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Abstract. This contribution is concerned with a constitutive model for shape memory alloy

(SMA) fibers. The model accounts for all material phenomena. It incorporates pseudoplas-
ticity and the shape memory effect (SME). These phenomena occur in the low temperature
range. For high temperature phase, the pseudoelastic behavior occurs. Additionally, the
constrained SME (CSME) and the two-way SME are captured by the model. With respect
to the assumption of small strains an additive split of the strain in an elastic and inelastic
part is suggested. A free energy function is defined as a function of the elastic strain and
an internal hardening variable. The constitutive equations for the stress and the conjugate
hardening variable are derived from free energy. The elastic range is defined by two yield
criteria, which are similar to kinematic hardening, known from classical plasticity theory.
Here, the cases of loading and unloading are distinguished. These criteria are functions of
the stress, the conjugate hardening variable and the energy difference between the austenitic
and the martensitic phase, the so-called driving variable. The evolution equations for the
inelastic state variables, namely the inelastic strain, the internal hardening variable and an
inner variable, describing the martensitic volume evolution, are in accordance with the sec-
ond law of thermodynamics. They are derived from the principle of maximum dissipation with
the yield criteria as constraint. Following standard arguments, the martensite volume frac-
tion is decomposed into twinned and oriented martensite. The first one is able to transform
into austenite due to heating and vice versa. Just as well, it can change into the second one
applying mechanical stress. The constitutive model is embedded in a one-dimensional truss
formulation and implemented into a finite element analysis program. Numerical examples
show the capability of the formulation. Simulations demonstrate the wide range of possible
applications of SMA. A fiber-matrix composite is discussed, which allows for prestressing
structures. This necessitates a precise description of the CSME. Likewise, this effect is used
to prestress a representative volume element.
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1. INTRODUCTION

The potential lying in shape memory alloys is already known for quite a while. In the
past 30 years a lot of effort was done to capture the material behavior, describe it mathemati-
cally and to investigate possible applications. Because of the huge community of researchers
it is not possible to mention every single work. The following paragraph gives an overview
on important publications, but doesn’t claim completeness.
A wide range of applications of shape memory alloys (SMA) may be found in mechanical,
robotic and biomechanical engineering, but also in civil engineering promising applications
are possible. One aspect are the good damping properties for earthquake engineering or vi-
bration control (i.e. McCormick et al. [23], Castellano et al. [7]). Other authors use shape
memory alloys for additional reinforcement in masonry structures (see Indirli et al. [16],
[17]) or self-healing applications [29]. A new proposal for the use of shape memory alloys
was presented in Moser et al. [24] where the material is introduced as fiber-reinforcement in
concrete structures. The possibility of prestressing those structures subsequently is discussed.
An overview on possible applications in civil engineering is given in the works of Janke et al.
[18], Klinkel and Kohlhaas [20] and Song et al. [29].
A lot of publications may be found which are concerned with the modeling and computational
analysis of shape memory alloys. An early publication is made by Achenbach and Müller
[1]. Classical tools of statistical mechanics are used to represent the stress–strain–behavior at
different temperatures. Achenbach’s thoughts were enhanced by Seelecke and Müller [27].
Brinson [6] was the first one who introduced an additive split for the martensite–volume–
fraction. His 1–D model was based on Helmholtz’ free energy function. This idea was picked
up by Leclercq and Lexcellent [22]. They use exponential hardening functions and are able
to describe pseudoelasticity and pseudoplasticity for the 3–D case. Another work of Lexcel-
lent in cooperation with Raniecki [26] is able to model the tension–compression asymmetry.
The model is derived in contradiction to the before mentioned works on basis of Gibb’s free
energy. Bo and Lagoudas [2], [3], [4], [5] refine the model in a series of papers and take plas-
ticity into account. Helm and Haupt [12], [13], [14], [15] formulate a phenomenological 3–D
material model in the framework of small and large strains on basis of Helmholtz’ free energy
function. The model captures the rate-dependence of shape memory alloys. It can display
pseudoplasticity, pseudoelasticity as the memory effects. The finite element implementation
was done for pseudoelasticity. Christ and Reese [8], [9], [10] improve the model of Helm and
Haupt. They implement each material phenomenon into the finite element method. A reduced
integration algorithm in combination with an Hourglas stabilization is used. A good overview
on existent works and further research topics on shape memory alloys is given in Lagoudas
[21].
But, the more complex the material models get and the more material phenomena are cap-
tured, the more calculation time is needed for simulations. In addition, it becomes even more
difficult to discretize a structure with a detailed microstructure. With respect to application in
civil engineering, like sma-fiber reinforced concrete, the presented formulation is restricted to
small strain theory which is sufficient to capture the essential effects. This contribution aims
for a fast, robust and simple algorithm which captures the most important material phenom-
ena like pseudoplasticity, pseudoelasticity as the shape memory effect, the constraint shape



