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1 Instituto Tecnológico de Aeronáutica, DCTA/ITA, (carbrevi@gmail.com)

2 Instituto de Matemática, Estatı́stica e Computação Cientı́fica, UNICAMP
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Abstract. The present work considers the use of high-order numerical methods for compress-
ible aerodynamic solutions on unstructured meshes. The primary interest of the paper is to
investigate the proper solution accuracy and efficiency of the Spectral Finite Volume (SFV)
and Spectral Difference (SD) methods. The SFV method can easily be adapted to a finite
volume solver while the SD method is designed for a finite difference framework. The mesh
element support is also different for these schemes and will most likely affect the solution
of a particular problem. The present work compares the order of accuracy and resolution
capabilities of the two schemes for literature test cases.

Keywords: High-order methods, Unstructured mesh, Spectral Difference, Spectral Finite
Volume.

1. INTRODUCTION

High order methods are necessary on the analysis of complex flows to reduce the num-
ber of mesh elements one would otherwise need if using traditional second-order schemes.
Assessment of solution reliability in such cases may also require that a specified solution ac-
curacy be met by the spatial discretization scheme. The spectral methods here considered
were developed as an alternative to the discontinuous Galerkin, k-exact, ENO/WENO high-
order schemes. Their common objective is to allow the implementation of a simpler and more
efficient scheme, while still achieving high-order spatial accuracy.

The spectral finite volume (SFV) and spectral difference (SD) schemes are imple-
mented in an unstructured, two dimensional Euler framework. The schemes allow for 2nd-,
3rd- and 4th-order accurate solutions, which use the Roe Riemann solver as the basic numeri-
cal flux scheme. The SFV method, as developed by Wang [1] circa 2002, was further extended
to handle hyperbolic systems, two and three dimensions, smooth and discontinuous flow solu-
tions. This method was originally incorporated by the authors into a 2-D finite volume solver
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due to its similar underlying structure. However, the SFV method, at its current state, sup-
ports only triangular mesh elements. This proves to be a drawback if one is concerned with
viscous flows, mainly due to the boundary layer discretization, where quadrilateral elements
are better suited for the gradients discretization. The SD method, on the other hand, shares
many of the SFV scheme attributes, as previously described, only that its formulation is suited
for quadrilateral unstructured meshes. The present work represents an effort to evaluate the
SD method as an alternate high-order method for the applications of interest to the authors,
namely external compressible aerodynamic flows. The CFD tools developed by the authors
and used in the present work have been verified and validated previously [2, 3, 4].

The paper is organized as follows. First, the theoretical formulation of the SFV method
for the Euler equations is presented. The Spectral Difference method formulation is shown
next. The order of accuracy of both schemes are measured and compared and the final section
presents numerical results for well-known literature test cases.

2. SPECTRAL FINITE VOLUME METHOD

2.1. General Formulation

In the present work, the 2-D Euler equations are solved in their integral form as

∂

∂t

∫
V

QdV +

∫
V

(∇ · ~P )dV = 0 , (1)

where ~P = Eı̂+ F ̂. The application of the divergence theorem to Eq. (1) yields

∂

∂t

∫
V

QdV +

∫
S

(~P · ~n)dS = 0 . (2)

The vector of conserved variables, Q, and the convective flux vectors, E and V , are given by

Q =


ρ
ρu
ρv
et

 , E =


ρu

ρu2 + p
ρuv

(et + p)u

 , F =


ρv
ρuv

ρv2 + p
(et + p)v

 . (3)

The standard CFD nomenclature is being used here. Hence, ρ is the density, u and v are the
Cartesian velocity components in the x and y directions, respectively, p is the pressure, and et
is the total energy per unit volume. The system is closed by the equation of state for a perfect
gas

p = (γ − 1)

[
ei −

1

2
ρ(u2 + v2)

]
, (4)

where ei is the specific internal energy, and the ratio of specific heats, γ, is set as 1.4 for
all computations in this work. In the finite volume context, for fixed meshes, Eq. (2) can be
rewritten for the i-th mesh element as

∂Qi

∂t
= − 1

Vi

∫
SVi

(~P · ~n)dS , (5)

where Qi is the cell averaged value of Q at time t and Vi is the volume, or area in 2-D, of the
i-th mesh element.



