
 
 

COMPARISON OF TWO TIME-STEPPING METHODS FOR COMPOSITIONAL 

RESERVOIR SIMULATION  

B. R. B. Fernandes
2
, A. Varavei

3
, F. Marcondes

1
, and K. Sepehrnoori

3 

1
Department of Metallurgical Engineering and Material Science at the Federal University of 

Ceará, Ceará, Brazil (marcondes@ufc.br) 

2
Laboratory of Computational Dynamics of Fluids, LDFC, Department of Metallurgical 

Engineering and Material Science at the Federal University of Ceará, Ceará, Brazil 

3
Petroleum and Geosystems Engineering Department, The University of Texas at Austin, 

Texas, USA 

Abstract. In this paper, a comparison of two compositional reservoir simulation formulations 

is presented. The first formulation is based on an implicit pressure and explicit concentration 

(IMPEC) procedure and the second formulation uses an implicit pressure and implicit 

saturation (IMPSAT) for the solution of the governing partial differential equations. Our 

main goal was to compare the formulations in terms of computational times for solving 2D 

and 3D compositional reservoir simulation case studies. Both single point upstream 

weighting and third-order schemes for discretization of the partial differential equations were 

implemented for the formulations. The computational results for the abovementioned 

formulations for several case studies involving homogeneous and heterogeneous reservoirs 

are presented in this paper. 
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1. INTRODUCTION 

Several formulations have been developed for solving the governing partial 

differential equations arising from modeling fluid flow for compositional simulations in 

porous media. In general, these formulations can be classified as Implicit Pressure Explicit 

Saturation (IMPEC), Implicit Pressure and Saturation (IMPSAT), or the Fully Implicit 

Method (FIM). The IMPEC formulation has the lowest cost in terms of computational time 

per time-step. However, due to the explicit calculation of concentrations, this formulation 

cannot use large time-steps when compared to the FIM and IMPSAT approaches. The 

IMPSAT method can handle larger time-steps when compared to the IMPEC approach, but it 

is less expensive in terms of computational time, per time-step, than the FIM approach.  
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In this work, an IMPSAT formulation proposed by Watts [1] was implemented into 

the UTCOMP simulator. UTCOMP was developed at the Center for Petroleum and 

Geosystems Engineering at The University of Texas at Austin for the simulation of enhanced 

recovery processes. The original approach of the UTCOMP simulator is an IMPEC [2,3], 

multiphase/multi-component compositional equation-of-state simulator, which can handle the 

simulation of several enhanced oil recovery processes.  

Other procedures for solving the pressure and saturation implicitly (IMPSAT) were 

proposed in [4] and [5]. However, the one presented here has similar advantages as the 

original IMPEC formulation in the UTCOMP simulator. In other words, this IMPSAT 

formulation solves simple sets of linear systems for both pressure and saturations, while only 

one flash procedure is performed per time-step. Also, for most test cases, the formulation was 

able to use larger time-steps than IMPEC formulation. 

2. PHYSICAL MODEL 

We now present the main equations of the Watts’ [1] formulation. Watts’ approach is 

basically an adaptation of the method proposed in [4] where the volume error constraint is 

added to pressure and saturation equations. In this section, we show the molar balance 

equations, the pressure equation, and the new saturation equations. 

2.1. Molar Balance Equation 

The molar balance equations considering the advection transport term (see [3]) is 

given by 

 . (1) 

where Nk is the moles of component k, Vb is the bulk volume, xkj is the mole fraction of 

component k in phase j, ξj is the molar density, vj is the velocity of phase j, qk is the molar rate 

of component k through the well, Nc is the number of hydrocarbon components, and Nc+1 

denotes the water component.   

The velocity of phase j is given by 

  (2) 

where krj and µj are the relative permeability and viscosity of phase j, respectively,  ̿ is the 

absolute permeability tensor, and Φj is the hydraulic potential of phase j which is defined by 

  (3) 
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where P is the pressure of oil phase, ρj is the mass density of phase j, g is the gravity, D is the 

depth, and Pcrj is the capillary pressure between phase j and r. 

2.2. Fluid Equilibrium Criteria 

For the closure equations, fluid phase equilibrium between the hydrocarbon phases is 

used. This assumption considers that the chemical potential of all phases are the same. This 

can be expressed in terms of the equality of the fugacities (f) of the phases, as shown below: 

  (4) 

2.3. Pressure Equation 

In this work the pressure equation used in UTCOMP simulator, for IMPEC and Watts 

formulations, is based on the volume constraint proposed as in [2]. The pressure equation is 

obtained from the equality between the formation pore volume (Vp) and the total fluid volume 

(Vt). 