memory effect and the two-way effect. The material model is incorporated in a structural
element, which should be capable of easy meshing with respect to fiber-composite structures.
So, a material model is presented which is based on the works of Helm [12] and Christ [9]. In
order of a reduced computational effort, it is reduced to a fast 1–D algorithm neglecting the
rate–dependency which is dispensable for this purpose. A reduction of a 3–D model down to
a beam formulation was formerly performed by Evangelista in [11].
The main features of the present formulation are:

i A thermodynamic consistent model is presented which is based on the second law of
thermodynamics.

ii A simplified free energy function is used. On its basis, the constitutive equations are
derived.

iii The model captures the pseudoplastic state, the pseudoelastic state and arbitrary inter-
mediate states can be displayed properly.

The model is implemented into a truss element. The ability of the formulation to represent the
relevant material phenomena will be shown in numerical examples. In addition, the examples
will put emphasize on the good use in composite structures. A combination of shape memory
alloy fibers with other materials enhances the range of possible applications. A new family of
smart compound–structures like fiber–reinforced concrete or grip–elements become possible.

2. A Simple, Constitutive Material Model For Shape Memory Alloy Fibers

2.1. Kinematics

To model shape memory fibers a one-dimensional model is introduced. For the as-
sumption of small deformations the geometric field equation reduces to

ε =
∂u

∂x
= u′ . (1)

Due to the fact that for applications in civil engineering, e.g. shape memory fiber reinforced
concrete, only small deformations occur small strains

ε = εe + εi (2)

are assumed.

2.2. Free Energy Equation

The material model is derived on the basis of a free Helmholtz energy function. A
certain form for this energy function

ψ = z · ψM + (1− z) · ψA (3)

is proposed in [13]. Here, the overall free energy is additively decomposed in a free energy
part for the martensitic and the austenitic fraction. The amount of each phase is controlled via



the martensite volume fraction z. The latter one is of scalar type and takes values between
zero and one (0 ≤ z ≤ 1). The martensitic and the austenitic energy part are given as

ψA/M = ψA/M(εe, α, θ, z)

=
1

2
εeEA/Mεe +

1

2
αKA/Mα + c

A/M
d (θ − θ0) + u

A/M
0 − θ

[
c
A/M
d ln

θ

θ0

+ η
A/M
0

]
(4)

and have the same form. It consists of an elastic, an inelastic and a calorian energy part. As-
suming the same material parameters for each phase and inserting equation (4) into equation
(3) yields a simplified free energy function

ψ =
1

2
εeEεe +

1

2
αKα + z · (∆u0 − θ∆η0)− θ ·

[
cd ln

θ

θ0

+ ηA0 − cd
]
− cdθ0 + uA0 . (5)

In this equation the elastic energy part can be recognized by the use of the young’s modulus E
and the elastic strain εe. Further, the inelastic energy part incorporates the hardening modulus
K and the inelastic, inner variable α. The last term to be found in equation (5) is a calorian
function. In addition to the martensite volume fraction z the temperature θ and the effective
heat capacity cd occur. The variable u0 stands for the inner energy and η0 for the entropy in
unloaded conditions. ∆ indicates the difference of the inner energy u respectively the entropy
η between the austenitic and the martensitic phase.

2.3. Constitutive Equations

The constitutive equations are derived by taking the partial derivative of the free energy
function with respect to the inner variables.
The stress σ is defined as

σ =
∂ψ

∂εe
= E · εe = E ·

(
ε− εi

)
. (6)

In the same way, a quantity p is derived by

p = −∂ψ
∂α

= −K · α . (7)

This quantity is also of stress type. In comparison to classical plasticity, p is similar to a
backstress, known from kinematic hardening. At least, the derivation with respect to the
martensitic volume fraction z reads

∆ψ = ∆ψ(θ) =
∂ψ

∂z
= ∆u0 − θ∆η0 . (8)

∆ψ is very important for the phase transition of the presented model. In literature it is referred
to as driving force ([8], [9]) or thermodynamic force ([14], [15]), for further explanation see
section 2.4.