2.2. Spatial Discretization

The spatial discretization process determines a k-th order discrete approximation to the
integral in the right-hand side of Eq. (5). In order to solve it numerically, the computational
domain, Ω, with proper initial and boundary conditions, is discretized intoN non-overlapping
triangles, the spectral volumes (SVs), such that

Ω =
N⋃
i=1

SVi. (6)

One should observe that the spectral volumes could be composed by any type of polygon,
given that it is possible to decompose its bounding edges into a finite number of line segments
ΓK , such that

SVi =
⋃

ΓK . (7)

In the present paper, however, the authors assume that the computational mesh is always
composed of triangular elements. Hence, although the theoretical formulation is presented for
the general case, the actual SV partition schemes are only implemented for triangular grids.

The boundary integral in Eq. (5) can be further discretized into the convective operator
form

C(Qi) ≡
∫
SVi

(~P · ~n)dS =

nf∑
r=1

∫
Ar

(~P · ~n)dS, (8)

where nf is the number of faces, or edges in 2-D, of SVi, and Ar represents the area, or
the length in 2-D, of the r-th edge of the SV. Given the fact that ~n is constant for each line
segment, the integration on the right side of Eq. (8) can be performed numerically with a k-th
order accurate Gaussian quadrature formula∫

SVi

(~P · ~n)dS =

nf∑
r=1

nq∑
q=1

wrq ~P (Q(xrq, yrq)) · ~nrAr +O(Arh
k) , (9)

where (xrq, yrq) and wrq are, respectively, the Gaussian quadrature points and the weights on
the r-th edge of SVi, nq = integer((k + 1)/2) is the number of quadrature points required
on the r-th edge, and h will be defined in the forthcoming discussion. For the second-order
schemes, one Gaussian quadrature point is used in the integration. Given the coordinates of
the end points of the element edge, z1 and z2, one can obtain the quadrature point as the middle
point of the segment connecting the two end points, G1 = 1

2
(z1 + z2). For the third and fourth

order schemes, two Gaussian points are necessary along each line segment. Their values are
given by

G1 =

√
3 + 1

2
√

3
z1 +

(
1−
√

3 + 1

2
√

3

)
z2 and G2 =

√
3 + 1

2
√

3
z2 +

(
1−
√

3 + 1

2
√

3

)
z1., (10)

Using the method described above, one can compute values of Qi for instant t for each SV.
Due to the discontinuity of the reconstructed values of the conserved variables over SV bound-
aries, one must use a numerical flux function to approximate the flux values along the cell
boundaries.



The previously described procedure follows exactly the standard finite volume method.
For a given order of spatial accuracy, k, for Eq. (8), using the SFV method, each SVi element
must have at least

m =
k(k + 1)

2
(11)

degrees of freedom (DOFs). This corresponds to the number of control volumes (CVs) that
SVi shall be partitioned into. If one denotes by CVi,j the j-th control volume of SVi, the
cell-averaged conservative variables, q, at time t, for CVi,j is computed as

qi,j =
1

Vi,j

∫
CVi,j

q(x, y)dV , (12)

where Vi,j is the volume of CVi,j . Once the cell-averaged conservative variables, or DOFs,
are available for all CVs within SVi, a polynomial, pi(x, y) ∈ P k−1, with degree k − 1, can
be reconstructed to approximate the q(x, y) properties inside SVi, i.e.,

pi(x, y) = q(x, y) +O(hk−1), (x, y) ∈ SVi, (13)

where h represents the maximum edge length of all CVs within SVi. The polynomial recon-
struction process is discussed in details in the following section. For now, it is sufficient to
say that this high-order reconstruction is used to update the cell-averaged state variables at the
next time step for all the CVs within the computational domain. Note that this polynomial
approximation is valid within SVi and the use of numerical fluxes are necessary across SV
boundaries.

Integrating Eq. (5) in CVi,j , one can obtain the integral form for the CV mean state
variable

dqi,j
dt

+
1

Vi,j

nf∑
r=1

∫
Ar

(~f · ~n)dS = 0, (14)

where ~f represents theE and F fluxes, and nf is the number of edges ofCVi,j . The numerical
integration can be performed with a k-th order accurate Gaussian quadrature formulation,
similarly to the one used for the SV elements in Eq. (9).

