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Abstract. In order to analyze the effects of mistuning of blisks, the frequency response func-
tion (FRF) has to be calculated as quickly as possible and with high accuracy. Therefore,
commonly used finite element models with more tltrdegrees of freedom (DOF) have to

be reduced to a model with only a few DOF. A usual way in literature is using reduced order
models (ROM) like a modal reduction. This is either slow, inaccurate, or the possible exten-
sion to non-linearity is difficult. In this paper a new method of model reduction for mistuned
turbine blades is introduced and the benefits are shown. The model of the blisk is separated
into individually mistuned blades and a tuned disk where the latter is analyzed as a cyclic sys-
tem. Analog to the Craig-Bampton reduction technique the system is divided into master- and
slave-DOF. The introduced technique is the reduction based on the Krylov-Subspace-Method
which performs better in terms of accuracy than the modal reduction if the Two-Side-Arnoldi
algorithm is used. Afterwards, the reduced tuned model is mistuned by a variation of Youngs
modulus which is the most popular way to introduce mistuning. This reduced system can be
further described by modal reduction to decouple the equation of motion and describes the
full system with as few DOF as possible. Finally, the paper gives a comparison of the stan-
dard Craig-Bampton-reduction and the combined Krylov-Craig-Bampton-method in terms of
computational accuracy and efficiency to show the benefits of the new method.
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I ntroduction

Current research focuses on the optimization of turbine blades with respect to the fluid
behavior and the efficiency of the turbine. As a result the turbine blades become thinner and
more fragile. Therefore, the blades are prone to vibrations and forced response. Due to the
cyclic structure of a turbine the loads are assumed to be equal at every blade. In case of
a perfectly tuned system all blades show the same vibration amplitude exited by the loads.
Small variations of the blades could effect energy localization and increase amplitudes of sin-
gle blades [1]. This effect is called mistuning and has a big influence on the lifetime of the



turbine.

To analyze the influence of the mistuning the force respomsetion (FRF) is calculated for
every single blade. On the basis of the FRF the amplitude ofitiration can be calculated
for different mistuning cases. Bladed disks are usually rilesd by a finite element model
(FEM) including more thari0° degrees of freedom (DOF). Such huge models need a lot of
computation time to calculate the FRF. This is not effectivdaié mistuning should be ana-
lyzed by Monte-Carlo simulations or optimizing methods. Be number of DOF has to be
reduced as much as possible to calculate the FRF with acéept@ibputing time.

This paper is about a two step reduction method for mistuhigkid It contains an overview of

the current reduction methods applied to mistuned bladgdsdiThe next part deals with the
reduction of a tuned cyclic model with the Craig-Bampton mdth&fterwards this method is

extended with the Krylov-Subspace method and the mistumiitige blades is introduced. In
the third chapter a case study is presented and the bendfitb@atmitations of the method

are shown. Finally a conclusion is given.

During the last years a lot of papers have introduced newctedumethods for mistuned tur-
bine states. The common way is the transformation to sonedfimodal coordinates. The
modal basis realizes the system behavior without the whaiexers of DOF. One possibility
to choose this basis is using the modes of one segment witblade and a part of the disk
(see Figure 1). At the Subset of Nominal Modes (SNM) the nammodes of one tuned
segment are used and the mistuning is taken into accountdnamd step [2]. An extension
of the SNM is the Fundamental Model of Mistuning (FMM) [3]. i§hmethod requires that
the strain energy is concentrated in the blade and only orkersioape is of particular interest.
This means the mode shape of the full system is quite sinlttvd mode shape of one fixed
blade. This allows some simplification of the algorithm torgase its efficiency.
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Figure 1. Full finite element model and submodels of differeduction methods.



In an alternative way the segment is divided into the bladeistlhe disk and each component
can be reduced independently of each other. This way iscc@itanponent Mode Synthesis
(CMS). The disk could be handled as a cyclic symmetry modetlamdnodel of the blades is
reduced only one time. After the reduction of the disk andalaees the full system could be
analyzed [4]. There are many other ideas to reduce the neidtsystems like [5],[6],[7]. All
of this reductions deal with the modal reduction.