2.4. Phase Transition Conditions

Classical plasticity theory uses one yield condition to differentiate between the elastic
and plastic range [28]. The elastic range defines the set of the admissible stresses. Shape



memory alloys provide a more complex stress–strain–behavior. One yield condition, phase
transition condition, respectively is no more sufficient. Here, two conditions of that kind are
used. To distinguish between loading and unloading the following criterion is used

↔
ε = εi · sign

(
σ − p− 〈∆ψ〉

β
· sign

(
εi
))

=

{
≥ 0, loading
< 0, unloading

. (9)

The Macaulay–bracket 〈. . . 〉 is defined as 〈x〉 = (|x|+ x) /2. The case of loading is bonded
by

→
Φ (σ, p,∆ψ) =

∣∣∣∣σ − p− 〈∆ψ〉β
· sign (σ − p)

∣∣∣∣− σy ≤ 0 . (10)

The description of phase transitions in the case of loading necessitates a stress criterion which
is given as

σ
!

≥ σctrl = |σ − p| − 〈∆ψ〉
β

. (11)

Unloading the material the following phase transition equation

←
Φ (σ, p,∆ψ) =

∣∣∣∣σ − p− 〈∆ψ〉β
· sign

(
εi
)∣∣∣∣− σy ≤ 0 (12)

limits the elastic range. In equations (9) – (12) σy and β are material parameters. σy measures
half the height of the hysteresis and β indicates the maximum hysteresis width. The quantity
∆ψ works like an offset (compare [12]). Scaled by the material parameter of maximum
hysteresis width β it always points in the middle of each hysteresis. The driving force ∆ψ

Pseudoelasticity
Mixed behavior
Pseudoplasticity

Figure 1. Off–set properties of ∆ψ and other material parameters

is the most important quantity for the transformation of the material from pseudoplasticity at
low temperature to pseudoelasticity at the high temperature range, see Fig. 1.



2.5. Clausius Duhem Inequality

The 2nd law of thermodynamics is used in the form of the Clausius Duhem Inequality

D = σ · ε̇i + p · α̇−∆ψ · ż// ≥ 0 . (13)

It can be seen easily that the stress σ dissipates energy on the inelastic strain εi, the backstress
p works on the inner hardening variable α and the energy difference ∆ψ is a work conjugate
variable to the oriented martensite z//, see section 2.7 for a more detailed explanation. Equa-
tion (13) being positive indicates inelastic material behavior and elastic behavior being zero.
Values less than zero are not admissible.

2.6. Evolution Equations

Evolution equations for the internal state variables εi, α, z// are derived via a La-
grangian functional. λ is the Lagrangian parameter. In other words, we search the extrema of
D under the constraint that the yield condition Φ = 0 [25] is fulfilled which reads

L = −D + λ · Φ→ stationary . (14)

To this optimization problem the following equation needs to be satisfied

∇D = λ · ∇Φ . (15)

According to the principle of maximum dissipation, we demand to which inner variables is D
maximal under the constrained Φ = 0 and λ > 0 so that the consistency condition λ · Φ = 0

is fulfilled. Applying the nabla–operator on D and Φ yields ∂D
∂σ
∂D
∂p
∂D
∂∆ψ

 = λ ·

 ∂Φ
∂σ
∂Φ
∂p
∂Φ
∂∆ψ

 . (16)

In equation (16) the phase transition equation Φ has to be replaced by
→
Φ in the case of loading

or
←
Φ in the case of unloading. The same holds for the argument sign(...) in the following

equation  ε̇i

α̇
ż//

 = λ ·


+sign

(
σ − p− 〈∆ψ〉

β
· sign (. . . )

)
−sign

(
σ − p− 〈∆ψ〉

β
· sign (. . . )

)
1
β
· sign

(
σ − p− 〈∆ψ〉

β
· sign (. . . )

)
 . (17)

Equation (17) represents all evolution equations to describe the optimization problem. Work-
ing with this complex of formulas guarantees the stationarity of equation (14).

2.7. Martensite–Volume–Fraction

The microstructure of shape memory alloys provides two different types of martensite.
There is the twinned martensite z〉〉 which can be found in the unloaded material in the low
temperature range. This martensite changes into austenite on heating. That is why literature



often mentions it as temperature–induced martensite [12], [13]. The other type of martensite
is an oriented martensite z// which evolves on loading the material. Each of those martensite
fractions may vary between zero and one. For the coexistence of both martensite fractions an
additive split is chosen. This additive decomposition was introduced by [6] and is also used
in [9], [12], [22].

