
REDUCED ORDER MODEL OF MISTUNED BLADED DISKS USING THE
KRYLOV-SUBSPACE COMBINED WITH THE CRAIG-BAMTON REDUCTION
TECHNIQUE

M. Sc. L. Pohle1, Dr.-Ing. Lars Panning-von Scheidt1, Prof. Dr.-Ing. J̈org Wallaschek1

1 Institute of Dynamics and Vibration Research, Gottfried Wilhelm Leibniz Universität Han-
nover, (Pohle@ids.uni-hannover.de)

Abstract. In order to analyze the effects of mistuning of blisks, the frequency response func-
tion (FRF) has to be calculated as quickly as possible and with high accuracy. Therefore,
commonly used finite element models with more than106 degrees of freedom (DOF) have to
be reduced to a model with only a few DOF. A usual way in literature is using reduced order
models (ROM) like a modal reduction. This is either slow, inaccurate, or the possible exten-
sion to non-linearity is difficult. In this paper a new method of model reduction for mistuned
turbine blades is introduced and the benefits are shown. The model of the blisk is separated
into individually mistuned blades and a tuned disk where the latter is analyzed as a cyclic sys-
tem. Analog to the Craig-Bampton reduction technique the system is divided into master- and
slave-DOF. The introduced technique is the reduction based on the Krylov-Subspace-Method
which performs better in terms of accuracy than the modal reduction if the Two-Side-Arnoldi
algorithm is used. Afterwards, the reduced tuned model is mistuned by a variation of Youngs
modulus which is the most popular way to introduce mistuning. This reduced system can be
further described by modal reduction to decouple the equation of motion and describes the
full system with as few DOF as possible. Finally, the paper gives a comparison of the stan-
dard Craig-Bampton-reduction and the combined Krylov-Craig-Bampton-method in terms of
computational accuracy and efficiency to show the benefits of the new method.
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Introduction

Current research focuses on the optimization of turbine blades with respect to the fluid
behavior and the efficiency of the turbine. As a result the turbine blades become thinner and
more fragile. Therefore, the blades are prone to vibrations and forced response. Due to the
cyclic structure of a turbine the loads are assumed to be equal at every blade. In case of
a perfectly tuned system all blades show the same vibration amplitude exited by the loads.
Small variations of the blades could effect energy localization and increase amplitudes of sin-
gle blades [1]. This effect is called mistuning and has a big influence on the lifetime of the
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turbine.

To analyze the influence of the mistuning the force response function (FRF) is calculated for
every single blade. On the basis of the FRF the amplitude of thevibration can be calculated
for different mistuning cases. Bladed disks are usually described by a finite element model
(FEM) including more than106 degrees of freedom (DOF). Such huge models need a lot of
computation time to calculate the FRF. This is not effective if the mistuning should be ana-
lyzed by Monte-Carlo simulations or optimizing methods. So the number of DOF has to be
reduced as much as possible to calculate the FRF with acceptable computing time.

This paper is about a two step reduction method for mistuned blisks. It contains an overview of
the current reduction methods applied to mistuned bladed disks. The next part deals with the
reduction of a tuned cyclic model with the Craig-Bampton method. Afterwards this method is
extended with the Krylov-Subspace method and the mistuningof the blades is introduced. In
the third chapter a case study is presented and the benefits and the limitations of the method
are shown. Finally a conclusion is given.

During the last years a lot of papers have introduced new reduction methods for mistuned tur-
bine states. The common way is the transformation to some kind of modal coordinates. The
modal basis realizes the system behavior without the whole numbers of DOF. One possibility
to choose this basis is using the modes of one segment with oneblade and a part of the disk
(see Figure 1). At the Subset of Nominal Modes (SNM) the nominal modes of one tuned
segment are used and the mistuning is taken into account in a second step [2]. An extension
of the SNM is the Fundamental Model of Mistuning (FMM) [3]. This method requires that
the strain energy is concentrated in the blade and only one mode shape is of particular interest.
This means the mode shape of the full system is quite similar to the mode shape of one fixed
blade. This allows some simplification of the algorithm to increase its efficiency.

SNM FMMFull System CMS

Figure 1. Full finite element model and submodels of different reduction methods.