Another approximation of FEMs is the Krylov-Subspace mdt[8]. The basic idea of this
method is to fit the transfer function of the system with thplaae transformation. This opens
up the possibility to reduce the model around one chosemémry. Also an error estimation
for the reduced model is given in [8].

M odal reduction

This section introduces the reduction of a FEM with the CBagnpton method. As-
suming small deformation and neglecting friction dampiikg lunderplatform damping or
shroud coupling we can suppose a linear system with the ieguaitmotion (EQM):

M3k(t) + Dx(t) + Kx(t) = £(t). (1)

The matricesM, D, K denote the mass, the damping and the stiffness matrix. Ttierve
x(t) presents the displacement of every single node of the FEM.different types of lin-
ear damping are taken into account. On the one hand the Ragld@amping hypothesis
Dr = aM + K determines the viscous material damping [9]. On the othed lizere is the
structural damping moddDs = nKi with n as the hysteretic damping ratio. In the following
the damping matrix is integrated in the mass and the stéfnegrix. Assuming the frequency
of the forcef(¢) is the same at every node, the FRF can be calculated. The fanceecde-
scribed by a harmonic functidf{t) = f sin(Q¢t) with the amplitudef and the frequencsp.
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Figure 2. One segment of the bladed disk divided into bladiedisk.



One sector of the disk can describe the whole disk cause ayttie symmetry. The nodes
at the right side have the same displacement as the nodes lafttside except for a phase
differenced = 27” This phase difference depends on the nodal diameter. ate\sctor is
sorted in order that the nodes of the left sidare at the top and the nodes of the righside
are at the bottom of the state vector. The nadesvolve the rest of the nodes. Therewith the
state vector can be written as

X 0 e
x= x| =|E O KC} . (2)
X; 0 E '
Tak

The matrixTq; transforms the mass matrix and the stiffness matrix to

Max = T§ Ma1Tqk
Kok = T4 Ka1Tax

This transformation of the disk segment reduces the prolokthe whole disk ton small
models for every nodal diameter. This models are dividealtinée blades and the disks. Each
of them can be analyzed separatly and added together afttswBoth subsystems include
the coupling nodes and are arranged to the couple negend the slave nodess. This
results inx = [xm xs]T. The system matrices read as

} for k=1..n (3

Md — |:Md,mm 1\/Id,ms:| ’ Kd _ [Kd,mm I<d,ms:|

) 4
1\/Id,sm Md,ss I<d,sm Kd,ss ()

To reduce the model withh, DOF to a small numbers of DOF; the state vectox € R™ is
multiplying with a matrixTr € R™*?

X = TRXR. (5)

This yields the state reduced vectgs € R? with p < m. Pre-multipliying the equation of
motion by another matris}! reads as

TI'MTr%g + T/ DTr%g + T'KTrxg = T f(t)
& Mig 4 Dxg + (K)xg = £(2). (6)
The matricesI'. andTgr have to be bases of the system. The well known Craig-Bampton
reduction [11] deals with two different kinds of approach&lere is on the one hand a static

displacement of the master nodes, on the other hand themnelal reduction of the slave
nodes. When the nodes of the system are divided into masteslarednodes like in equation

(4), the transformation is
Xm| |E 0] |Xm
[XJ B {‘I’ @} [7]} ' (7)

The time depend behavior of the master nodes is unchangedydbe transformation. The
motion of the slave nodes depends on the modes and the gigilactment of the master



nodes—K'Kqnxm = ¥xy,. The matrix® is the modal matrix combined of the first

eigenvectors oM K. After the reduction the master nodes still have the charistics of

a cyclic system. The Fourier matrix

F=[f] withf; = %e—iw—lﬂj—ﬂ (8)

converts the master nodes of one segment to the nodes of tile syystem. That means the
systems matrices arises to:

Mymm= (F ® E)'bdiag(Mgmmi)(F @ E)

k=1..n
Myms= (F ® E)lediag(lf/ld,ms,k)
=1..n
=1..n

The matricesbdiag(lf/ld,mm,k) are diagonal submatrices of the mass matrices sorted by the
nodal diametek. The Fourier matrix expands the stiffness matrix analoger&Wwith the
system matrix of the disk is full described. The master naafethe disk have the same
displacements like the master nodes of the blade. That nikanthe disk and the blade can
be put together as:

Xges = [77d Mo, --- Tbn Xm]T~ (10)

As a consequence the mass matrix is composed to:

1\~/Id,ss 0~ 1\~/Id,~ms
~ 0 bdi M bdi M
Vo= | 0 BIngMosd o BdREMomad ay
M sm bdiag(Mb,sm,k) bdiag(Mb,mm,k) + My,mm
k=1..n k=1..n

The force on the tuned blades excites one of the nodal diasnéépending on the engine
order (EO). Every EO effects a different phase shift of timgla forces of the blades

fil(t) = £y (t)eEOE-1I, (12)

A second modal reduction could bring the model down to a smatiber of DOF. The mini-
mal number of DOF depends on the numbers of mode shapes witaldse analyzed.

Krylov-Subspace method

The modal reduction deals with the modal mat#xas the matrice§, and Tk in
Equation (6). For non-symmetric systems they are choseheaeft-side and the right-side
eigenvectors. In the Krylov-Subspace method the méiriand the matriXI'r are the output
and input subspace. Every second order system like Equ@t)jaould be written in a first
order system:



x| 0 1 X + 0| . O
2| T IM'K M 'D| |x% Fl &2
~~ ~ ~— "
Z A Z B
y = Cz. (13)

The matricesA, B, andC are the state, the input and the output matrix. The vectamtains
the monitoring nodes. Equation (13) is converted with thelaee transformation defined as:

o0

F (S) = /GSth (t)dt (14)
0
Therewith Equation (13) can be stated as

y =C[sE — A]"'Bu (15)

(.

g

H

with E as the identity matrix. The matri is called transfer function or impulse response
function of the Equation (13). This equation developed enThylor series gives:

"L OFH(s)
k!0sk

h(k)

H(s — so) =

(S — So). (16)

For so = 0 the coefficients of the functioh(k) are called the moments & and Markow
parameter fos, = co. From Equation (13) the coefficients of the Taylor series are

OFH(s)
h(k) =
(k) k10sk
The goal of the reduction with the Krylov-Subspace is to fimdduced model which matches
the first moments of the FRF. Therefore the transformationgefaion (6) can be applied to

Tr andT| as two side Krylov-Subspace matrices. They are called iapdioutput subspaces
V andW and are defined as

= CA (DB, (17)

V = Ko(A™',B) = span{B,A"'B, ..., A" "B}
W = le(A_H, CH) = Span{(j_H7 A—HCH’ e (A—H)p—ch} ' (18)

AH means the Hermitian matrix o€ and A the Hermitian matrix of the inverse &. For
a second order system like Equation (1) the subspaces camrbelated (see e.g. [10]):

V = Kq(-K'D,-K'M, -K'B)
W = ,(-K"DH, —K"M" —KHC). (19)



The Krylov-Subspace can be found by the two-side Arnoldoatgm or the Lanczos algo-
rithm like [8] shows. The static displacement of the Craig-B&on method is applied to
couple disk and blades. The input matrix reads as:

-l Ve 2

Analog the left side transformation matflxy is created from the output subspace. The reduce
model matricedM andK results in:

Mmm Mms TV
Msm MSS ‘

Therewith the model of the full model can be created like #qng11). The new stat vector
can be stated as

M = T, { (21)

Xges = [gd gb,l gb,n Xm]T-

The reduced model can be reduced twice down to the final nuaflix®F.