0 ≤ z〉〉 ≤ 1; 0 ≤ z// ≤ 1; 0 ≤ z ≤ 1; z = z// + z〉〉 (18)

The evolution of the oriented martensite is given in equation (17)3. It can be integrated and
reads then

ż// =
ε̇i

β
=⇒ z// =

εi

β
. (19)

It is demanded that z// ≥ 0. To ensure this, the evolution equation is manipulated as follows

z// =
|εi|
β

. (20)

The evolution of the temperature–induced, twinned martensite is outlined in Fig. 2. The acti-
vation temperatures for the phases austenite A and martensite M are introduced. The indices
(•)S and (•)F mark the start and the finish of the phase transformation. The corresponding

qAS qAFqMSqMF

Figure 2. Evolution of temperature induced martensite

evolution equation reads

ż0
>> =


− θ̇
AF−AS

, if θ̇ > 0 and AS < θ < AF

+ θ̇
MS−MF

, if θ̇ < 0 and MF < θ < MS

0 , otherwise

. (21)

Three different cases have to be considered: pseudoplasticity, an intermediate state and pseu-
doelasticity. First of all, there is the case of pseudoplasticity, Fig. 3. Here, the stress–strain–
behavior forms a hysteresis around the origin of the coordinate system. During this process
the martensite fraction changes from twinned martensite to oriented martensite. The volume
fraction evolution of z〉〉 can be described as

z〉〉 = 1− z// . (22)



For pseudoelasticity the stress–strain–behavior shows hysteresises in the first and the third
quadrant of the σ-ε-diagram. This material behavior can be observed in the high tempera-
ture range. In the unloaded state no martensite exists. When the material is loaded oriented
martensite evolves. Twinned martensite

z〉〉 = 0 (23)

is not present at any time, see Fig. 5. Between the austenite–start–temperature AS and the
austenite–finish–temperature AF shape memory alloys transform from martensite to austenite
due to temperature changes. Although, the model must guarantee that the material can be
loaded at any time during this transformation. For this purpose the following ansatz

z〉〉
(
εi
)

= −
z0
〉〉

β
·
∣∣εi∣∣+ z0

〉〉 (24)

is proposed, Fig. 4.

Figure 3. Pseudoplasticity Figure 4. Intermediate state Figure 5. Pseudoelasticity

2.8. Transformation Temperatures

The characteristic transformation temperatures are dependent of the chosen material
parameter set. The austenite–start–temperature marks the temperature to which a deformed
structure starts the redeformation into its former shape (see Fig. 6). For the equilibrium state

Figure 6. Austenite–start Figure 7. Austenite–finish



marked in Fig. 6 with a red dot the phase transformation condition takes the following form

←
Φ (σ, p,∆ψ) =

∣∣∣∣σ − p− 〈∆ψ〉β
· sign

(
εi
)∣∣∣∣− σy = 0

=

∣∣∣∣0−K · β − 〈∆u0 − AS ·∆η0〉
β

· sign (β)

∣∣∣∣− σy = 0 .

(25)

It follows the definition of the austenite–start–temperature AS as

AS = +
∆u0

∆η0

+
σyβ

|∆η0|
− Kβ2

|∆η0|
. (26)

The austenite–finish–temperature (Fig. 7) is derived analogically by

←
Φ (σ, p,∆ψ) =

∣∣∣∣σ − p− 〈∆ψ〉β
· sign

(
εi
)∣∣∣∣− σy = 0

=

∣∣∣∣0− 0− 〈∆u0 − AS ·∆η0〉
β

· (+1)

∣∣∣∣− σy = 0 .

(27)

The term for the austenite–finish–temperature results in

AF = +
∆u0

∆η0

+
σyβ

|∆η0|
. (28)

To complete the set of transformation–temperatures the martensite–temperatures

MS = +
∆u0

∆η0

− σyβ

|∆η0|
(29)

MF = +
∆u0

∆η0

− σyβ

|∆η0|
− Kβ2

|∆η0|
(30)

may be derived from Fig. 8 [6], [19].

