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Abstract. Widely recognized for its simplicity, the splitter plate is an effective device for
drag reduction in bluff bodies. It consists of a flat plate, which is placed in the center line
of the wake, in streamwise direction, and it works by changing the way the shear layers
interact with one another. This paper analyzes the sensitivity the drag force exhibits with
respect to the length and position of that simple device. The main purpose is to determine the
plate dimensions that lead to a minimum of the time–averaged drag coefficient. The results
agree with previously published data, to the effect that the extrema depend on the Reynolds
number. Moreover, they show that minimum drag configurations may also be characterized
by significant reductions in the amplitude of drag and lift oscillations.
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1. INTRODUCTION

Long flexible risers are essential components of drilling derricks in deep water oil
extraction. Their usually bluff cross–sections lead to extensive regions of separated flow. As
a result, they shed vortical wakes and are prone to vortex-induced vibrations, at all but the
lowest Reynolds numbers. Add to it the fact that far–field flow conditions are ultimately
determined by the swell and ocean tides, thereby remaining beyond any possibility of control.

Under such circumstances, a deep understanding of the physics of this class of flows is
clearly of utmost importance to the oil industry. It has made it a most prolific research topic.
Much attention has also been devoted to means of controlling bluff body flows. The possibil-
ities range form active measures, such as forced oscillations [Meneghini and Bearman, 1995,
Meneghini, 2002, Bearman and Currie, 1979, Feng, 1968], to passive devices such as trip–
wires, vortex generators and splitter–plates.

Its easy assembly and operation gives the splitter plate an important advantage over
many other flow control devices. In principle, it works by extending the length over which
the shear layers on each side of a cylinder are separated. It delays the interaction between
them, which has the effect of reducing the from drag significantly. In a seminal article on the
problem, Igarashi [Igarashi, 1982] classifies the splitter plates according to the way they are
assembled, relative to the cylinder. There are configurations in which the plate is attached to
the cylinder, and others in which there is a gap between the two.
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The contribution of the present work is an investigation of both cases, with and with-
out gap, in a systematic attempt to find configurations that yield minimum form drag. The
exploratory tests have been performed by means of numerical flow simulations, only. Inci-
dentally, it may be useful to settle the definitions of the dimensionless parameters early on.
The Reynolds (Re) and Strouhal (St) numbers, the pressure (Cp), lift (Cl) and drag (Cd)

coefficients are defined as, respectively,
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For the sake of completeness: ν is the fluid kinematic viscosity, ρ∞ and U∞ are free–
stream density and velocity, respectively. The symbol f represents a frequency,which is taken
here to be the vortex shedding frequency, U is another velocity scale, which is often taken to
be U∞, itself, and L is a length scale that depends on the context.

2. LITERATURE SURVEY

For all their relevance in nature and engineering, separated flows are the object of
extensive research and a prolific literature, in the realm of fluid mechanics. An inherent com-
plexity has favored the experimental approach in the early years. More recently, though, the
development of robust methods of numerical simulation has given rise to an ever–growing
field in CFD that is entirely devoted to the topic. This survey attempts to follow the chronol-
ogy.

In two of the earlier studies on the topic, Roshko has made a semi–empirical anal-
ysis of the flow around bluff bodies [Roshko, 1954a, Roshko, 1954b]. The reports did in-
clude cylinders with splitter plates, with and without gaps between them (Re = 1.45× 104).
Amongst their most relevant findings, the first one shows that the splitter plate changes the Cp

distribution all over the cylinder surface, as opposed to affecting only the separated region.
The second one shows that the dimensionless frequency of vortex shedding (St) decreases as
the gap grows, up until a critical value is reached. After this value, the St jumps back up to
a value that is close to that of the isolated cylinder. The cylinder base pressure (Cpb) exhibits
a similar behavior, with the only difference that it grows slightly just before the gap reaches
the critical value, only to decrease afterwards. The critical size of the gap is identified as the
point where the vortex formation region moves from the trailing edge of the plate to the gap
itself.

