement causes in-plane compression of these layers of rocks that can fold
them into convoluted patterns. The resulting deformation is not only dependent on the com-
plex mechanical and material properties of each layer, but on the highly nonlinear geometric
constraints of them fitting together. Figure 1 (right) shows an exposed escarpment of fold-
ing, where the geometric constraints have been overcome by the rocks adopting straight limbs
and sharp corners, in what is known aschevron folding[15]. In some cases weak layers
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Figure 1. Left: A micrograph of small amplitude wrinkles in a typical corner radius. Right:
Chevron folds developed in thinly bedded shales and sandstone at Millook Haven, Cornwall,
UK. The geometric constraints of layers fitting together have force layers to adopt straight
limbs punctures by sharp corners.

can be obliged to fit into very tight or even singular geometries [6, 7, 8], and as a result
various patterns, namedaccommodation structures, may form on a localized length scale.
Traditional layers of rock have been modelled as elastic or visco-elastic beams supported by a
surrounding foundation [1, 15]. Finding constrained energy minimizers for such multilayered
systems may suffer from the existence of multiple local minimisers, due to lack of convexity
of the resulting energy landscape. This is particularly the case in nonlinear buckling prob-
lems, [3, 2, 12, 6], typical of geological folding models. Previously a constrained gradient
flow method has been adopted [2, 13] to overcome such problems, and this is the approach
we now apply to modelling wrinkling in carbon fibre composites.

Understanding how wrinkles form in the manufacturing of carbon fiber composites
during the debulk and curing processes is important because, depending on their severity, they
may compromise the structural integrity of the final part. Figure 1 shows small amplitude
wrinkles or folds, which have developed in the corner radius of a component.

Typically CFC parts are made up by layering a series of pre-impregnated carbon fibre
layers onto a tool surface. During this lay-up process the stack of plies is consolidated at mod-
erate temperatures and pressures to remove air trapped between layers. This debulk process
aims to insure correct seating onto the tool surface and to promote adhesion between lami-
nae. However, as a laminate consolidates over even a simple geometry the plies are forced to
accommodate the imposed geometry of the tool surface. For example, consider consolidation
over an external radius. As the outermost ply consolidates it is forced into a tighter geometry,
Fig. 3 (right). The ply is forced to accommodate the imposed geometry by shortening. For
layers which slips with relative ease, the length can be accommodated by producing so called
‘book ends’, Fig. 3 (right). If the resistance to slip is too high, layers may form wrinkles.

In this paper we describe a simple elastic model for the potential wrinkling of com-
posites as a laminate consolidates over an external radius. By deriving the total potential
energy for the system, the gradient flow method is adopted to find global minimisers under
quasi-static loading by consolidation. Minimization of the resulting potential energy leads
to representation as a nonlinear fourth order differential equation. Critical conditions for the



Figure 2. (Left) shows the geometry of the tool face, withN layers of initial thicknessh laid
on top. (Right) Demonstrates the book end effect created as the the laminate consolidates
without wrinkles. Hereλ is the amount of slip in the outer layer which consolidate from an
initial radius of curvatureR1(0) to R1(γ), during a percentage consolidationγ.

appearance of wrinkles are derived, and the snaking post-buckling behaviour is briefly dis-
cussed.

In the work presented we see a departure from a general trend of modelling advanced
manufacturing processes using large complex finite element simulations (see for example the
commercial software PAMFORM/ABAQUS or various academic contributions [20, 19, 14]).
As well as having clear visual appeal, such finite element studies have been geared towards
answering a host of important questions. However, with the vast range of parameters of-
ten involved in such formulations, it is sometimes unclear how their physical counterparts
might accurately be represented. While we fully appreciate the value of such approaches,
our objective here is to complement them with a simplified nonlinear elastic model in which
the parameters influencing the localised bucking process can be closely defined and care-
fully monitored. For this particular study finite element approaches struggle with the lack of
uniqueness of post-buckling solutions observed, however the semi-analytical model presented
is specifically designed to overcome such problems.