As previously stated, the flux integration across SV boundaries involves two discon-
tinuous states, to the left and to the right of the edge. This flux computation can be carried out
using an exact or approximate Riemann solver, or even a flux splitting procedure, which can
be written in the form

~f (q(xrq, yrq)) · ~nr ≈ fRiemann (qL(xrq, yrq), qR(xrq, yrq), ~nr) , (15)

where qL is the conservative variable vector obtained by the pi polynomial applied at the
(xrq, yrq) coordinates and qR is the same vector obtained with the pnb polynomial in the same
coordinates of the edge. Note that the nb subscript represents the element to the right of the
edge, whereas the i subscript denotes the CV to its left. As the numerical flux integration
in the present paper is based on one of the forms of a Riemann solver, this is the mechanism
which introduces the upwind and artificial dissipation effects into the method, making it stable



and accurate. In this work, the authors have used the Roe flux difference splitting method [5]
to compute the numerical flux, i.e.,

fRiemann = froe(qL, qR, ~n) =
1

2

[
~f(qL) + ~f(qR)−

∣∣B∣∣ (qR − qL)
]

. (16)

Here,
∣∣B∣∣ is the Roe dissipation matrix in the direction normal to the edge. The B matrix, in

the edge-normal direction, is defined as

B = nx
∂E

∂q
+ ny

∂F

∂q
. (17)

The B matrix has four real eigenvalues, namely, λ1 = λ2 = vn, λ3 = vn + a, λ4 = vn − a,
where vn is the velocity component normal to the edge and a is the speed of sound. Let T be
the matrix composed of the right eigenvectors of B. Then, this matrix can be diagonalized as

T−1BT = Λ , (18)

where Λ is the diagonal matrix composed of the eigenvalues of B, which can be written as

Λ = diag [vn, vn, vn + a, vn − a] . (19)∣∣B∣∣ matrix is formed as ∣∣B∣∣ = T
∣∣Λ∣∣T−1, (20)

where Λ and T are calculated as a function of the Roe averaged properties [5]. Furthermore,∣∣Λ∣∣ uses the magnitude of the eigenvalues.
Finally, one ends up with the semi-discrete SFV scheme for updating the CVs, which

can be written as

dqi,j
dt

= − 1

Vi,j

nf∑
r=1

nq∑
q=1

wrqfRiemann(qL(xrq, yrq), qR(xrq, yrq), ~nr)Ar , (21)

where the right hand side of Eq. (21) is the equivalent convective operator, C(qi,j), for the
j-th control volume of SVi. It is important to emphasize that some edges of the CVs, resulting
from the partition of the SVs, lie inside the SV element in the region where the polynomial
is continuous. For such edges, there is no need to compute the numerical flux, as described
above. Instead, one uses analytical formulas for the flux computation, i.e., without numerical
dissipation.

2.3. Reconstruction Procedure

The evaluation of the conserved variables at the quadrature points is necessary in or-
der to perform the flux integration over the mesh element edges. These evaluations can be
achieved by reconstructing conserved variables in terms of some base functions using the
DOFs within a mesh element, denoted here as a Spectral Volume, or SV for short [1, 6]. The
present work has carried out such reconstructions using polynomial functions. Let Pm denote



the space of m-th degree polynomials in two dimensions. Then, the minimum dimension of
the approximation space that allows Pm to be complete is

Nm =
(m+ 1)(m+ 2)

2
. (22)

In order to reconstruct q in Pm, it is necessary to partition the SV into Nm non-overlapping
control volumes, or CVs, such that

Si =
Nm⋃
j=1

Ci,j. (23)

The reconstruction problem, for a given continuous function in Si and a suitable partition, can
be stated as finding pm ∈ Pm such that∫

Ci,j

pm(x, y)dS =

∫
Ci,j

q(x, y)dS. (24)

With a complete polynomial basis, el(x, y) ∈ Pm, it is possible to satisfy Eq. (24). Hence, pm
can be expressed as

pm =
Nm∑
l=1

blel(x, y), (25)

where e is the base function vector, [e1, · · · , eN ], and b is the reconstruction coefficient vector,
[b1, · · · , bN ]T . The substitution of Eq. (25) into Eq. (24) yields

1

Vi,j

Nm∑
l=1

bl

∫
Ci,j

el(x, y)dS = qi,j. (26)

If q denotes the [qi,1, · · · , qi,Nm]T column vector, Eq. (26) can be rewritten in matrix form as

Sb = q, (27)

where the S reconstruction matrix is given by

S =


1
Vi,1

∫
Ci,1

e1(x, y)dS · · · 1
Vi,1

∫
Ci,1

eN(x, y)dS
... · · · ...