3. Finite Element Implementation

For numerical analysis the material model is embedded into the finite element method.
Conforming to the 1–D material model a formulation for a truss element is chosen. The finite
element implementation is derived on basis of the balance of linear momentum

∂

∂x
σ + ρb = ρ

∂v

∂t
in B×]0, T [ . (31)

For the 1–D case, neglecting dynamic effects and own weight, eq. (31) simplifies to the
following differential equation

∂N

∂x
dx+ n(x) · dx⇒ N ′ + n = 0 (32)

with normal force N in the infinitesimal beam element dx and axial load n(x). The boundary
conditions read

N = N̄ = F on ∂σL (33)



Figure 8. Stress–temperature–diagram for shape memory alloys (see [6])

on the loaded border of the element L. Thus, the weak form of equilibrium can be written to

g :=

∫
L

δεN dx−
∫
L

δu · n dx− F [δu]∂σL = 0 . (34)

The displacement is approximated by linear shape functions. On element level the approxi-
mated weak form reads

gh
e =

∫
Le

δεhN dx− δuh · n− F
[
δuh]

∂σLe

= δdT
e

(∫
Le

BTNdx︸ ︷︷ ︸
f int
e

−
∫
Le

NTndx−
[
NTF

]
∂σLe

)
︸ ︷︷ ︸

f ext
e

.
(35)

N contains the shape functions and the B-matrix consists of the derivation of the shape
functions. The displacement-vector d consists of the axial displacements of each node of the
finite element. Since the virtual displacements δdT

e are arbitrary,

G =
nelem⋃
e=1

(
f int
e − f ext

e

)
= 0 (36)

is in accordance with a global equilibrium condition. The nonlinear problem is linearized via
a Taylor expansion.

G
(
uk+1

)
= G

(
uk
)

+
∂G

(
uk
)

∂dk
·∆dk = 0 (37)

Thus, G
(
uk
)

is the residual and the element stiffness matrix can be written to

KTe =
∂Ge

∂dke
=

∫
Le

BT · A · CT ·B dx . (38)



CT denotes the consistent tangent modulus given as

CT =
∂σk

∂εk
=

{
E : elastic step
EK
E+K

: inelastic step
. (39)

4. Numerical Examples

Two numerical examples show the capability of the presented model. Both examples
are modeled with the same set of material parameters (table 1) for the shape memory alloy.

Table 1. Material parameters for shape memory alloy [8]
Material parameter Abbreviation Unit Value
Young’s modulus E MPa 60000.00
Hardening modulus K MPa 2000.00
Half height of hysteresis σy MPa 120.00
Maximum hysteresis width β [ - ] 0.05
Difference of inner energy ∆u0 MPa -204.00
Difference of entropy ∆η0 MPa/◦K -0.80
Martensite–finish MF

◦K 241.25
Martensite–start MS

◦K 247.50
Austenite–start AS

◦K 256.25
Austenite–finish AF

◦K 262.50

4.1. 1–D–Rod

For a 1–D rod the following five loading situations are analyzed. Examples 1 and 2
are calculated with an external, axial load. The load is raised with a proportional load factor at
first und decreased subsequently. Pseudoplastic and pseudoelastic behavior can be observed.
For examples 3–5 a prestrained (ε = εi = β) rod is considered and the temperature is varied.
The different shape memory effects take place. All results are displayed in Figs. 9 and 10.

1. Pseudoplasticity and Shape Memory Effect
A surrounding temperature of θ = 250 ◦K is assumed. The driving force ∆ψ is zero.
Reaching the initial yield–stress σy = 120 MPa the martensite–twins are starting to
orientate (dotted, blue line). At an inelastic strain εi = β = 0.05 linear elastic material
behavior is observed again.
Unloading subsequently, a remnant strain of ε = β = 0.05 remains. When the structure
is heated above AS = 256.25 ◦K the shape memory effect is initiated and the strain
decreases again, see Fig. 9. At a temperature θ = AF = 262.50 ◦K the structure is
completely in its original shape. The microstructure is austenitic. A subsequent cool–
down below MF = 241.25 ◦K recovers the twinned martensite.

2. Pseudoelasticity at θ = 300 ◦K.
The driving force measures ∆ψ = ∆u0 − θ · ∆η = 36 MPa at this temperature. The
hysteresis is shifted into the first quadrant (dashed, green line). With σ = ∆ψ/β+σy =



840 MPa the austenite transforms into oriented martensite. At hysteresis width β = 0.05

elastic material behavior can be observed again. The material has completely trans-
formed into oriented martensite (stress–induced). Unloading the material lets the mate-
rial accommodate in the origin of the stress–strain–diagram. All strains and stresses are
zero. The material is completely austenitic again.

Each of the following calculations start at an initial temperature θ = 250 ◦K. At this temper-
ature a material behavior like in point 1. occurs. In contrast to the examples above the shape
memory effect is constrained by a spring at the tip of the rod.