2. The model

We consider a stack of N plies each of initial uniform thicknessh which have been
laid over an external corner/tool surface, which is characterised by radius ofRt being swept
through 1

2
π rads, see Fig. 3. A uniform debulk pressure consolidates the laminate by a per-

centageγ. Each layer, numbered from the outside layer (layer1) inwards, is described by the
radius of curvature,

Ri(γ) = Rt +
1

2
h(1 − γ)(2(N − i) + 1), (1)

and the small wrinkle deformationsui(xi) away from this radius . Herexi characterises the
length of arc swept out by the radius ofith layer (Ri). At this point it is useful to the note the



change of variabledxi = Ri

Rt
dxt, wherext is the arc-length parameter around the fixed tool

face.

The number of plies in a typical component can be large, see for example Fig. 1
whereN = 40; by considering each layer individually this would lead to a system ofN

coupled fourth-order ordinary differential equations. To simplify the analysis at this stage we
make the assumption the wrinkle deformation of the layers decays linearly to zero at the tool
face the surface. This assumption can justified by viewing micrographs of wrinkles in corner
sections, like those seen in Fig. 1. Consequently, the complete deformation of the laminate can
be written in terms of the outer layer, described by the displacementu1, which is abbreviated
to u,

ui =
2(N − i) + 1

2N − 1︸ ︷︷ ︸
:=αi

u. (2)

We now consider a quasi-static model of the wrinkling process, where the controlled pa-
rameter is the percentage consolidateγ. The consolidation of the laminate is modelled as
a conservative system and we seek to find energy minimizing solutions for that percentage
consolidation. Each ply is modelled as an inextensible linear elastic beam of length

`i =
1

2
πRi(0),

of constant stiffnessB. As the layer consolidates, it is forced into a small arc length, and
accommodates this extra length by either slip over other plies or by forming a wrinkle. The
slip between plies is resisted by two linear elastic spring of stiffnessks. Finally, we consider
each layer to lie on a nonlinear Winkler type foundation, this offers resistance to wrinkle
deformations.

The setup and the parameters of the model are summarized in Fig. 4. The total po-
tential energy function for the system is now derived, which is given by the sum of the strain
energy in bending, work done against the axial springs while slipping and work done into the
foundation.

2.1. Bending Energy

The bending energy over a small segment of theith layerdxi is given by

dUB =
1

2
Bκ2

i dxi,

whereκ(xi) and xi are the curvature and arc length of theith layer respectively. Integrating
over the domain of eachxi, the total bending energy is the sum of the bending energy in each
layer, therefore

UB =
1

2
B

N∑

i=1

∫ `i

0

κ2
i dxi (3)

Since the wavelength of the buckling deformations are small, the changes in curvature
of the mid-surface of each layer can be approximated by the curvature of theith layerκi ≈



Figure 3. Setup of the model, simplified to a single layer of adjusted stiffnessB̂, laid around
the corner of radiusR(γ), and on a nonlinear Winkler foundation, describe by the local normal
force f̂(u). Linear elastic axial springs of stiffnessks resist slip as the laminate consolidates
by a uniform percentageγ.

(1 − γ)R−1
i u′′

i [16, p. 155]. Here primes denote differentiation with respect toxi.

UB =
1

2
B

N∑

i=1

∫ `i

0

(R−1
i u′′

i )
2 dxi =

1

2
B̂

∫ `t

0

(u′′)2 dxt (4)

where

B̂ =
B

Rt

N∑

i=1

1

Ri(γ)

(
2(N − i) + 1

2N − 1

)2

. (5)

2.2. Work done in slip

We now calculate the total potential energy stored in the axial springs. The strain the
springs can be determined by the total shortening imposed by consolidation, given by

λ =
1

2
π(R1(0) − R1(γ)) =

1

4
hπγ (2N − 1)

minus the shortening achieved by the wrinkle deformation

1

2

∫ `1

0

(u′
1)

2 dx1 =
1

2

R1

Rt

∫ `t

0

(u′
1)

2 dxt.

