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Abstract. Moving Particle Semi-implicit (MPS) is a Lagrangian, meshfree, computational 

method for fluid simulation. This work focus on using GPU clusters for MPS simulations. To 

accomplish this, we have to deal with two different levels of parallelism: one responsible for 

making different cluster nodes work together in a distributed memory system, and the other 

using the parallelism of GPU devices available on each node. First we present a performance 

comparison between single-node GPU and single-node multithreaded CPU implementations 

to investigate GPU speedups. Further, we analyze the performance in a multi-node GPU 

cluster environment. 

Keywords: Particle Method, Computational Fluid Dynamics, High Performance Computing, 

GPU, CUDA. 

1. INTRODUCTION 

MPS method was originally introduced in [10] as a Lagrangian, meshfree method for 

simulation of incompressible fluids. The fluid is represented with a finite number of particles 

that can freely move in space. The particle behavior is affected only by the surrounding par-

ticles, the closer the other particles are, the greater the influence. In summary, the fluid is 

represented as freely moving particles without the use of a grid or mesh, and the differential 

operators of the governing equations are replaced by using Discrete Differential Operator on 

Irregular Nodes (DDIN) [9], and solved by a semi-implicit algorithm. 

The unique computational aspect of the method is an NxN sparse linear system, with 

N being the number of particles, which need to be solved at each time step to guarantee in-

compressibility. 

To avoid the overheads of solving a large sparse linear system, [17] proposes a weakly 

compressible MPS method. A linear system to solve the pressure Poisson equation, which 

will be responsible for maintaining the constant density within the fluid, was replaced by an 

equation of state [4] commonly used in SPH method [14]. This equation relates density with 

Blucher Mechanical Engineering Proceedings
May 2014, vol. 1 , num. 1
www.proceedings.blucher.com.br/evento/10wccm



 

 

pressure in a very simple way, but incompressibility is not guaranteed. On the other hand the 

method becomes fully explicit and well suited for computation on GPUs. 

To allow the computation in a distributed memory system we must perform domain 

decomposition. Each sub-domain is simulated by a separate process and communication be-

tween them must be minimized. Moreover, load balance must be a concern to avoid idle 

processes during the simulation. The ideal scenario is to have all the processes containing the 

same amount of particles throughout the simulation. 

Computations on GPUs have been the focus of a great deal of research over the past 

few years, with speedups increasing ten or even hundreds of times than when they were im-

plemented on CPUs [1][5][6][11]. Frameworks have been released to accelerate software de-

velopment [13][15], in an effort to make the burden of re-writing any software to work on 

GPUs more bearable. Despite the speedups rates, and attractive GFLOPS/dollar ratios, not all 

applications can benefit from GPU computing. Implementations of GPU kernels usually need 

a careful study on how to efficiently employ each available resource, and successfully hide 

latencies. 

This work is focused on the use of GPU clusters for MPS simulations. Two levels of 

parallelism are implemented: one by dividing the simulation domain among cluster nodes and 

using Message Passing Interface (MPI) for communication between sub-domains, and another 

through the use of GPU devices in the computation of the explicit MPS method. With this 

development we expect to be capable of simulating large amounts of particles and expand the 

possibilities for applications of particle methods in engineering analysis. 

Section 2 investigate the MPS method and related computer algorithms are subject of 

the following Section 3. Section 4 depicts how parallelization using GPUs was performed 

followed by a description of the parallelization on distributed memory systems on Section 5. 

Results are presented on Section 6 along with a discussion concerning the implementation 

efficiency and computation speedups. 

2. MPS METHOD 

The MPS method is based on the discretization of the fluid volume in a finite number of 

particles. The contribution of a particle 𝑖 to a particle 𝑗, and vice versa, is defined by a kernel 

function defined as: 

𝑤 𝑟𝑖𝑗 , 𝑟𝑒 =  

𝑟𝑒
𝑟𝑖𝑗

− 1, 𝑟𝑖𝑗 < 𝑟𝑒

0, 𝑟𝑖𝑗 ≥ 𝑟𝑒

  (1) 

where 𝑟𝑖𝑗  is the distance between the particles and 𝑟𝑒  the radius of influence. The kernel func-

tion interpolates the physical quantities of a region working as a smoothing function of the 

surrounding particles. 

A dimensionless quantity called particle number density is written as: 



 

 

 𝑛 𝑖 =  𝑤(𝑟𝑖𝑗 , 𝑟𝑒) 

𝑖≠𝑗

 (2) 

and is closely related to the local density of the fluid. The operator    is the kernel weight-

ing operator, which means that the quantity is a weight average using the kernel function over 

the vicinities of particle 𝑖. Computationally, it indicates that a summation of a certain expres-

sion relating particle 𝑖 parameters, and each of its neighbors, 𝑗 parameters, weighted by a ker-

nel function, will be performed. 