3. Two–Way Shape Memory Effect – Case I.
Here, a spring with a stiffness of EA/L = 1 · 104 MN/m is placed at the tip of the rod.
Reaching the austenite–start–temperature AS the shape memory effect begins. A trans-
formation back into the former state is constrained by the spring. The spring induces
stresses into the rod and while the temperature rises pseudoelastic material response
evolves and high stresses σ = 428.54 MPa are achieved (dash dotted, black line). No
matter how high the temperature is risen the strains cannot be driven back to zero com-
pletely (ε = 0.0071457). When the rod is cooled down the stress decreases and the
strain increases again. Finally, there is a remnant stress of σ = 166.43 MPa (Fig. 10)
and a remnant strain ε = 0.033357. This procedure is repeatable.

4. Two–Way Shape Memory Effect – Case II.
This time, a spring with a stiffness of EA/L = 1 · 105 MN/m is used. The behavior is
similar to the one described before. Now, even higher stresses σ = 1874.50 MPa are
admissible (dash dotted, turquoise line). But the minimal strain ε = 0.031255 is a bit
greater. Cooling down the rod leads to a residual stress σ = 194.87 MPa (Fig. 10) and
strain ε = 0.048051.

5. Constrained Shape Memory Effect.
In the last calculation, the redeformation is completely constrained. The stiffness of the
spring is infinite. Thus, the rod is clamped. That’s the reason why it cannot recover
strain and just the stresses rise up to stresses greater than σ = 2000.00 MPa (dotted,
pink line). After a cool–down, there is a stress remaining which values σ = 199.00 MPa
(Fig. 10).

4.2. Grip–Element

In this section an example is presented which shows the capability of the formulation
to interact with other elements and materials. A grip–element is modeled which consists of
three arms. They are discretized with eight–node–brick–elements. Each arm has a length of
L = 180 mm and a cross-section b× h = 30× 30 mm2. They consist of 9× 3× 3 elements,
see Fig. 11. The grip–elements are modeled by a soft rubber-like material with a young’s
modulus E = 100 MPa and a Poisson ratio ν = 0. Beneath every arm, there are four rows
of shape memory alloy fibers in axial direction, see Fig. 11. They are prestrained to their
maximum hysteresis width εi = β = 0.05.
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When the structure is heated and the austenite–finish–temperature is reached the shape mem-
ory alloys begin to shrink. Due to the excentric position of the fibers the grip elements start to
bend, see Fig. 12, Fig. 14. The maximum deflection is reached at a temperature θcf = 282 ◦K
and amounts wcf = 35 mm. The vertical deflection of the upper arm is measured. When the
temperature decreases a redeformation starts at θos = 266 ◦K. A two–way shape memory ef-
fect can be observed which is comparable to section 4.1 case no. 3 and 4. The grip–elements
open up to a deflection of wof = 20 mm at a temperature θof = 256 ◦K, see Fig. 13. From
now on, the process is repeatable. Between the temperature range θof and θcf all deflections
between wof and wcf are admissible, compare Fig. 14.

Rubber

Shape Memory Fiber

Figure 11. Undeformed grip–element
θ = 240 ◦K

Figure 12. Maximum deformation grip–ele-
ment, θ = 282 ◦K

5. Summary and Outlook

This contribution deals with an efficient and fast algorithm for shape memory fibers.
All important material phenomena like pseudoplasticity, pseudoelasticity, the free, two–way



Figure 13. Residual deformation grip–ele-
ment, θ = 256 ◦K
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Figure 14. Temperature–deflection–diagram
grip–element

and the constrained shape memory effect are captured. The 1–D formulation allows for easy
meshing in the framework of the finite element method. No problems are encountered com-
bining the shape memory – truss formulation with other structures or materials.
It is possible to use the formulation to model and analyze reinforced structures. The present
model puts emphasis on the proper simulation of the phase transition from martensite to
austenite no matter which loading conditions are applied. This allows for the ability to pre-
stress a surrounding matrix and amend brittle material. It should be possible to predict the
material behavior of complex compound–materials of shape memory fiber in combination
with any other material.
The simulation of greater structures would ask for an enormous number of elements to repre-
sent the microstructure of fiber–composites. Here, a multiscale–approach is conceivable. By
the use of a coarse mesh on the macroscale and a representative volume element (RVE) on the
microscale, information can be passed between them both and calculation–time can be spared
eventually.
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