1
Vi,N

∫
Ci,N

e1(x, y)dS · · · 1
Vi,N

∫
Ci,N

eN(x, y)dS

 (28)

and, then, the reconstruction coefficients b can be obtained as

b = S−1q, (29)

provided that S is non-singular. With the substitution of Eq. (29) into Eq. (24), pm is, then,
expressed in terms of shape functions L = [L1, · · · , LN ], defined as L = eS−1, such that one
could write

pm =
Nm∑
j=1

Lj(x, y)qi,j = Lq. (30)

Equation (30) gives the value of the conserved state variable, q, at any point within the SV
and its boundaries, including the quadrature points, (xrq, yrq).



Table 1. Polynomial base functions.

Reconstruction Order e
linear [ 1 x y ]

quadratic [ 1 x y x2 xy y2 ]
cubic [ 1 x y x2 xy y2 x3 x2y xy2 y3 ]

The major advantage of the SFV method is that the reconstruction process does not
need to be carried out for every mesh element Si. One can compute these coefficients as a
pre-processing step and they do not change along the simulation. This is a major difference
when compared to methods such as ENO and WENO, for which every mesh element has
a different reconstruction process at each time step. The polynomial base functions for the
linear, quadratic and cubic reconstructions are listed in Table 1. Clearly, the linear, quadratic
and cubic polynomial reconstructions will yield, respectively, 2nd-, 3rd- and 4th-order spatial
discretization numerical schemes.

For most of the proposed applications in compressible aerodynamics, the use of a lim-
iter technique is necessary to render the scheme stable. The authors conducted several studies
regarding different limiter formulations and their performance. The interested reader is re-
ferred to Ref. [3] for a throughout discussion of this subject. The cited reference also presents
the curved boundary formulation. This technique is responsible to maintain the methods de-
sign order of accuracy near the domain boundaries and also helps to reduce the overall number
of mesh elements. The extension of such techniques for the Spectral Difference method have
already been carried out elsewhere in the literature and is currently under development by the
authors on their implementation.

2.4. Linear Reconstruction

For the linear SFV method reconstruction, m = 1, one needs to partition a SV in three
sub-elements as in Eq. (22) and use the base vector as defined in Table 1. The partition scheme
is given for a standard element. The partition for this case is uniquely defined. The structured
aspect of the CVs within the SVs is used to determine neighborhood information and generate
the global connectivity data considering a hash table search algorithm [7].

The linear partition is presented in Fig. 1(a). It yields a total of 7 points, 9 edges (6
are external edges and 3 are internal ones) and 9 quadrature points. The linear polynomial for
the SFV method depends only on the base functions and on the partition shape. The integrals
of the reconstruction matrix in Eq. (28) are obtained analytically [8] for fundamental shapes.
The shape functions, in the sense of Eq. (30), are calculated and stored in memory for the
quadrature points, (xrq, yrq), of the standard element. Such shape functions have the exact
same value for the quadratures points of any other SV of the mesh, provided they all have the
same partition. There is one quadrature point located at the middle of the every CV edge.



(a) (b) (c)

Figure 1. Triangular spectral volume partitions for (a) linear, (b) quadratic and (c) cubic
reconstructions.

2.5. Quadratic Reconstruction

For the quadratic reconstruction, m = 2, one needs to partition a SV in six sub-
elements and use the base vector as defined in Table 1. The partition scheme is also given in
this work for a right triangle. The nodes of the partition are obtained in terms of barycentric
coordinates of the SV element nodes in the same manner as the linear partition. The structured
aspect of the CVs within the SVs is used to determine neighborhood information and generate
the connectivity table. The ghost creation process and edge-based data structure is the same
as for the linear reconstruction case. The partition used in this work [9] is shown in Fig. 1(b).
It has a total of 13 points, 18 edges (9 external edges and 9 internal ones) and 36 quadrature
points. The shape functions, in the sense of Eq. (30), are obtained as in the linear partition. The
reader should note that, in this case, the base functions have six terms that shall be integrated.
Again, these terms are obtained exactly and kept in memory [8]. In this case, two quadrature
points are required per CV edge.

2.6. Cubic Reconstruction

For the cubic reconstruction, m = 3, one needs to partition the SV in ten sub-elements
and to use the base vector as defined in Table 1. The ghost creation process and edge-based
data structure is the same as for the linear and quadratic reconstruction cases. As a matter
of fact, the same algorithm utilized to perform these tasks can be applied to higher order
reconstructions. The partition used in this work is the improved cubic partition [9], presented
in Fig. 1(c) and it has a total of 21 points, 30 edges (12 external edges and 18 internal ones)
and 60 quadrature points. The shape functions, in the sense of Eq. (30), are obtained as in the
linear partition in a pre-processing step. As with the quadratic reconstruction, each CV edge
has two quadrature points [2].