(22)

Mistuning

One possible way to mistune the blades is a variation of iffeests matrix of every
single blade. Therewith the equation of motion is modified to

M(t) + Dx(t) + (1 + c)Kx(t) = £(t). (23)

The factorseg are the mistuning factors for every single blade k=1...natTihcludes the
eigenvalues of the single blades are afflicted with:

Ak,mistuned: V (1 + Ck))\tuned- (24)

The mistuning is implemented during the assembly of theesyshatrices in equation (11).
The submatrix is modified to

lzéiag((l + Ck>Kb,ss,k)~ (25)

Case study

In [8] the properties of the Krylov-Subspace method are ryiv€he most important
points are the requirement for memory and the simple algost One drawback is loosing
the orthogonality of the system. In this case study a simpdengle of a turbine stage will
demonstrate the benefits and the limitations of the Krylatzspace method in the application
of a tuned and a mistuned system.

The model consists of 30 blades on the disk. One segment vensimoFigure 2. The full
system of the blade has more than10°> DOF. The force excites the system at one node in
the middle of each blade. The observed node is at the top dfléukes. Figure 3 shows the
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Figure 3. Nodal diameter diagram and FRF of the tuned model.

nodal diameter diagram with the first four mode shapes oretiisite.

The first simulation calculates the FRF of the tuned systener@lly the reference model is
a modally reduced modell with 300 DOF. This reduction methad validated in previous
work [4]. It can be assumed that this number of DOF is big ehaagbe close to the full

system with all DOF. To compare the Krylov method and the rhoelduction the model is

reduced down to 30 DOF.

In Figure 3 the FRF of the tuned system is shown on the right #ideompared to a modal re-
duction with the same number of DOF the Krylov-Subspace iemaocurate to the reference
model. The first four mode shapes are well depicted. The nrediaiction can only realize

the first mode shape with 30 DOF. As shown in [8] the Krylov-Spdice method nullifies the
orthogonality of the system. On the other hand the modalatemludecouples the EQM. This

means that the Krylov-Subspace needs more time to caldhl@ateRF for one frequency in

case of the same number of DOF.

In a second simulation a mistuned system is analyzed. Thieblaave a variance 6f0001
as Figure 5 shows. To compare the reduction method the FRFedflade is calculated with
every method. The differences between the Krylov-Subspeatbod and the modal reduction
seem to be as small as at the tuned system. On the right sidguwtR an enlargement of
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Figure 4. Mistuning factors of all 30 blades.
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Figure 5. FRF of one blade with mistuning. Whole FRF on the lefe seoom into the first
mode on the right side.

the FRF indicates a different behavior at the area around i$tenfiode. The mistuning has
the biggest influence at this passage and has to be solvedlaswwessible. The calculation
with the Krylov-Subspace method shows a different behasitine model in the area around
the first mode. A calculation with the Krylov-Subspace methath more than 30 DOF ap-
proximates the FRF of the modal reduction. The way of addindg-@Cthe Krylov-Subspace
method up to a good accuracy is at the expense of the computieg A similar simulation
offers the same error independent of the variance of theebladthe mode shape.

Conclusion

This paper deals with the combination of the Krylov-Subspaethod and the Craig-
Bampton method. In a limited frequency range the Krylov-$alse method can be quicker
and numerically better than the modal reduction. The errtineKrylov-Subspace grows up
with the distance to the development point. In contrast tbdahreduction approximates the
FRF in the area around the eigenfrequency with a lower errbe Rrylov-Subspace needs
less DOF as the modal reduction in the case of a tuned turbage .sit reduces FEMs with
cyclic symmetry very efficiently. Also, the differentiatidbetween the master and the slave
nodes enables the extension to nonlinear systems. In tieeotasistuning the method lost
its benefits and shows its weakness. The error is indepentithe variance of the mistuning
and the mode shapes. The advantages and disadvantage® rieedetonsidered for the
application of mistuning.
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