  (5) 

Taking the derivative of Eq. (5) with respect to time, and applying the chain rule to the 

right-hand side, we obtain: 

  (6) 

The derivative of total fluid volume with respect to pressure is equal to the total fluid 

compressibility multiplied by the total fluid volume, and the derivative of total fluid volume 

with respect to the number of moles of each component is equal to the partial molar volume 

derivative.  

The pore volume is related to the porosity (ϕ) and the bulk volume (Vb), by 

  (7) 

and 

  (8) 

where ϕo is the porosity at the reference pressure (Pf), and Cf is the rock compressibility. 

Substituting Eqs. (7) and (8) into Eq. (6), we obtain: 

  (9) 
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The total volume derivative with respect to each molar component can be rewritten as 

  (10) 

Substituting Eqs. (1), (2) and (10) into Eq.(9), one obtains the final equation for 

pressure: 

  (11) 

2.3. Saturation Equation 

The saturation equation is solved implicitly only for the IMPSAT formulation. The 

approach used here is described in [1]. By definition, the saturation of phase ℓ (Sℓ) is given by  

  (12) 

where Vℓ is the volume of phase ℓ which is a function of pressure and number of moles. 

Equation (12) can be written as 

  (13) 

Taking the derivative of Eq. (13) with respect to time and applying the chain rule on 

the right-hand side, we obtain: 

  (14) 

Substituting Eq. (1) into Eq. (14) results in 

  (15) 

Comparing Eqs. (11) and (15), we can observe that saturations and pressure equations 

have the same format. As suggested in references [1] and [4], the phase velocity that is needed 

in Eq. (15) should be evaluated as a function of the total velocity. According to these authors, 

if this approach is performed, the segregated solution of pressure and saturations will be 

equivalent to a fully implicit procedure in terms of pressure and saturation. Next we present 

the expression for the total velocity using the ideas given in [1], but now considering a full 

permeability tensor. Considering a three-phase flow, the total velocity (vt) is given by 

  (16) 
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where the subscripts w, o, g denote water, oil and gas, respectively. 

The velocity of phase j defined in Eq. (2), can be rewritten as 

  (17) 

where the phase mobility (λj) is defined as 

  (18) 

Equation (17) can be rearranged as 

  (19) 

Subtracting Eq. (19) with j=w from Eq. (19) with j=o, one obtains:  

  (20) 

where 

  (21) 

Substituting Eq. (21) into Eq. (20), we obtain: 

  (22) 

In order to use only the oil phase velocity in Eq. (22), the gas velocity must be 

replaced. To replace the gas velocity, we can subtract Eq. (19) with j=o from Eq. (19) with 

j=g. 

  (23) 

Substituting Eq. (23) into Eq. (22) results in 

  (24) 

which after some algebraic manipulation can be written as 
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  (25) 

Using the oil phase velocity presented above, and performing a final algebraic 

manipulation, the velocity of phase j is defined by 

  (26) 

where fj  the fractional flow of phase j (fj) is defined by 

  (27) 

The total velocity given by Eq. (16) can be rewritten as 

  (28) 

Substituting Eq. (26) into (15) yields 

  (29) 

Equation (29) is the final saturation equation in terms of total velocity. The next 

section is devoted to show the numerical discretization applied to the above equation. 

3. APROXIMATE EQUATION 

The discretization for the pressure and molar blance equations can be found in [3] and 

will not be treated in this paper. 

In order to obtain an approximate equation for the saturation of phase ℓ, we will 

integrate Eq. (29) to the control volume of Fig. 1 and time.  
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Figure 1. Control volume. 

 

The final form of the saturation equation is shown below, for a one-dimensional 

control volume,given by 

  (30) 

where 

  (31) 

Equation (30) is solved using the Newton-Raphson method. 

Figure 2 shows the flow chart of the procedure used in UTCOMP simulator for the 

implementation of the Watts’ formulation. As we can see in the figure, first pressure is 

evaluated,  then there is an iterative procedure to evaluate the saturations. 
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Figure 2. Flow chart for Watts’ formulation. 

 

A third-order total variation diminishing (TVD) method (see [3] and [6]) was 

implemented for solving the saturation equations. The relative permeabilities are treated semi-

implicitly using the idea presented in [7], in which the higher order terms are considered only 

in the independent term of the linear system.  

3. RESULTS AND DISCUSSION 

In this section, we investigate the numerical solution as well as the performance in 

terms of CPU time of the Watts’ formulation implemented in this work. The comparison 



 

 

studies were carried out by setting the maximum allowable time-steps for various cases to 

values such that comparable non-oscillatory results were obtained for both formulations. 