3. SPECTRAL DIFFERENCE METHOD

The Spectral Difference method (SD) formulation in the present work considers the
unsteady compressible 2-D Navier Stoker equations in conservative form

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
= 0 (31)

where Q is the vector of conserved variables, E and F are the fluxes as described in the
SFV method section. The implementation follows the formulation presented in Refs. [10,
11]. The SD method employes a Finite Difference like scheme rather than a Finite Volume
formulation. In this sense, it represents a different approach to the solver programming and
algorithm considerations. For instance, to achieve an efficient implementation, all elements
in the physical domain (x, y) are transformed into a unit square element in the computational
domain. Such transformation can be written as(

x
y

)
=

K∑
i=1

Mi(ξ, η)

(
xi
yi

)
(32)

where K is the number of points used to define the physical element, (xi, yi) are the Cartesian
coordinates of those points, and Mi(ξ, η) are the shape functions of the geometric transforma-
tion. The metrics and the Jacobian of the transformation can be computed in a pre-processing
step and kept in memory given the stationary aspect of the problems here considered. The
governing equations in the physical domain are then transferred into the computation domain,
and can be rewritten as

∂Q̃

∂t
+
∂Ẽ

∂x
+
∂F̃

∂y
= 0 (33)

where Q̃ = |J | ·Q and (
Ẽ

F̃

)
= |J |

(
ξx ξy
ηx ηy

)(
E
F

)
(34)

In the standard element, two sets of points are defined, namely the solution points and
the flux points, illustrated in Fig. 2. In order to construct a degree (N − 1) polynomial in each
coordinate direction, solution at N points are required. The solution points in 1-D are chosen
to be the Gauss points defined by

Xs =
1

2

[
1− cos

(
2s− 1

2N
· π
)]

, s = 1, 2, · · · , N . (35)

The flux points are selected to be the Gauss-Lobatto points given by

Xs+ 1
2

=
1

2

[
1− cos

( s
N
· π
)]

, s = 0, 1, · · · , N . (36)

Using the solution at N solution points, a degree (N − 1) polynomial can be built
using the following Lagrange basis defined as

hi(X) =
N∏

s=0,s 6=i

(
X −Xs

Xi −Xs

)
(37)



similarly, using the fluxes at (N + 1) flux points, a degree N polynomial can be built for the
flux using a similar Lagrange basis defined as

li+ 1
2
(X) =

N∏
s=0,s 6=i

(
X −Xs+ 1

2

Xi+ 1
2
−Xs+ 1

2

)
(38)

The reconstructed solution for the conserved variables in the standard element is just the tensor
products of the two one-dimensional polynomial,

Q(ξ, η) =
N∑
j=1

N∑
i=1

Q̃i,j

|Ji,j|
hi(ξ) · hj(η) (39)

Similarly, the reconstructed flux polynomials take the following form

Ẽ(ξ, η) =
N∑
j=1

N∑
i=0

Ẽi+ 1
2
,jli+ 1

2
(ξ) · hj(η), (40)

F̃ (ξ, η) =
N∑
j=0

N∑
i=1

F̃i,j+ 1
2
hi(ξ) · lj+ 1

2
(η). (41)

The reconstructed fluxes are only element-wise continuous, but discontinuous across cell in-
terfaces. For the inviscid flux, a Riemann solver is employed to compute a common flux at
interfaces to ensure conservation and stability. In the present work, the Roe approximate Rie-
mann solver is considered, as described in the previous sections. The numerical flux includes
the artificial dissipation and upwind characteristic of the method.

In order to compute the inviscid flux derivatives the method computes the conservative
variables at the flux points. The inviscid fluxes are then updated followed by the numerical
flux calculations.

The derivatives of the fluxes are computed at the solution points using the derivatives
of Lagrange operators l as (

∂Ẽ
∂ξ

)
i,j

=
N∑
r=0

Ẽr+ 1
2
,j · l

′

r+ 1
2

(ξi),(
∂F̃
∂η

)
i,j

=
N∑
r=0

F̃i,r+ 1
2
· l′
r+ 1

2

(ηj) (42)

At the moment of writing, the SD method implementation is currently under way on
the available numerical framework. A second, third and fourth-order reconstruction procedure
will be considered for benchmark simulations against the SFV method.