Since the springs are assumed linear elastic, the strain energy in the springs is

US =
1

2
ks

(

λ −
1

2

R1

Rt

∫ `t

0

(u′
1)

2 dxt

)2

. (6)

We believe this a conservative modelling approach since the true behaviour is more closely
modelled by a visco-elastic law. In this caseks represents the initial maximal resistance to



slip, any strain relaxation due to visco-elastic behaviour will reduce this stiffness, and hence
reduce the likelihood of wrinkle formation. This simplified elastic model provides an upper
bound the true physical counterpart.

2.3. Lateral resistance to wrinkle deformations

We assume that wrinkle deformations in each layer are resited laterally by the force
(fi = f(ui)) due to lateral displacements being strictly local and normal [16]. We consider
the nonlinear stress-strain relationship

f(ui) = kfu − u3 + Kfu
3. (7)

This choice of stress-strain relationship allows for a response that is initially symmet-
ric and linear elastic, followed by an asymmetric elastic softening response away from the
corner. The geometry of large deflections introduces nonlinearities, these have a de-stiffening
effect [12], encouraging layers to localise and form tightΩ-shaped folds. However, for large
deflections locking-up is mimicked by the stiffening symmetric cubic term, either by large
deflections into the laminate or outwards against the debulk pressure.

The strain energy stored in the foundation is then given by

UF =
N∑

i=1

∫ `i

0

1

2
kfu

2
i −

1

3
u3

i −
1

4
Kfu

4
i dxi, (8)

=
N∑

i=1

∫ `t

0

(
1

2
kfu

2
i −

1

3
u3

i −
1

4
Kfu

4
i

)
Ri

Rt

dxt, (9)

=

∫ `t

0

ζ2kfu
2 − ζ3u

3 − ζnKfu
4

︸ ︷︷ ︸
:=F̂ (u)

dxt, (10)

whereζj = 1
j

∑N
i=1

Ri

Rt
αj

i .

2.4. Total potential energy of the system

The total potential energy of the system is then the sum of each of the contributing
terms given by

E(u) =
1

2
B̂

∫ `t

0

(u′′)2 dx +
1

2
ks

(

λ −
1

2

R1

Rt

∫ `t

0

(u′
1)

2 dxt

)2

+

∫ `t

0

F̂ (u)dxt. (11)

Here we also denote the Fréchet differential ofF̂ by

f̂(u) := kfu − u2 + Kfu
3.

2.5. Energy minimization using a gradient flow approach

The gradient flow method solves the partial differential equation

ut = −∇E(u), for t > 0. (12)



Starting with random data, the long term behaviour of this system converges to stationary
solutions ofE which are assumed to be constrained local minima. By repeating this process
for a ‘large’ number of different initial positions the global minima is selected.

We now solve the gradient follow problem using a standard finite element approxima-
tion, over the domainxt ∈ [−`, `], coupled with simply supported boundary conditions.

By defining the perturbed function asuε = u + εϕ for ε ∈ R and a suitable test
functionϕ, the weak form of (8) is given by

∫ `t

0

utϕ dxt = −
∂

∂ε
(E(uε)) |ε=0. (13)

This is equivalent to

∫ `t

0

utϕ dxt = −B̂

∫ `t

0

u′′ϕ′′ dxt −
∫ `t

0

f̂(u)ϕ dxt

− ks

(

λ −
1

2

R1

Rt

∫ `t

0

(u′)2 dxt

)∫ `t

0

u′ϕ′ dxt. (14)

Since this weak formulation has differential of order two and no higher we approximateu by
piecewise cubic functions upon a uniform meshξ = 2`/M , whereM ∈ N is the number of
node points. Thereforeu is approximated by

U(x, t) =
M−1∑

j=1

Ujφj +
2M∑

j=N

U ′
jψj−N , (15)

whereφk andψk form a basis of piecewise cubic functions onξ with simply supported bound-
ary conditions [18]. By defining the vector

U(t) = (U1, . . . , UN−1, U
′
0, . . . , U

′
N ) ∈ R2M ,

the finite element equivalent of (2.5) is the first order system inU ,

AUt = −

(

B̂BU + ks

(

λ −
1

2

R1

Rt

UTCU

)