In an experimental study on bodies with splitter plates, [Bearman, 1965] presents re-
sults for Cpb, St and velocity fluctuations in the wake, for Re in the range: 1.4× 105 ≤ Re ≤
2.56 × 105. Among many important results, he has found that the value of −Cpb is inversely
proportional to the so–called vortex formation length (lf )— which was then defined as the x

coordinate of the point on the wake axis, where the rms1 of velocity fluctuations peaks.

1acronym for root mean square



A paper by Gerrard [Gerrard, 1966] investigated the physics of the vortex formation
region behind bluff bodies. He suggested the key mechanism in vortex formation is the
mutual–interaction between the two shear layers, which arise from boundary layer separa-
tion on each side of the cylinder. Furthermore, he proposed that vortex shedding takes place
because of fluid entrainment from one layer into the other, in a scheme that is best depicted by
his classic sketch— which we took the liberty of reproducing below (fig. 1–left), for clarity.

Figure 1. Left, the mechanism of vortex formation behind a circular cylinder, in an excerpt
from Gerrard [Gerrard, 1966]. Rolling–up of the shear layers is indicated by filament lines,
and the arrows show the fluid path. Right, a numerical simulation of the same problem, which
effectively shows the vortex wake behind the cylinder (Re = 100).

It is well–known that the fluid on each shear layer bears vorticity of opposite sign.
Under this condition, the filament lines show the shear layers rolling up and the arrows indicate
the fluid path afterwards. Part of it is entrained by the growing vortex (a). Another part (b)

is entrained by the upper shear layer and, on bearing opposite vorticity, it helps to cut the
forming vortex off. A third part (c) flows toward the formation region, where it feeds into the
lower vortex formation. The formation length lf is defined here as the point at which the fluid
from outside the wake first crosses its axis.

In [Gerrard, 1966], the author performed experiments on cylinders with splitter plates,
with and without gaps, and has also reproduced some of Roshko experiments (Re = 2 ×
104). On doing so, he was able to verify and explain some of Roshko’s claims, such as the
discontinuity in St that happens as lf moves from the plate trailing edge to within the gap.

In [Apelt et al., 1973], the authors run a set of experiments involving splitter plates
fixed to the basis of the cylinder, for Re in the range: 104 ≤ Re ≤ 5×104. The length l/d = 1

was set as a limit to differentiate between long and short splitter plates. They found that short
plates diminish the width of the wake and stabilize the boundary layer separation points on the
cylinder, thus causing the vortices to form closer to the plate trailing edge. On the other hand,
long plates inhibit the interaction between shear layers, thus causing vortices to form farther
away from the plate. A sequence to their research was published in [Apelt et al., 1975].

A paper by Igarashi, from 1982 [Igarashi, 1982], reports on extensive experimental
research into cylinders with splitter plates. The sizes of the plates and gaps varid within the
ranges 0.29 ≤ l/d ≤ 1.76 and 0 ≤ g/d ≤ 4, respectively, while the Reynolds number was



kept: 1.3×104 ≤ Re ≤ 5.8×104. The results show the variations of shedding frequency (St),
base pressure (Cpb) and drag (Cd) with respect to gap and plate sizes. Special emphasis is
placed upon the discontinuity that appears as the vortex formation moves from the plate trail-
ing edge to within the gap. He also classified previous works on the topic into three groups,
according to their motivations. A first group is primarily concerned with the universal dimen-
sionless frequencies (St) of vortex shedding [Roshko, 1954a, Roshko, 1954b, Gerrard, 1966].
A second group is concerned with the way the plate affects the flow field and, hence, with its
effects on lift and drag [Bearman, 1965, Apelt et al., 1973, Apelt et al., 1975].Finally, a third
group focuses on the heat transfer characteristics of the turbulent separated flow region behind
the cylinder, as is the case of a later work of his [Igarashi, 1984].

Two articles by Unal and Rockwell on the topic were published six years after Igarashi
[Unal and Rockwell, 1988a, Unal and Rockwell, 1988b]. The first one explores the hydrody-
namic instabilities that appear in the flow around a cylinder at lower Reynolds (440 ≤ Re ≤
5040). The second one analyzes the case of a very long splitter plate, l/d = 24, at various
gaps, 0 ≤ g/d ≤ 15. With regard to the frequencies of velocity fluctuations in the wake, their
results have been interpreted as indicative of the thesis that the splitter plate inhibits the vortex
shedding, but it does not inhibit the shear layers instability.