4. Temporal Discretization

The temporal discretization is concerned with solving a system of ordinary differential
equations. In the present work, the authors use a third-order, TVD Runge-Kutta scheme [12].
Rewriting Eq. (21) in a concise ODE form, one obtains

dQ

dt
= − 1

Vi
C(Q) . (43)



Figure 2. Possible flux points (blue squares) and solution points (red circles) distribution for
the SD method.

where

Q =


Q1

· · ·
Qi

· · ·
QN

 , C(Q) =


C(Q1)
· · ·

C(Qi)
· · ·

C(QN)

 , (44)

and

C(Qi) = − 1

Vi

K∑
r=1

J∑
q=1

wrqfRoe(qL(xrq, yrq), qR(xrq, yrq), ~nr)Ar. (45)

Hence, the time marching scheme can be written as

Q(1) = Qn + ∆tC(Qn) ,

Q(2) = α1Q
n + α2

[
Q(1) + ∆tC(Q(1))

]
,

Q(n+1) = α3Q
n + α4

[
Q(2) + ∆tC(Q(2))

]
,

where the n and n + 1 superscripts denote, respectively, the values of the properties at the
beginning and at the end of the n-th time step. The α coefficients are α1 = 3/4, α2 = 1/4,
α3 = 1/3 and α4 = 2/3.

5. Accuracy Assessment

The accuracy of the SFV and SD methods is tested for the linear wave equation,

∂u

∂t
+
∂u

∂x
= 0 (46)

for −1 ≤ x ≤ 1 and u(x, 0) = u0(x) with periodic boundary condition at the domain ex-
tremes. For this setup, the initial condition is u0(x) = sin(πx). No limiters were used in
this study. A third-order TVD Runge-Kutta method is employed for time integration with a
∆t value of 10−4, in order to make the discretization error time-step independent. Table 2



Table 2. Accuracy assessment of the 1-D SFV method for the wave equation. Gauss-Lobatto
CV partition.

Order NDOF h L∞ error L∞ order L1 error L1 order
3 30 3.33E-002 2.67E-003 – 1.24E-003 –

60 1.67E-002 3.65E-004 2.87 1.61E-004 2.95
120 8.33E-003 4.67E-005 2.97 2.05E-005 2.97
240 4.17E-003 5.90E-006 2.98 2.59E-006 2.98
480 2.08E-003 7.41E-007 2.99 3.23E-007 3.00

4 20 3.33E-002 2.26E-003 – 7.30E-004 –
40 1.67E-002 1.60E-004 3.82 5.07E-005 3.85
80 8.33E-003 9.72E-006 4.04 3.18E-006 3.99

160 4.17E-003 6.15E-007 3.98 2.00E-007 3.99
320 2.08E-003 3.85E-008 4.00 1.26E-008 3.99
640 1.04E-003 2.41E-009 4.00 7.87E-010 4.00

5 20 5.00E-002 5.30E-004 – 1.46E-004 –
40 2.50E-002 1.96E-005 4.76 4.58E-006 4.99
80 1.25E-002 6.50E-007 4.91 1.49E-007 4.94

160 6.25E-003 2.13E-008 4.93 4.91E-009 4.92
320 3.13E-003 6.13E-010 5.12 1.57E-010 4.97

6 30 5.00E-002 1.28E-005 – 2.57E-006 –
60 2.50E-002 1.88E-007 6.09 4.08E-008 5.98

120 1.25E-002 2.98E-009 5.98 6.49-10 5.97
240 6.25E-003 4.51E-011 6.05 1.04E-011 5.96

shows the L1 and L∞ error norms produced using the SFV method with the Gauss-Lobatto
point distribution. One can note that all schemes are able to achieve their expected order of
accuracy. The same study is carried out for the SD method, presented in Table 3 and Fig. 3.
In these tables, NDOF represents the number of degrees of freedom for the problem. One
can observe that the expected order of accuracy, even for coarse grids, is achieved for both
methods. However, the performance of the fifth and sixth-order SD scheme is questionable,
specially for the finer meshes. This is mostly likely related to the oscillatory behavior of the
polynomial interpolation, due to the internal points distribution chosen. As the grid is refined,
the errors actually increase in both norms, which give a negative order of accuracy.

Other test cases are considered for the 1-D SFV and SD methods. A Gaussian pulse
with a half width equal to 0.05 is used as an initial condition,

u(x, 0) = exp

[
−
(
x− 0.5

0.05

)2
]

(47)

again with periodic boundary conditions. This simulation was carried out for various orders
of accuracy, k = 1, 2, 3, 4 and 6 for t = 2 with 100 SVs. The Gauss-Lobatto points distribu-
tion was used for CV partitioning. The results are presented in Fig. 4 and 5. The first-order



Table 3. Accuracy assessment of the 1-D SD method for the wave equation.