CU + D

)

. (16)

HereA,B andC are sparse2M × 2M matrices given by

Aij :=






∫
φiφj dx for 1 ≤ i, j ≤ M − 1

∫
φiψj dx for 1 ≤ i ≤ M − 1,M ≤ j ≤ 2M

∫
ψiφj dx for M ≤ i ≤ 2M, 1 ≤ j ≤ M − 1

∫
ψiψj dx for M ≤ i, j ≤ 2M

(17)

and

Bij =

∫
φ′′

i φ
′′
j dx andCij =

∫
φ′

iφ
′
j dx, for 1 ≤ i, j ≤ M − 1



Figure 4. An example of a typical wrinkle deformation found by solving the gradient flow
method described in this paper. The parameters for this solutions sample is given byB = 1,
kf = 1, Kf = 0.3 h = 0.8, M = 20 andRt = 40.

with similar values toAij for other ranges ofi andj. Here primes denote differentiation with
respect tox. We note that most elements ofA,B andC are zero. The componentsDi of D,
to be found by a suitable quadrature rule, are given by

Di =

∫ `t

0

f̂(U)φi dxt for 1 ≤ i ≤ M − 1 (18)

and

Di =

∫ `t

0

f̂(U)ψi−M dxt for M ≤ i ≤ 2M. (19)

The first order system (11) can then be solved using a typical first order solver in
Matlab, for exampleode45 [17].

2.6. Solutions profiles, wrinkling bifurcation and snaking behaviour

The individual solutions profiles, for example Fig. 5, and the overall system behaviour
will be sensitive to choice of modelling parameters. Here we discuss the general behaviour
of the system, and derive the relationship between these parameters for which the system has
wrinkling type solutions; we then discuss the post-buckling behaviour of the system for a set
fixed parameters.

Figure 6 shows a plot of percentage consolidationγ against load in the axial springs
P . Starting from zero consolidation the solution path follows the fundamental path (u ≡ 0)
shown by the red dot-dash line. For this case the outer layer accommodates its extra length
by slipping over the other layers a total distanceλ, and the axial springs exert a reactive
compressive loadksλ. Solutions follow this path until the load in the axial springs reaches the
critical buckling load of the system, and bifurcates into an unstable post-buckling path, shown
by the blue lines.

The location of the initial bifurcation point can be derived from the Euler-Lagrange
equation associated with minimizing solutions ofE close the fundamental path (u ≡ 0), given



Figure 5. Plot of percentage consolidationγ against the load in the axial springsP , for the
following parameter values:B = 1, kf = 1, Kf = 0.3 h = 0.8, M = 20 andRt = 40.
The red (dash-dot) line shows the initial fundamental path, and the blue lines (solid and dash)
shows a snaking post-buckling path of wrinkling solutions.

by
B̂u′′′′ + ksλu′′ + ζ2kfu = 0, (20)

where we recall thatζj = 1
j

∑N
i=1

Ri

Rt
αj

i . By seeking solutions of the formu = exp(ξx) the
characteristic equation of (15) is given by

B̂ ξ4 +
R1

Rt

G ξ2 +
R1ζ2kf

Rt

= 0. (21)

At the parameter values

kc
s =

8
√

Rtζ2kf B̂/R1

hπγ (2N − 1)
, (22)

the eigenvaluesζ coalesce to form two imaginary pairs, and correspond to the linear buckling
load of a strut. Figure 7 shows a plot ofkc

s againstγ and demonstrates that for moderate
consolidation the resistance to slip must be low if wrinkles are not to form. How low would
require careful parameterisation of such a model, which is discussed briefly in the following
section.

We now consider the more complicated post-buckling behaviour, which is more clearly
indicated by plottingL2(u′) ameasure of the total size of the wrinkle deformation, against the
load in the axial springsP , Fig. 8.