In [Kawai, 1990], the author performed numerical simulations of flow around cylin-
ders with splitter plates of various lengths and gaps. He made use of the discrete vortex
method, and his results exhibit the same characteristics as those from Roshko and Apelt.
However, his numerical values where different— in particular, the critical gap was about half
of the corresponding experimental value. However, the differences have been attributed to
differences in the Reynolds number that had been prescribed for the simulations.

A more recent paper by Kwon and Choi [Kwon and Choi, 1996], presents numerical
simulations at lower Reynolds numbers (80 ≤ Re ≤ 160). They only considered cases where
the splitter plate is fastened to the cylinder. The paper analyzes the behavior of the Strouhal
number (St) with changing Re and different plate lengths. Their results are similar to those
obtained by Gerrard and Apelt, despite the fact that their simulations have been run at much
lower Reynolds numbers.

From the same year, a paper by Nakamura [Nakamura, 1996] analyzes the vortex shed-
ding mechanism for various kinds of bluff bodies, all with splitter plates fastened to their
bases. The author has run experiments for Re between 300 and 500, and has made use of
long plates. The paper reports on a gradual transition between two distinct modes of vortex
shedding, as the plate length grows. The transition is from the usual mode, which involves
mutual interaction between the shear layers, and a mode that is governed by the so–called
impinging–shear–layer instability.

3. RESULTS

The idea that the drag decreases for certain arrangements of the splitter plate is fully
consistent with most of the above references. As has been verified by experiment, it happens
because the plate can extend the formation length of the wake, depending on its size and
position relative to the cylinder. In principle, if there is no gap between cylinder and plate,
one could attempt to enhance the effect by increasing the length of the latter. It is clear,



though, that the penalty of a growing viscous drag on the plate would eventually offset the
benefit. In essence, then, the gap is an attempt at heaping up the benefits of an increased
formation length, without incurring the penalty of higher friction drag on the plate.

On the other hand, most references point out that, as the gap exceeds a critical value,
which corresponds to minimum drag, the vortex formation region moves within it— it gets
enclosed between cylinder and plate. That, in turn, causes the drag to increase abruptly, which
thus limits the benefits of this particular device.

One of the references that is directly related to our objectives, [Igarashi, 1982] presents
a large collection of experimental results for the flow around cylinders with splitter plates. On
following in that author’s footsteps, a series of numerical experiments have been performed.
The idea was to reproduce his experiments to some extent, if not completely, and to ascertain
how much of the flow physics could be captured by the simulations.

Owing to limitations of the numerical method, the values of Re were set in a range
lower than his: 80 ≤ Re ≤ 140. Two lengths of splitter plate (l) relative to the cylinder
diameter (d) were set in the range: 0.5 ≤ (l/d) ≤ 1.0. Whereas the relative size of the gap
(g/d), ranged from 0.0 to 4.0, where g measures the distance from the base of the cylinder to
the leading edge of the splitter plate.

All simulations have been performed with the software NEKTAR, which is based on
the spectral element method, with Galerkin weighed residuals. The tests have made use of
polynomials of 7th order for base functions, and a 2nd order scheme for time stepping. The
mesh had 516 elements, with origin at the center of the cylinder. It extended from −60 × d

to 60 × d in the streamwise direction (x coordinate), and from −50 × d to 50 × d in the
normal direction (y coordinate). These arrangements were defined on the basis of a recent
report [Serson and Meneghini, 2010], in which the authors had run a thorough investigation
on grid–independence and simulation accuracy, with the same code and for the same class of
flows.

No–slip boundary conditions have been imposed on the cylinder wall, while the splitter
plate was only imposed the condition u · n = 0. Hence, the tests do not account for viscous
stresses on the plate, nor do they consider the viscous drag thereof, Although the forces on the
cylinder are fully accounted for. This setup is fairly general practice in the CFD community,
regarding this class of flows, because it allows a very significant reduction in computational
costs. However, it does make for an important difference between numerical and experimental
results.