Order NDOF h L∞ error L∞ order L1 error L1 order
2 4 1.000E+00 6.021E-01 – 5.413E-01 –

8 5.000E-01 4.215E-01 0.51 3.108E-01 0.80
32 1.250E-01 4.090E-02 1.88 2.578E-02 1.88

128 3.125E-02 2.618E-03 2.00 1.659E-03 1.99
512 7.812E-03 1.637E-04 2.00 1.041E-04 2.00

2048 1.953E-03 1.023E-05 2.00 6.510E-06 2.00
4096 9.766E-04 2.557E-06 2.00 1.628E-06 2.00

3 6 1.000E+00 3.387E-01 – 2.029E-01 –
12 5.000E-01 5.234E-02 2.69 1.937E-02 3.39
48 1.250E-01 5.535E-04 3.27 2.402E-04 3.12

192 3.125E-02 9.059E-06 2.90 3.634E-06 2.99
768 7.812E-03 1.480E-07 2.98 5.763E-08 2.99

3072 1.953E-03 2.338E-09 2.99 9.047E-10 3.00
6144 9.766E-04 2.928E-10 3.00 1.132E-10 3.00

4 8 1.000E+00 6.080E-02 – 2.709E-02 –
32 2.500E-01 2.073E-04 3.94 8.377E-05 4.13

128 6.250E-02 8.314E-07 3.99 3.141E-07 4.01
512 1.562E-02 3.260E-09 4.00 1.224E-09 4.00

2048 3.906E-03 1.263E-11 4.01 4.808E-12 3.99
8192 9.766E-04 5.157E-13 0.57 3.065E-13 0.27

5 10 1.000E+00 9.320E-03 – 3.630E-03 –
40 2.500E-01 1.153E-05 5.10 6.207E-06 4.86

160 6.250E-02 1.142E-08 4.97 6.103E-09 5.00
640 1.562E-02 1.127E-11 4.99 5.982E-12 4.99

2560 3.906E-03 2.104E-13 1.02 1.298E-13 0.89
10240 9.766E-04 7.930E-13 -0.99 4.995E-13 -1.00

6 12 1.000E+00 1.672E-03 – 6.279E-04 –
48 2.500E-01 4.068E-07 5.80 1.415E-07 6.02

192 6.250E-02 9.464E-11 6.03 3.641E-11 5.98
768 1.562E-02 1.679E-13 3.10 9.192E-14 2.65

3072 3.906E-03 6.010E-13 -0.98 3.786E-13 -1.00
12288 9.766E-04 2.386E-12 -0.99 1.515E-12 -1.00



Figure 3. Spectral Difference solution error versus mesh spacing plot order of accuracy mea-
surement of a sine wave convection.

simulation smeared the pulse to the point that it is hardly recognizable. This is due to the extra
amount of dissipation associated with such low-order schemes. The second-order simulation
retained the shape of the initial condition but also smeared the pulse and produced an oscilla-
tory behavior, which, in turn, is associated with the dispersion properties of the method. The
third, fourth and sixth-order simulation yielded nice results just like the analytical solution,
also shown in the figure.

5.1. Ringleb Flow

The Ringleb flow simulation consists of an internal flow, which has an analytical so-
lution for the Euler equations derived with the hodograph transformation [13]. The analytical
solution is used as initial condition for the SFV simulations here discussed. The flow depends
on the inverse of the stream function, k, and the velocity magnitude, vt. In the present simu-
lations, these parameters are chosen as k = 0.4 and k = 0.6, in order to define the bounding
walls, and vt = 0.35 to define the inlet and outlet boundaries. For such configuration, the
test case represents an irrotational and isentropic flow around a symmetric blunt obstacle. An
interesting property of the Ringleb test case is that transition of flow regime, from subsonic to
supersonic, for example, is shockless [14]. In order to measure the order of the implemented
SFV method, four meshes are considered for the mesh refinement study, corresponding to
128, 512, 2048 and 8192 spectral volume elements. The analytical solution is computed for
all meshes in order to measure how close the numerical results are to the exact solution. The
error with respect to the analytical solution is computed using the L1 and L∞ norms of the
density.
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Figure 4. Simulation of a traveling Gaussian pulse with SFV schemes of various orders at
t = 2.