The plot is made up of a collection of discontinuous curves, where at various points
the global minimiser jumps between different localised solution profiles. The solid blue lines
in Fig. 8 represent solutions with an odd number of localised humps, whereas the dash line



Figure 6. Plot ofγ versuskc
s, for the parameter values ofB = 1, kf = 1, Kf = 0.3, h = 0.8,

M = 20 andRt = 40.

Figure 7. Plots ofL2(u′) =
∫ `t

0
u′2 dx, a measure of the size of the wrinkle against load, for

the parameter value B = 1,kf = 1,Kf = 0.3 h = 0.8, M = 20 andRt = 40. The plot is
made up of a collection of discontinuous curves, where at various points the global minimiser
jumps between different localised solutions profiles. The solid line shows solutions with an
odd number of localised humps, where the broken line shows those with an even number.



gives the even counterparts. Physically, the initial de-stiffening of the foundation results in a
subcritical Hamiltonian-Hopf bifurcation into a single hump homoclinic package, away from
an initially periodic solutions. The subsequent re-stiffening effect brought about by the sym-
metric cubic term off restricts the amplification of the central hump.Snakingbehaviour
ensues, where the global minimisers winds its way either side of Maxwell loadPM [12, 5, 4].
With sufficient external disturbance the Maxwell load provides a limiting load capacity under
dead loading, indicating that this system is particularly sensitive to imperfections.

3. Concluding remarks

The work presented in this paper shows an adaptation of models previously used to
successful understand some of the aspects of folding rocks, to the a study on the wrinkling
of carbon fibre composites. Although a simple model is presented it demonstrates complex
non-linear behaviour, which encapsulates some of the key aspects of the localised wrinkles
observed in practice, for example Fig 1. Such folding is fundamentally non-linear, since the
wrinkle deformations are sufficiently large. In this case closed-formed solutions to such non-
linear problems cannot be expected, and robust numerical methods are the only means to
attain such convoluted solutions. The gradient flow method outlined in this paper is particu-
larly powerful, as it offers a stable numerical scheme by which the equilibrium equations are
solved alongside calculating the potential energy of solutions. This is vital when evaluating
on such an undulating energy landscape.

Although the current model is simple, and future extensions are envisaged, it provides
some suggestions to manufacturing on the important parameters to produce wrinkle free parts.
This is particularly highlighted in the critical condition for the formation of wrinkles (17). A
few observations are:

Lower ks: Wrinkles do not form ifks is sufficiently small. Strategies to encourage inter-
layer slip will be important. These may include providing optimum heat to the laminate
during consolidation to decrease the viscosity of the resin.

Decreaseγ: The critical value ofks is inversely proportional toγ. Therefore the chance of
forming wrinkles can be reduced by consolidating the laminate at regular intervals, and
therefore reducingγ at each debulk step.

IncreaseRt: The chance of forming wrinkles decreases as theRt increases. By rearranging
equation (17) a design rule could be obtained for the smallest allowable value ofRt.

How regular debulk actually needs to be, the exact heating temperature during con-
solidation or the limiting value ofRt all require careful parameterisation of the model. The
next step of this study is to carry out a series of experiments, to obtain the required modelling
values. This will particularly focus of the understanding the behaviour of inter-layer slip,
parameterised by the elastic stiffnessks in this model.

The gradient flow approach here is used to model a quasi-static system. However, this
method could easily be adapted to model dissipative systems; and the work could be read-
ily extended to consider visco-elastic material behaviour, which may be necessary if good



experimental comparisons are to be achieved. However the approach here does have certain
modelling advantages over more complex rheologies, Modelling has sometimes failed in the
past not because of the formulation, nor the resulting governing equations, but because of
poor choice of solution [6, 12]. Extra criteria for selection are sometimes neither necessary or
useful. A vital extension to this work will be to consider the consolidation of3D parts. The

directional nature of different plies through out a laminate means that in directions orthogonal
to the fibre directions these plies may offer no or little bending stiffness, yet may be heavily
constrained by how the consolidation takes place in the perpendicular direction. These inter-
actions while consolidate over a3D geometry are complex, and we believe they are the key
factors in the wrinkling of carbon fibre composites during manufacture.
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