The first case investigated is a CO2 injection in an isotropic and heterogeneous 

reservoir. All reservoir data are shown in Table 1. 

 

Table 1:  Reservoir data - Case 1. 

Property Value Unit 

Length 500 ft 

Width 1000 ft 

Height 20 ft 

First Layer Depth 2600 ft 

Porosity 0.25  

Relative Permeability Model Corey  

Initial Water Saturation 0.25  

Initial Pressure 1100 psia 

Permeability in Z direction 10 mD 

Formation Temperature 105 
o
F 

Injector BHP 1250 psia 

Producer BHP 1100 psia 

Grid 20x40x1  

 

The components, initial composition and fluid injection composition are shown in 

Table 2. 

 

Table 2:  Component data - Case 1. 

Component Initial Reservoir Composition Injection Fluid Composition 

CO2 0.0337 0.95 

C1 0.0861 0.04999 

C2-3 0.1503 0.000002 

C4-6 0.1671 0.000002 

C7-15 0.3304 0.000002 

C16-27 0.1611 0.000002 

C28 0.0713 0.000002 

 

The absolute permeability field in the x and y directions are shown in Fig. 3. In order 

to better visualize the whole variation of the permeability field, Figs. 3b and 3c show two 

different zooms of the whole scale presented in Fig. 3a. 



 

 

   

(a) (b) (c) 
Figure 3:  Permeability in the x and y direction. 

 

We compare the results of the Watts’ formulation with the original IMPEC 

formulation of the UTCOMP simulator. The results in terms of oil and gas production are 

presented in Figs. 4 and 5, respectively. From these figures, we can observe a good agreement 

between the original IMPEC formulation and the Watts’ formulation implemented in the 

UTCOMP simulator.  

 

 
Figure 4:  Oil rate - Case 1. 



 

 

 
Figure 5:  Gas rate - Case 1. 

 

The results for the second liquid front at 1844 days obtained with the IMPEC and 

Watts’ formulation is compared in Figs. 6.  As can be seen in this figure, a good agreement at 

the two fronts is verified. 

  
(a) (b) 

Figure 6: Second liquid front at 1844 days. a) IMPEC; b) Watts. 

 

The time-steps used by the original UTCOMP approach (IMPEC) and the new 

approach (Watts) are shown in Fig. 7. 



 

 

 
Figure 7:  Time-step - Case 1. 

 

As we can observe in Fig. 7, the time-steps used by the Watts’ formulation were larger 

than those of the IMPEC formulation for the entire simulation. Due to the computational time 

for the solution of the linear system for the saturations, the Watts’ formulation is more 

expensive per time-step. However, the large time-steps used by the Watts’ formulation 

allowed this formulation to be less expensive in terms of CPU time than that of the IMPEC 

formulation. This fact can be seen in Table 3 that shows the CPU time of both formulations. 

From this table, we observe that Watts’ formulation was about two times faster than the 

IMPEC formulation.  

 

Table 3:  CPU time comparison - Case 1. 

Formulation CPU time Speed-up ratio 

IMPEC 467.58 1 

Watts 225.21 2.08 

 

Case 2 is similar to Case 1, but we replaced the upwind function by a third-order TVD 

interpolation function. Figures 8 and 9 show the volumetric rate of oil and gas, respectively, 

and Fig. 10 presents the second liquid saturation front at 1844 days. Once again, the Watts’ 

formulation results are in good agreement with the IMPEC formulation. 

 

 
Figure 8:  Oil volumetric rate – Case 2. 



 

 

 
Figure 9:  Gas volumetric rate – Case 2. 

 

  
(a) (b) 

Figure 10: Second liquid front at 1844 days. a) IMPEC; b) Watts. 

 

The time-steps used in this case study for the original UTCOMP approach (IMPEC) 

and the new approach (Watts) are shown in Fig. 11. Although the time-step pattern shown in 

Fig. 11 is different from that shown in Fig. 7 using the upwind scheme, approximately the 

same speed-up ratio of the Watts’ compared to the IMPEC formulation for Case 1 was 

obtained as shown in Table 4. 



 

 

 
Figure 11:  Time-step comparison - Case 2. 

 

Table 4:  CPU time comparison - Case 2. 

Formulation CPU time Speed-up ratio 

IMPEC 980.95 1 

Watts 482.44 2.03 

 

Case 3 refers to a WAG (water-alternating gas) process in a quarter-of-five-spot 

configuration. For this case, we start injecting CO2, and then water for one hundred days. 

Then, the injector well is shut in. Each fluid is injected at a fixed pressure over the course of 

ten days. Tables 5 and 6 present the reservoir fluid properties employed for this case. 

 

Table 5:  Reservoir data – Case 3. 