For the purpose of comparison, for each case with a splitter plate, a corresponding test
was run without it, under the same flow conditions. As an example, figure 1–right, shows
contours of vorticity of the flow around a cylinder without splitter plate, at Re = 100. As an
illustration of the effects the splitter plate has on the flow, fig. 2 presents vorticity contours
for different lengths of splitter plates, all with zero gap (g/d = 0). It shows that the wake
formation length (lf ) grows with the plate length.

The effects of the gap are depicted in fig. 3. It presents a sequence of tests where the
plate length has been kept constant at l/d = 1.0, while the gap was increased from 1.2 to 2.8.
The first and second pictures, from left to right, show similar behavior to the zero gap case,
in that lf grows with the spacing between the basis of the cylinder and the plate trailing edge,



Figure 2. Contours of vorticity of the flow around a cylinder with splitter plate. 2–D flow
solutions for different lengths a/d, all of them with no gap between plate and cylinder, at
Re = 100. From left to right: 1st, l/d = 0.8; 2nd, l/d = 1.4; 3rd, l/d = 1.8.

(g + l)/d. Quite a different result is seen in third picture, though. There the gap has grown
larger than the formation region, which now lies within it.

Figure 3. Contours of vorticity of the flow around a cylinder with splitter plate. 2–D flow
solutions for different gaps g/d, all of them with the same length l/d = 1.0, at Re = 100.
From top to bottom, left to right: 1st, g/d = 1.2; 2nd, g/d = 2.6; 3rd, g/d = 2.8.

The above changes in the wake structure clearly affect drag and lift forces alike. The
unsteady nature of the flow imparts oscillations to the forces— where the latter must have
zero mean, owing to flow symmetry. Figure 4 illustrates these effects in time domain, for the
case where l/d = 1, while g/d is increased from 0.2 to 4.0, all at Re = 100.

In fig. 4–left, it is clear that Cl oscillates with zero mean, as was expected. Further-
more, one sees that not only does the amplitude decrease as the gap grows, but so does the
frequency. The trends persist up to a critical point, which represents a minimum for both
amplitude and frequency. If the gap grows beyond that point, then both parameters jump back
to the same orders of magnitude they exhibit for an isolated cylinder. The same trends can
be noticed in fig. 4–right, which shows the Cd evolution. Only, in this case, time averages
are clearly nonzero, and it can be seen that the mean Cd also reaches a minimum at the same
critical value of g/d, beyond which it experiences large growth.

In an attempt to give a more systematic view of the results, for different values of Re,
l/d and g/d, we picked parameters that should be representative of the periodic flow. To that
end, the drag coefficient has been time–averaged over 10 periods of regular oscillations (Cd),
while the lift coefficient evolution is represented by the maximum amplitude of its oscillations



Figure 4. Time dependence of cd (left) and cl (right) for different g/d, at Re = 100, l/d = 1.0.
Blue solid line, no splitter plate. Magenta solid line, g/d = 2.6, which minimizes the time
averaged Cd. Green dash–dot lines, intermediary values of g/d. Red solid line, value of g/d
that exceeds formation length, thus allowing shear layers to interact within the gap.

over the same time–span. In addition to that, the Strouhall number (St) and formation length
(lf ) are plotted against gap (g/d), as part of the analysis.

Figure 5 compares an isolated cylinder to cylinders with splitter plates, but no gap,
with respect to values of Cd and Cl maximum amplitude. Various plate lengths are considered.
It can be seen, the plate can reduce the time–averaged drag up to 20.5%, and diminishes the
Cl amplitude by up to 42.8%.
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Figure 5. Time–averaged Cd and Cl amplitude for the zero gap configuration as functions l/d,
at Re = 100. Red dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate.
Left, Cd × l/d; right, Cl amplitude ×l/d.

As it is pointed out by [Igarashi, 1982], experimental results show the mean drag
reaches a minimum at a certain plate length. Beyond that, the value of Cd grows back, as
a result of an increasing viscous drag on the plate itself, thus offsetting its original benefit. In
the above results, Cd is shown to level off, instead. As we mentioned above, the behavior is
owed to the fact that the viscous drag on the plate has been neglected.