Figure 5. Spectral Difference error versus mesh spacing plot order of accuracy measurement
of a Gaussian pulse convection.
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Figure 6. Ringleb flow mesh and Mach number contour results for fourth-order SFV method.

Table 4. Accuracy assessment of SFV method for the Ringleb flow test case.

Method Mesh elements L1 error L1 order L∞ error L∞ order
3rd order SFV 128 2.41E-02 - 2.14E-01 -

512 4.14E-03 2.54 2.45E-02 3.13
2048 6.27E-04 2.72 3.13E-03 2.97
8192 8.67E-05 2.85 3.60E-04 3.12

4th order SFV 128 5.77E-04 - 6.11E-03 -
512 6.48E-05 3.16 4.52E-04 3.76

2048 6.15E-06 3.39 5.68E-05 2.99
8192 6.87E-07 3.16 5.62E-06 3.33

Figure 6 shows the 2048-element grid and the Mach number contours computed in
this grid with the fourth order SFV method, using the corresponding high-order boundary
representation. Table 4 presents the L1 and L∞ error norms of the density for the present
calculations with the high-order boundary representation for the SFV method.

6. Airfoil Simulation

A simulation with the NACA 0012 airfoil is considered for the SFV method. The
Euler equations are solved on a coarse mesh with 716 cells and 358 nodes, from which 40

define the airfoil wall. This O-grid mesh is presented in Fig. 7. The airfoil profile itself is
collapsed on the trailing edge. The far field boundary radius is 50 chord units.

The free stream flow replicate the conditions of the experimental data [15], that is,
free stream Mach number value of M∞ = 0.8 and 0 deg angle-of-attack. Simulations with
the second, third and fourth order SFV schemes are performed, along with the first-order
Roe scheme. Figure 8 shows the computed Cp values obtained with with the first-order Roe
scheme and third-order SFV method, considering quadratic curved boundaries. It is clear



Figure 7. Coarse mesh employed on the NACA 0012 airfoil simulation.

from the Cp distribution that the first-order scheme introduces too much dissipation and es-
sentially smears out the shock wave. The high-order Cp distribution, on the other hand, is
remarkably close to the experimental results in Fig. 8, particularly for the shock position,
considering the crude mesh discretization. These show the potential for high-order methods,
on such applications, to ease the mesh generation process. One should observe, however,
that the experimental results consider the presence of the boundary layer and the consequent
shock-boundary layer interaction that necessarily occurs in the experiment. For the numerical
solution, the shock presents a sharper resolution, as one can expect for an Euler simulation.

Another relevant simulation is performed to assess the benefits of the curved bound-
ary implementation, namely, the measure of entropy error εs levels at the airfoil boundary.
Because the diffusive flux vectors are zero, there is no physical dissipation mechanism that
produces heat in regions of smooth flow, away from shocks. If no external heat is added into
the flow, then it is called adiabatic and, from the first law of thermodynamics, it follows that
entropy, give by

s = Cvln
(
p

ργ

)
, (48)

is constant throughout the field if no shocks are present. Therefore, the entropy error εs,
defined as

εs =
p

p∞

(
ρ∞
ρ

)γ
− 1 , (49)

is a good measure of the accuracy of a numerical solution obtained with a method to ap-
proximately solve the Euler equations. Figure 9 presents the entropy error generate by the
third-order SFV method with linear and curved boundary cells for the coarse mesh, which
has only 40 cells to represent the whole airfoil geometry. The curved boundary approach is
able to produce the smaller error levels than the linear approach. One can even note, form the
figure, that at position x = 0 there is an increase of entropy error, due to the presence of the
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Figure 8. NACA 0012 Cp distribution for coarse mesh solutions.

shock wave in this region. This, again, demonstrates that such extension indeed improves the
overall accuracy of the SFV method.

7. CONCLUSIONS

The present work compares two high-order methods for several test cases. The formal
order of accuracy of the SFV and SD methods is achieved for the model convection equation.
Moreover, solutions of the Euler equations for the SFV method are in good agreement with
the available analytical and experimental data. Even though additional numerical techniques
are required to handle the desired flow regime of compressible aerodynamics, such as the
limiter and high-order boundary representation, the SFV method is only capable to work with
triangular mesh elements. The ability to handle quadrilateral meshes is a desirable feature
of the SD method, specially for RANS simulations. Current work is in place to extend the
SD method for the 2-D formulation and proper results and benchmark simulations against the
SFV method will be presented at the conference.
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