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Detailed Micro-Model: 

Using the detailed micro-model approach the bricks and the mortar joints have 
their real sizes. Bricks and mortar are modeled with continuum elements. In addition, 
interface elements can be used to describe the bond between the brick and the joint. Using 
the detailed micro-model, the Young’s modulus, the lateral deformation and the inelastic 
material properties of the mortar and the bricks can be modeled separately. This is 
important in order to assess the failure due to lateral tension in the bricks. So, the 
interaction between the mortar and the bricks and the different failure modes can be 
realistically determined. 

3.1 Our Approach  

For this project a modeling approach is needed that is able to simulate masonry 
walls made of any types of masonry units and any arrangement of the units under dynamic 
loadings. For this vast range of application, including loadings in and perpendicular to the 
wall, an appropriate modeling strategy is needed. As loadings perpendicular to the plane 
of the wall cause normal tensile and compression stresses in the wall, it is important to 
numerically model the interaction between the mortar and the bricks, because normal 
compression creates tensile failure in the bricks due to lateral deformation of the joints. 
Therefore, the detailed micro-model has been chosen for the own modeling approach.  

As mentioned before, in this paper, just the material model developed for bricks and 
its validation is presented. In Gebbeken et al. [7] the material model developed for mortar 
is published in detail. 

3.2 Material model for bricks 

The material model developed for bricks is designed to perform three dimensional 
simulations. The main challenge has been the development of a formulation that can be easily 
adapted to different brick types. In the following paragraphs the mechanical descriptions 
implemented in the material model for the bricks are presented.  

Strength model 

In order to better understand the idea of the construction of the strength model, the 
position of different stress states on the fracture surface and the different meridians are 
presented in Fig. 9. 
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The uniaxial stresses states have been determined with own material tests, results 
presented in Tab. 2. For the other stress states, assumptions based on comparisons with 
concrete and sand were used. For the ceramic bricks, it was possible to verify these 
assumptions with 3D material tests that were recently executed by the Engineering Research 
and Development Center (ERDC) of the Army Corps of Engineers in Vicksburg, USA. There, 
the identical type of our bricks were examined. 
 

Table 2. Material parameters for masonry units 

Mechanical  
Properties  

Clinker Ceramic 
Clay Brick 
(Germany) 

Clay Brick 
(Afghanistan) 

Concrete 
Masonry 

unit 

fc [MPa] -100 -34,8 -2,4 -10,2 -38,7 

ft [MPa] 5 1,1 0,293 1,37 2,17 

fcc [MPa] [1] -1,1 x fc -1,16 x fc -1,25 x fc -1,25 x fc -1,16 x fc [2] 

σ0 [MPa] [3] -103,5 [5] -2,887 x fc -3 x fc -3 x fc -2,887 x fc [2]

τ0 [MPa] [3] 89,6 [5] 2,31 x fc 3 x fc 3 x fc 2,31 x fc [2] 

F
ra

ct
u

re
 

st
ra

in
s 
ε 

[-
] 

1-D Compr. [4] 4,0 x 10-3 9,5 x 10-3 3 x 10-3 1,5 x 10-3 2,3 x 10-3 

1-D Tension [6] 1,58 x 10-4 9,0 x 10-4 5 x 10-4 0,38 x 10-4 0,178 x 10-4 

3-D Compression [3] 8,0 x 10-3 19,0 x 10-3 6 x 10-3 3,0 x 10-3 4,6 x 10-3 

Y
ou

ng
's

 
M

od
. 

[M
P

a]
 

1D Tension 12750 1630 560 3210 10666 

1D Compression 24666 3666 800 6625 16800 

 
[1] based on analogy observations of different types of concretes 
[2] test data for concrete 
[3] extrapolation of test data of concrete  
[4] calculated with Young’s moduli for compression and compressive strength 
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Adaption of the Material Stiffness 

After fracture, a decay of the material stiffness is observed. Stress-strain-diagrams of 
compression tests of Oliveira [14] show, that the stiffness decreases significantly. These 
diagrams show that if the residual strength in the 1D compression state is only 15 % of the 
original undamaged strength, the stiffness is about one third of the original stiffness. So the 
shear modulus can be approximated by 

	 Gୠ୰୧ୡ୩ ൌ G଴ ⋅ ሺ1 െ Dሻ ൅ ଵ

ଷ
⋅ G଴ ⋅ D,	 ሺ17ሻ	

where G0 is the undamaged stiffness and D the material damage. 

Adaption of Young’s Moduli, Tensile and Compression Regime 

Bricks show a significant difference between the tensile and the compressive Young’s 
Modulus, Tab. 2. This is considered by distinguishing with the help of the triaxiality  

	 E ൌ ൜
	
	

E୲ୣ୬ୱ୧୪ୣ for η ൐ 0
Eୡ୭୫୮୰ୣୱୱ୧୭୬ for η ൏ 	0 	 ሺ18ሻ.	

The difference of the stiffness can be explained by micro cracks in the brick material 
that reduce the tensile stiffness.  

4. NUMERICAL SIMULATIONS 

The material model presented in Chapter 3 was implemented with a user subroutine in 
ANSYS AUTODYN. In order to validate the material model, some experimental 
investigations, which are described in Chapter 2, were numerically simulated. The numerical 
results were compared to results of the tests. In the following, the numerical simulations of 
uniaxial tensile and uniaxial compression tests that have been carried out on masonry bricks 
will be presented. 