The kernel weighting operator is also used in the definition of the gradient vector: 

 ∇ ∙ 𝜙 𝑖 =
𝑑

𝑛0
  

𝜙𝑗 − 𝜙𝑖

𝑟𝑖𝑗
2  𝑟𝑗 − 𝑟𝑖 𝑤 𝑟𝑖𝑗 , 𝑟𝑒  

𝑖≠𝑗

 (3) 

and the Laplacian: 

 ∇2𝜙 𝑖 =
2𝑑

𝜆𝑛0
   𝜙𝑗 − 𝜙𝑖 𝑤 𝑟𝑖𝑗 , 𝑟𝑒  

𝑖≠𝑗

 (4) 

in which, 𝑑 is the number of space dimensions, 𝑛0 is the constant particle number density, 𝜙 

is a scalar quantity, and 𝜆 is a correction constant. 

The calculation process has a prediction-correction integration method depicted in Figu-

re 1.  

Figure 1. MPS method flowchart. 



 

 

The first step is to calculate the viscosity force taking the Laplacian of the velocity, 

which involves a kernel weighting operator. Processes that require this operator are displayed 

with a thicker outline (processes 1, 4 and 6) and require a great computation effort. Velocity 

and position prediction are written as: 

𝑢𝑖
∗ = 𝑢𝑖

𝑛 + ∆𝑡𝑓𝑖  
(5) 

𝑟𝑖
∗ = 𝑟𝑖

𝑛 + ∆𝑡𝑢𝑖
∗ 

(6) 

where 𝑢𝑖
∗, 𝑢𝑖

𝑛 , ∆𝑡, 𝑓𝑖 , 𝑟𝑖
∗, and 𝑟𝑖

𝑛  are the predicted velocity, velocity at step 𝑛, time step, 

force, predicted position, and position at step 𝑛, respectively. Particle number density is calcu-

lated according to (2).  

Pressure is defined as: 

𝑝𝑖 = 𝑐0
2
𝜌0

𝑛0
(𝑛𝑖 − 𝑛0) (7) 

in which 𝑐0 is the sound speed in the reference density 𝜌0 [16]. 

Pressure gradient is calculated according to (3) for pressure. Velocity and position cor-

rection are given as follows: 

𝑢𝑖
′ = −

∆𝑡

𝜌0
∇𝑝𝑛+1 (8) 

𝑟𝑖
′ = ∆𝑡𝑢𝑖

′  
(9) 

Velocity and position for the new time step is written as: 

𝑢𝑖
𝑛+1 = 𝑢𝑖

∗ + 𝑢𝑖
′  

(10) 

𝑟𝑖
𝑛+1 = 𝑟𝑖

∗ + 𝑟𝑖
′  

(11) 

3. ALGORITHMS 

This section describes the main algorithms used in the system implementation. First we 

delve into the kernel weighting operator and how particles are sorted in a grid to reduce its 

computational complexity. Second we look into how solid boundaries and free surfaces are 

handled. Third we describe the choice of a static domain decomposition, and how it affects 

load balance, followed by a explanation about the required communications steps using mes-

sage passing between sub-domains. At last, we investigate how inflow and outflow particles 

can be effectively exchanged between sub-domains taking advantage of the fact that they are 

already sorted in a grid. 



 

 

3.1. Kernel weighting operator 

Processes including the kernel weighting operator have a heavy computational load, so 

an optimized way to sum the contributions of each neighboring particle must be found. Fortu-

nately this has been the subject of previous research [7][12], and a brief description is given 

below. 

If we take the naïve approach considering every particle in the domain as a neighbor of 

another particle, we would end up with a 𝑂 𝑁2  problem, with 𝑁 being the total number of 

particles in the domain. This can be overcome by narrowing down the number of particles that 

we consider neighbors. Green [7] achieved that by sorting the particles in a grid. Figure 2 

shows two grids, A and B, with A containing a random unsorted distribution of particles, and 

B being the result after sorting A. The first table shows two arrays containing the x and y po-

sitions of each particle.  

The sorting algorithm consists of the following steps: 

1. compute the cell index of each particle; 

2. sort the particles by cell indices, also swapping the particle positions during the 

process; 

3. find out the beginning and end (one past the end) index of each cell, and the number of 

particles lying on each cell. 

Figure 2. Sorting algorithm. 



 

 

The output arrays of each step are shown in Figure 2. The particle number density of 

particle 𝑖 can be calculated using the sorted arrays according to Algorithm 1 presented below: 

This approach reduces the order of complexity of processes that include the kernel 

smooth operator from 𝑂 𝑁2  to 𝑂 𝑁 , making it feasible computationally. 