Figures 6–7 bring results for Cd and maximum Cl amplitude in a set of tests, for two
distinct plate lengths: l/d = 0.5 and l/d = 1.0, respectively; all at Re = 100. These tests
have focused on the dependence of Cd and Cl amplitude on the gap size g/d, for a fixed Re.

The results show the mean drag can be reduced by up to 11.2% for l/d = 0.5 and by
15.7% for l/d = 1.0. It is also clear that, in all cases, on increasing the gap just beyond the



Figure 6. Maximum amplitude of Cl and Cd versus g/d, at Re = 100 and l/d = 0.5. Red
dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate. Left, Cd; right, Cl

maximum amplitude.

Figure 7. Maximum amplitude of Cl and Cd versus g/d, at Re = 100 and l/d = 1.0. Red
dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate. Left, Cd; right, Cl

maximum amplitude.

point of minimum Cd, that coefficient undergoes a sharp jump discontinuity, thus reaching
values that are close to that of the isolated cylinder. The jump is an immediate result of the
fact the vortex formation region has moved into the gap. As for the maximum amplitude of
Cl oscillations, the device reduces it by up to 73.0% in the first case and 89.1% in the second.

It must also be noted that the values of g/d that lead to minimum Cd and minimum Cl

amplitude for each case are either coincident or very close to it. Moreover, the behavior of the
Cl amplitude strongly resembles that of Cd, in that both grow rapidly beyond their minimum.
These features are further evidence that the vortex formation length virtually controls the
physics of this class of flows. In that sense, it is noteworthy that the numerical simulations
could capture such substantial part of the physics, despite the neglect of viscous stresses on
the plate.

The exact same trends are verified for other values of the Reynolds number, such as
Re = 80, and Re = 140. The results are shown in the sets of figures. 8–9 and 10–11,
respectively.

Test results for Re = 80 show the Cd can be reduced by up to 6.3% for l/d = 0.5 and
by 12.0% for l/d = 1.0, the maximum amplitude of Cl oscillations decreases by 80.0% and
94.0% respectively.



Figure 8. Maximum amplitude of Cl and Cd versus g/d, at Re = 80 and l/d = 0.5. Red
dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate. Left, Cd; right, Cl

maximum amplitude.

Figure 9. Maximum amplitude of Cl and Cd versus g/d, at Re = 80 and l/d = 1.0. Red
dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate. Left, Cd; right, Cl

maximum amplitude.

Figure 10. Maximum amplitude of Cl and Cd versus g/d, at Re = 140 and l/d = 0.5. Red
dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate. Left, Cd; right, Cl

maximum amplitude.

For the case with Re = 140, the reduction in Cd is of about 13.5% for l/d = 0.5 and of
23.3% for l/d = 1.0. While the maximum amplitude of Cl oscillations is diminished by about
74.7% and 92.1%, respectively. Here again, the results are of the same order of magnitude as
the previous cases.

On comparing results for the same plate length, at different Reynolds numbers, one



Figure 11. Maximum amplitude of Cl and Cd versus g/d, at Re = 140 and l/d = 1.0. Red
dash–dot lines, no splitter plate. Blue dash–dot lines, with splitter plate. Left, Cd; right, Cl

maximum amplitude.

notices that the value of g/d for minimum Cd diminishes with growing Re. In a sense, the
trend is consistent with the case of an isolated cylinder, for which higher values of Re are
known to lead to smaller formation lengths [Serson and Meneghini, 2010]. A different picture
emerges when comparing gap sizes for different l/d at the same Re. That comparison shows
the value of g/d that yields minimum Cd grows with the relative length.

The effects of the gap size on the Strouhal number (St), for different Re, at a fixed
plate length, l/d = 0.5, are depicted in fig. 12. It must be noted that St has been defined here
on the basis of the vortex shedding frequency, free–stream velocity and cylinder diameter. A
similar analysis is presented in fig. 13 for the case where l/d = 1.0. The same trends are
seen in all cases, in that there is a pronounced decrease in St with growing g/d. As the gap
is increased beyond the point of minimum, the Strouhal number grows steeply, only to reach
values that are closer to that of the isolated cylinder. However, the most remarkable feature of
these results lies in the fact that the point of minimum vortex shedding frequency coincides
with the point of minimum mean drag Cd and minimum amplitude of Cl oscillations.