4.1 Hydrocode simulations 

As mentioned above, the numerical simulations have been carried out applying the 
software ANSYS AUTODYN. This software is a Hydrocode developed to numerically model 
engineering problems. A Hydrocode is capable to solve large deformation and large strain 
transient problems that occur on a short time scale. This code is based on the finite difference 
method (FDM). The FDM solves partial differential equations by the transformation of 
differential terms into difference quotients. The FDM in ANSYS AUTODYN is based on the 
integral difference technique developed by Noh [13]. Noh derived the integral difference 
method by combining Green’s Theorem with the mean value theorem. Green’s Theorem 
gives the relation between the boundary integral and area integral. According to Benson [2], 
in almost all Hydrocodes, the conservation equations are integrated in time. The deviatoric 
and hydrodynamic terms in the material tensor are usually modeled separately. In this way, 
the solution is advanced in time using an explicit integration scheme, because stress waves 
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With the single-cell simulation, it is possible to check whether the implementation is 
correct or not. In this way, firstly, the mechanical properties presented in Tab. 2 obtained 
from the tests were assigned in ANSYS AUTODYN. Secondly, the stresses and strains 
obtained from the numerical simulations were compared with the continuum mechanics 
theory. In the following the validation of the tensile and compressive simulation will be 
presented in detail for the ceramic brick. 

The element used in the simulation is subjected to a deformation in z-direction 
producing a normal stress in this direction, simulating a uniaxial tensile or compression test. 
Due to this uniaxial stress, the normal stresses in x and y direction, and also the shear stresses 
and shear strains, are null. The extension (tensile test) or contraction (compressive test) of the 
element is accompanied by lateral extension or contraction, resulting in normal strains. The 
results of the tests show a linear behavior until the fracture, in this way, the strains in which 
the body is subjected can be obtained due to the constitutive law of the material. The 
constitutive law is described by the following equations from the continuum mechanics  

 ε୶୶ ൌ
ଵ

୉
	ൣσ୶୶ െ 	ν	൫σ୷୷ ൅	σ୸୸൯൧  (20) 

 ε௬௬ ൌ
ଵ

୉
	ൣσ୷୷ െ 	ν	ሺσ୸୸ ൅	σ୶୶ሻ൧  (21) 

 ε୸୸ ൌ
ଵ

୉
	ൣσ୸୸ െ 	ν	൫σ୶୶ ൅	σ୷୷൯൧  (22). 

were used, where ε are the normal strains, E the Young’s Modulus, σ the normal stresses and 
ν is the Poisson’s ratio. 

In order to validate the implementation, the last state of the linear region at t=95ms 
was analyzed. For the tensile test, a constant velocity of 0,005m/s was given. The Poisson’s 
ratio in this case was approximated to 0,2 and the Young’s Modulus, E = 1630 MPa, was 
obtained from the tensile test. The displacement obtained in this state is Δl = v x t = 
0,005x95x10-3 = 0,475 mm. This test simulates a uniaxial tensile test. In this theoretical case, 
the normal stress in x and y direction, the shear stresses and shear strains are zero. Thus, the 
deformation analytically obtained in z direction is ε୸୸= 0,475/1000 = 4,75x10-4. The stress in 
z-direction can be obtained using Eq. 22. The strains in x and y direction are determined from 
Eq. 20 and 21. The results from the numerical simulation and the continuum theory are in 
good agreement, Tab. 4. The results of the simulations are presented in Fig. 19.  

With the same method the implementation was validated for the compressive tests. 
These results are plotted in Tab. 4 and Fig. 20. 
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Fig. 21 shows comparisons between the results of the simulations and the results of 
static tensile and compression experiments conducted for each of the five bricks presented 
in Fig. 1. In these graphics, the stress-strain diagrams obtained in the tests and the stress-
strain in z-direction obtained from the simulations are presented. As can be seen, the 
results from the tests and the numerical simulations are in good agreement. For these 
simulations, the strain rate dependency was inactivated in the material models. 

5. CONCLUSION 

A detailed micro-model has been developed in order to simulate masonry walls. Two 
material models, one for bricks and one for mortar have been developed. In this paper, the 
material model developed for masonry bricks was presented. The challenge was to describe 
the material under 3-dimensional stress states including strain rate dependency, material 
failure and degradation of material properties. For this purpose, available literature has been 
studied and in addition own static and dynamic material tests have been carried out.  

The new material model is somewhat a combination of material models for static 2D 
simulations, as they were suggested e.g. by Lourenco [12], and dynamic material models 
published by Johnson and Holmquist [10], Riedel [17] or Gebbeken and Hartmann [5]. The 
new material model is able to describe three dimensional stress states considering the post 
fracture behavior of the materials. The material model can be easily adapted to other bricks.  

Furthermore, the material model can be used for different loads, being static or 
dynamic. The material model was validated under tensile and compressive static loads for the 
bricks and a validation of a single cell element was presented in this paper. The authors are 
about to perform more physical tests and numerical simulations of masonry specimens and 
entire walls. 
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