In an alternative way the segment is divided into the blades and the disk and each component
can be reduced independently of each other. This way is called Component Mode Synthesis
(CMS). The disk could be handled as a cyclic symmetry model andthe model of the blades is
reduced only one time. After the reduction of the disk and theblades the full system could be
analyzed [4]. There are many other ideas to reduce the mistuned systems like [5],[6],[7]. All
of this reductions deal with the modal reduction.

Another approximation of FEMs is the Krylov-Subspace method [8]. The basic idea of this
method is to fit the transfer function of the system with the Laplace transformation. This opens
up the possibility to reduce the model around one chosen frequency. Also an error estimation
for the reduced model is given in [8].

Modal reduction

This section introduces the reduction of a FEM with the Craig-Bampton method. As-
suming small deformation and neglecting friction damping like underplatform damping or
shroud coupling we can suppose a linear system with the equation of motion (EQM):

Mẍ(t) +Dẋ(t) +Kx(t) = f(t). (1)

The matricesM,D,K denote the mass, the damping and the stiffness matrix. The vector
x(t) presents the displacement of every single node of the FEM. Two different types of lin-
ear damping are taken into account. On the one hand the Rayleighs damping hypothesis
DR = αM+ βK determines the viscous material damping [9]. On the other hand there is the
structural damping modelDS = ηKi with η as the hysteretic damping ratio. In the following
the damping matrix is integrated in the mass and the stiffness matrix. Assuming the frequency
of the forcef(t) is the same at every node, the FRF can be calculated. The force can be de-
scribed by a harmonic functionf(t) = f̂ sin(Ωt) with the amplitudêf and the frequencyΩ.
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Figure 2. One segment of the bladed disk divided into blade and disk.



One sector of the disk can describe the whole disk cause of thecyclic symmetry. The nodes
at the right side have the same displacement as the nodes at the left side except for a phase
differenceδ = 2π

n
. This phase difference depends on the nodal diameter. The state vector is

sorted in order that the nodes of the left sidexl are at the top and the nodes of the rightxr side
are at the bottom of the state vector. The nodesxc involve the rest of the nodes. Therewith the
state vector can be written as
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 =
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The matrixTd,i transforms the mass matrix and the stiffness matrix to

Md,k = TH
d,kMd,1Td,k

Kd,k = TH
d,kKd,1Td,k

}

for k=1..n. (3)

This transformation of the disk segment reduces the problemof the whole disk ton small
models for every nodal diameter. This models are divided into the blades and the disks. Each
of them can be analyzed separatly and added together afterwards. Both subsystems include
the coupling nodes and are arranged to the couple nodesxm and the slave nodesxs. This
results inx =

[
xm xs

]T
. The system matrices read as

Md =

[
Md,mm Md,ms

Md,sm Md,ss

]

, Kd =

[
Kd,mm Kd,ms

Kd,sm Kd,ss

]

. (4)

To reduce the model withm DOF to a small numbers of DOFp, the state vectorx ∈ R
m is

multiplying with a matrixTR ∈ R
m×p

x = TRxR. (5)

This yields the state reduced vectorxR ∈ R
p with p ≪ m. Pre-multipliying the equation of

motion by another matrixTH
L reads as

TH
LMTRẍR +TH

LDTRẋR +TH
LKTRxR = TLf(t)

⇔ M̃ẍR + D̃ẋR + (K̃)xR = f̃(t). (6)

The matricesTL andTR have to be bases of the system. The well known Craig-Bampton
reduction [11] deals with two different kinds of approaches. There is on the one hand a static
displacement of the master nodes, on the other hand there is amodal reduction of the slave
nodes. When the nodes of the system are divided into master andslave nodes like in equation
(4), the transformation is

[
xm

xs

]

=

[
E 0

Ψ Φ

] [
xm

η

]

. (7)

The time depend behavior of the master nodes is unchanged during the transformation. The
motion of the slave nodes depends on the modes and the static displacement of the master



nodes−K−1
ss Ksmxm = Ψxm. The matrixΦ is the modal matrix combined of the firstp

eigenvectors ofM−1
ss Kss. After the reduction the master nodes still have the characteristics of

a cyclic system. The Fourier matrix

F = [fij ] with fij =
1√
n

e−iδ(i−1)(j−1) (8)

converts the master nodes of one segment to the nodes of the whole system. That means the
systems matrices arises to:

M̃d,mm = (F⊗ E)Hbdiag
k=1..n

(M̃d,mm,k)(F⊗ E)

M̃d,ms= (F⊗ E)Hbdiag
k=1..n

(M̃d,ms,k)

M̃d,sm= bdiag
k=1..n

(M̃d,sm,k)(F⊗ E). (9)

The matricesbdiag(M̃d,mm,k) are diagonal submatrices of the mass matrices sorted by the
nodal diameterk. The Fourier matrix expands the stiffness matrix analog. Therewith the
system matrix of the disk is full described. The master nodesof the disk have the same
displacements like the master nodes of the blade. That meansthat the disk and the blade can
be put together as:

xges=
[
ηd ηb,1 . . . ηb,n xm

]T
. (10)

As a consequence the mass matrix is composed to:

M̃ges=






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M̃d,sm bdiag
k=1..n

(M̃b,sm,k) bdiag
k=1..n

(M̃b,mm,k) + M̃d,mm






. (11)

The force on the tuned blades excites one of the nodal diameters depending on the engine
order (EO). Every EO effects a different phase shift of the single forces of the blades

f̃k(t) = f̃1(t)e
−iEO(k−1)δ. (12)

A second modal reduction could bring the model down to a smallnumber of DOF. The mini-
mal number of DOF depends on the numbers of mode shapes which should be analyzed.

Krylov-Subspace method

The modal reduction deals with the modal matrixΦ as the matricesTL andTR in
Equation (6). For non-symmetric systems they are chosen as the left-side and the right-side
eigenvectors. In the Krylov-Subspace method the matrixTL and the matrixTR are the output
and input subspace. Every second order system like Equation(1) could be written in a first
order system:
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y = Cz. (13)

The matricesA, B, andC are the state, the input and the output matrix. The vectory contains
the monitoring nodes. Equation (13) is converted with the Laplace transformation defined as:

FL(s) =

∞∫

0

e−stfL(t)dt. (14)

Therewith Equation (13) can be stated as

y = C[sE−A]−1B
︸ ︷︷ ︸

H

u (15)

with E as the identity matrix. The matrixH is called transfer function or impulse response
function of the Equation (13). This equation developed in the Taylor series gives:

H(s− s0) ≈
n∑

k=0

∂kH(s)

k!∂sk

∣
∣
∣
∣
s0

︸ ︷︷ ︸

h(k)

(s− s0). (16)

For s0 = 0 the coefficients of the functionh(k) are called the moments ofH and Markow
parameter fors0 = ∞. From Equation (13) the coefficients of the Taylor series are

h(k) =
∂kH(s)

k!∂sk

∣
∣
∣
∣
s0

= CA−(k+1)B. (17)

The goal of the reduction with the Krylov-Subspace is to find areduced model which matches
the first moments of the FRF. Therefore the transformation of Equation (6) can be applied to
TR andTL as two side Krylov-Subspace matrices. They are called inputand output subspaces
V andW and are defined as

V = Kq(A
−1,B) = span

{
B,A−1B, . . . ,A−(q−1)B

}

W = Kp(A
−H,CH) = span

{
C−H,A−HCH, . . . , (A−H)p−1CH

}
. (18)

AH means the Hermitian matrix ofA andA-H the Hermitian matrix of the inverse ofA. For
a second order system like Equation (1) the subspaces can be formulated (see e.g. [10]):

V = Kq(−K−1D,−K−1M,−K−1B)

W = Kp(−K−HDH,−K−HMH,−K−HC). (19)



The Krylov-Subspace can be found by the two-side Arnoldi algorithm or the Lanczos algo-
rithm like [8] shows. The static displacement of the Craig-Bampton method is applied to
couple disk and blades. The input matrix reads as:

[
xm

xs

]

=

[
E 0

Ψ V

] [
xm

ξ

]

= TV

[
xm

ξ

]

. (20)

Analog the left side transformation matrixTW is created from the output subspace. The reduce
model matrices̃M andK̃ results in:

M̃ = TH
W

[
Mmm Mms

Msm Mss

]

TV. (21)

Therewith the model of the full model can be created like equation (11). The new stat vector
can be stated as

xges=
[
ξd ξb,1 . . . ξb,n xm

]T
. (22)

The reduced model can be reduced twice down to the final numberof DOF.