Figure 12. Strouhal number St versus gap size g/d, for l/d = 0.5. Left, Re = 80; center,
Re = 100; right, Re = 140. Red dash–dot lines, no splitter plate; blue dash–dot lines, with
splitter plate.

Figures 14 and 15 show the effects of the gap size on the vortex formation length (lf ),
for two sizes of splitter plate: l/d = 0.5 and l/d = 1.0, respectively. The parameter lf has
been defined here as the x coordinate of the first point on wake axis (y = 0) where the time–
averaged x component of the flow velocity goes through zero. The figures bring the parameter
in dimensionless form, that is: lf/d × g/d.



Figure 13. Strouhal number St versus gap size g/d, for l/d = 1.0. Left, Re = 80; center,
Re = 100; right, Re = 140. Red dash–dot lines, no splitter plate; blue dash–dot lines, with
splitter plate.

Figure 14. Dimensionless formation length lf/d versus gap size g/d, for l/d = 0.5. Left,
Re = 80; center, Re = 100; right, Re = 140. Red dash–dot lines, no splitter plate; blue
dash–dot lines, with splitter plate.

Figure 15. Dimensionless formation length lf/d versus gap size g/d, for l/d = 1.0. Left,
Re = 80; center, Re = 100; right, Re = 140. Red dash–dot lines, no splitter plate; blue
dash–dot lines, with splitter plate.

The above results corroborate the hypothesis that the formation length controls this
class of flows. For they show lf/d grows with g/d up to a maximum, which corresponds to
the minimum values of Cd, Cl amplitude and St. In the ascent, the flow physics is such that
lf/d ≥ (g + l)/d. When the gap is increased beyond the point of maximum lf , it falls to
levels that are comparable to that of the isolated cylinder. In essence, that implies the vortex
formation region gets contained within the gap, lf/d ≤ g/d.

For completeness figs. 16 and 17 present the pressure coefficient at the base of the
cylinder versus gap size (−Cpb × g/d) for l/d = 0.5 and l/d = 1.0, respectively. Here, it
is understood that Cpb is based on a time–average of pressure over a time–span of 10 regular
periods, and the base corresponds to the point (x, y) = (d/2, 0), where the origin is at the



center of the cylinder and the x axis is oriented downstream.

Figure 16. Base Pressure Coefficient−Cpb versus gap size g/d, for l/d = 0.5. Left, Re = 80;
center, Re = 100; right, Re = 140. Red dash–dot lines, no splitter plate; blue dash–dot lines,
with splitter plate.

Figure 17. Base Pressure Coefficient−Cpb versus gap size g/d, for l/d = 1.0. Left, Re = 80;
center, Re = 100; right, Re = 140. Red dash–dot lines, no splitter plate; blue dash–dot lines,
with splitter plate.

As is widely reported in the literature, −Cpb shows strong correlation with the corre-
sponding form drag, Cd. The results give further evidence of the accuracy of the numerical
simulations, which have been performed here.

4. CONCLUDING REMARKS

A systematic investigation has been performed into to the flow around a circular cylin-
der with a wake splitter plate. A number of numerical have been carried out, considering
various plate lenghts and gap sizes. The Reynolds number has been set at values within the
range 80 ≤ Re ≤ 140, and the flow model was substantially simplified, in that viscous
stresses on the splitter plate have been neglected.

In spite of the simplification, the results have shown to capture such relevant aspects of
the flow physics, like discontinuity the vortex formation length experiences, as a function of
the gap size. That discontinuity is characterized by a finite jump, which is owed to the transi-
tion of the vortex formation region from downstream of the plate to within the gap. The jump
is preceded by the maximum formation length, and that same extremum is also associated



with minimum values for the time–averaged form–drag, amplitude of lift oscillations, and
vortex shedding frequency. Yet, our results suggest its dependence on the Reynolds number
may be stronger in this range, than it had been anticipated in previous works.

With regard to potential applications the device has in the oil industry, that extremum
truly represents the optimum configuration. However, its dependence on the Reynolds number
prompts the need for further analysis, and may entail compromise solutions. After all, that
parameter is naturally beyond control in oceanic systems.
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