Property Value Unit 

Length 480 ft 

Width 480 ft 

Height 47.5 ft 

First Layer Depth 0 ft 

Porosity 0.163  

Relative Permeability Model Baker  

Initial Water Saturation 0.65  

Initial Pressure 1400 psia 

Permeability in the x and y directions 200 mD 

Permeability in the z direction 100 mD 

Formation Temperature 140 
o
F 

Injector BHP 1450 psia 

Producer BHP 1000 psia 

Grid 100x100x1  

 

 

 



 

 

 

Table 6:  Component data – Case 3. 

Component Initial Reservoir Composition Injection Fluid Composition 

CO2 0.0077 1 

C1 0.2025  

C2-3 0.1180  

C4-6 0.1484  

C7-15 0.2863  

C16-27 0.1490  

C28 0.0881  

 

For this case, the upwind scheme was used to obtain the solution for both 

formulations. Figures 12 and 13 present the oil and gas volumetric rates, respectively, and 

Fig. 14 shows the oil saturation front at 100 days for a 100x100 grid. From Figs. 12 through 

14, we observe again that the results of both formulations are in good agreement.  

 

 
Figure 12:  Oil volumetric rate – Case 3. 

 

 
Figure 13:  Gas volumetric rate – Case 3. 

 



 

 

  
(a) (b) 

Figure 14:  Oil saturation front at 100 days - Case 3. a) IMPEC; b) WATTS 

 

A time step comparison for a 100x100 grid is shown in Fig. 15. From this figure, we 

can verify that the maximum time-step employed by the Watts’ formulation was about five 

times larger than that used by the IMPEC approach. In order to see the effect of the mesh size, 

we present in Fig. 16 the total CPU time for three meshes. We can see that the relative 

performance of the Watts’ formulation in comparison with the IMPEC formulation improves 

as the mesh is refined. 

 

 
Figure 15:  Time-step comparison - Case 3. 



 

 

 
Figure 16:  Effect of mesh size on the CPU time - Case 3. 

 

Case 4 presents CO2 injection in a heterogeneous and anisotropic reservoir. The 

reservoir and fluid data used for this case are shown in Tables 7 and 8. The absolute 

permeability in the x and z directions are shown in Fig. 17. The same permeability as in the x 

direction was used for the y direction. 

 

Table 7: Reservoir data – Case 4. 

Property Value Unit 

Length 800 ft 

Width 800 ft 

Height 200 ft 

First Layer Depth 0 ft 

Porosity 0.3  

Relative Permeability Model Stone II  

Initial Water Saturation 0.25  

Initial Pressure 3000 psia 

Formation Temperature 80 oF 

Injector Rate 20000 MSCF/d 

Producer BHP 3000 psia 

Grid 20x20x5  

 

Table 8:  Component data - Case 4. 

Component Initial Reservoir Composition Injection Fluid Composition 

CO2 0.0100 0.95 

C1 0.1900 0.05 

NC16 0.8000  

 



 

 

  

(a) (b) 

Figure 17:  Absolute permeability. a) x direction; b) z direction. 

 

Figures 18 and 19 present the oil and gas volumetric rates, respectively. Figure 20 

shows the gas saturation front at 500 days. From these figures, we can observe a very good 

match between both formulations. 

  

 
Figure 18:  Oil volumetric rate – Case 4. 

  

 
Figure 19:  Gas volumetric rate – Case 4. 



 

 

  
(a) (b) 

Figure 20:  Gas saturation front – Case 4. a) IMPEC; b) Watts. 

 

Figure 21 presents the time-steps history used by both formulations. From this figure, 

we can observe that on average the time-step employed by the Watts’ formulation was eight 

times larger than that of the IMPEC formulation. Table 9 presents the average CPU employed 

by both formulations. We can infer from the table that Watts’ formulation was about 2.3 times 

faster than the IMPEC formulation. 

 

 
Figure 21:  Time-step comparison - Case 4. 

 

Table 9:  CPU Time comparison - Case 4. 

Formulation CPU time Speed-up ratio 

IMPEC 84.58 1 

Watts 36.59 2.33 

4. CONCLUSIONS 

In this work, we implemented the Watts’ formulation for reservoirs using Cartesian 

grids into the UTCOMP simulator. Also, two interpolation functions for evaluating the 



 

 

physical properties at each interface of the control volume were implemented: UDS (upwind 

difference scheme) and a third-order TVD method. For most of the case studies tested, the 

Watts’ formulation implemented in this work was around two times faster than the original 

IMPEC formulation of the UTCOMP simulator. The next step in this research is to implement 

the Watts’ formulation for unstructured grids using the EbFVM (element-based finite-volume 

method). 
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