Mistuning

One possible way to mistune the blades is a variation of the stiffness matrix of every
single blade. Therewith the equation of motion is modified to

Mẍ(t) +Dẋ(t) + (1 + ck)Kx(t) = f(t). (23)

The factorsck are the mistuning factors for every single blade k=1. . . n. That includes the
eigenvalues of the single blades are afflicted with:

λk,mistuned=
√

(1 + ck)λtuned. (24)

The mistuning is implemented during the assembly of the system matrices in equation (11).
The submatrix is modified to

bdiag
k=1..n

((1 + ck)Kb,ss,k). (25)

Case study

In [8] the properties of the Krylov-Subspace method are given. The most important
points are the requirement for memory and the simple algorithms. One drawback is loosing
the orthogonality of the system. In this case study a simple example of a turbine stage will
demonstrate the benefits and the limitations of the Krylov-Subspace method in the application
of a tuned and a mistuned system.

The model consists of 30 blades on the disk. One segment is shown in Figure 2. The full
system of the blade has more than2 · 105 DOF. The force excites the system at one node in
the middle of each blade. The observed node is at the top of theblades. Figure 3 shows the
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Figure 3. Nodal diameter diagram and FRF of the tuned model.

nodal diameter diagram with the first four mode shapes on the left side.

The first simulation calculates the FRF of the tuned system. Thereby the reference model is
a modally reduced modell with 300 DOF. This reduction methodwas validated in previous
work [4]. It can be assumed that this number of DOF is big enough to be close to the full
system with all DOF. To compare the Krylov method and the modal reduction the model is
reduced down to 30 DOF.

In Figure 3 the FRF of the tuned system is shown on the right side. As compared to a modal re-
duction with the same number of DOF the Krylov-Subspace is more accurate to the reference
model. The first four mode shapes are well depicted. The modalreduction can only realize
the first mode shape with 30 DOF. As shown in [8] the Krylov-Subspace method nullifies the
orthogonality of the system. On the other hand the modal reduction decouples the EQM. This
means that the Krylov-Subspace needs more time to calculatethe FRF for one frequency in
case of the same number of DOF.

In a second simulation a mistuned system is analyzed. The blades have a variance of0, 0001
as Figure 5 shows. To compare the reduction method the FRF of one blade is calculated with
every method. The differences between the Krylov-Subspacemethod and the modal reduction
seem to be as small as at the tuned system. On the right side of Figure 4 an enlargement of
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Figure 5. FRF of one blade with mistuning. Whole FRF on the left side, zoom into the first
mode on the right side.

the FRF indicates a different behavior at the area around the first mode. The mistuning has
the biggest influence at this passage and has to be solved as well as possible. The calculation
with the Krylov-Subspace method shows a different behaviorof the model in the area around
the first mode. A calculation with the Krylov-Subspace method with more than 30 DOF ap-
proximates the FRF of the modal reduction. The way of adding DOF at the Krylov-Subspace
method up to a good accuracy is at the expense of the computingtime. A similar simulation
offers the same error independent of the variance of the blades or the mode shape.

Conclusion

This paper deals with the combination of the Krylov-Subspace method and the Craig-
Bampton method. In a limited frequency range the Krylov-Subspace method can be quicker
and numerically better than the modal reduction. The error of the Krylov-Subspace grows up
with the distance to the development point. In contrast the modal reduction approximates the
FRF in the area around the eigenfrequency with a lower error. The Krylov-Subspace needs
less DOF as the modal reduction in the case of a tuned turbine stage. It reduces FEMs with
cyclic symmetry very efficiently. Also, the differentiation between the master and the slave
nodes enables the extension to nonlinear systems. In the case of mistuning the method lost
its benefits and shows its weakness. The error is independentof the variance of the mistuning
and the mode shapes. The advantages and disadvantages need to be reconsidered for the
application of mistuning.
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