Algorithm 1 

ParticleNumberDensity(i, x[], y[], cell[], first[], last[])  

// i particle index 

// x array of x positions 

// y array of y positions 

// cell array of cell indices 

// first array of  indices pointing to the beginning of each cell 

// last array of indices pointing to the end of each cell 

1 result = 0 

2 for c in NeighborCells(cell[i]) 

3 for j from first[c] to last[c] 

4 dx = x[j] – x[i] 

5 dy = y[j] – y[i] 

6 r = sqrt(dx*dx + dy*dy) 

7 if r < re 

8 result += re/r - 1 

9 return result 

3.2. Boundary conditions 

Solid boundaries are modeled as particles, making its implementation simple, but with 

the disadvantage of increasing the required number of particles [10][17]. There is also the 

need of introducing ghost particles to avoid drop of particle number densities near boundaries, 

which would make particles in those regions to behave wrongly and possibly pass through 

boundaries. Figure 3 shows an example of a fluid/boundary interface and the distribution of 

the different types of particle. 

Therefore, an additional “type” attribute to each particle is required to define whether it 

is a fluid, boundary, or ghost particle as each type participates differently in the processes of 

Figure 1. For instance, during viscosity force calculation, the calculation must be performed 

for all fluid particles, considering their interaction with all but ghost particles. 

Free surfaces are detected according to the following expression: 

 𝑛 𝑖 ≤ 𝑛0𝛽 (12) 

in which 𝛽 is a threshold coefficient. We used a 𝛽 of 0.97 for our simulations and atmospheric 

pressure is imposed on free surface particles.  



 

 

3.3. Domain decomposition and load balance 

Simulating particles on distributed memory systems inevitably scatters the particles in 

different processes in order to divide the work load, and requires some sort of communication 

between them to make the simulation occur as if it is all done in a single process. 

Many previous researches addressed the problem of domain decomposition for particle 

methods [2][3][8]. Actually, a static partitioning scheme can work in the majority of applica-

tions such as sloshing, slamming, green water problems and simulation of a towing tank, to 

mention but a few, because the spatial behavior of the fluid is already known in some extent. 

The case chosen for this study was a 3D dam break problem. Figure 4 (screenshot from Para-

view visualization software) shows the partitioning scheme that was used, dividing the do-

main in 4 parts aligned in the Z direction. Since it is capable of maintaining the same amount 

of particles in each sub-domain throughout the simulation because there is almost no inflow 

or outflow particles in Z direction, the partitioning is kept unchanged maintaining a good load 

balance. 

Communication must occur to provide information of neighboring particles lying in 

neighboring sub-domains. For a given particle within the boundary of sub-domain A there are 

neighbor particles residing in B, a sub-domain that must be considered while calculating, for 

example, its particle number density. Hence, B must communicate the position of those par-

Figure 3. Fluid, solid boundary and ghost particles (colored in blue, 

green and red respectively). 

Figure 4. Partitioning scheme used for the 3D dam break case. 



 

 

ticles to A before the particle number density can be calculated. Furthermore, to minimize 

communication, only particles close to the boundary should be transferred. Since all particles 

are kept sorted in a grid, only particles inside boundary cells are exchanged. Each process 

responsible for performing the calculations of a sub-domain keeps an updated list of boundary 

cell indices for each neighbor sub-domain.  

3.4. Communication 

Communication must occur between neighbor sub-domains. For a given sub-domain, 

the number of neighbors varies according to the domain partitioning scheme. For simplicity, 

we considered a two dimensional case with two sub-domains A and B, each divided by a 2x2 

grid presented in Figure 5. We call the extended grid of A the 4x4 cells composed by the un-

ion of the 2x2 white cells and the surrounding hatched cells. Sorting is made using the ex-

tended grid, so the number of cells in A is 16. The same applies for sub-domain B, although 

its extended grid is not shown. Tables I, II, III and IV are the cell ranges for sub-domain A, 

particle positions and cell indices for sub-domain A, cell ranges for sub-domain B, and par-

ticle positions and cell indices for sub-domain B, respectively. 

The algorithm to send the particle positions of sub-domain B boundary cells to sub-

domain A consists of the following steps: 

1. Test the intersection of sub-domain B grid with sub-domain A extended grid, finding 

which cells are in the intersection region, in this case cell 5 and 9. 

2. Copy to a container (Table VI) the ranges of positions for cell 5 and 9 given by Table 

IV, and keep track of cell ranges using another container (Table VII). 

3. Send Table VI and VII to sub-domain A, appending the positions to the end of the 

container holding the particle positions of A (Table V). Update the cell ranges of A 

(Table VIII) to point the correct indices of Table V for the inbound particles of cell 7 

and 11. 

This procedure avoid sorting the inbound particles taking advantage of the fact that they 

are already sorted in the communicating sub-domain, by providing additional information 

about the cell ranges (Table VII) which does not have a significant impact in communication 

and computation. The other advantage is the clear separation in Table V of particles lying in 

the sub-domain (inner particles) and the ones received from neighbor sub-domains (inbound 

Figure 5. Algorithm for communicating particles between sub-domains. 



 

 

particles). When calculations need to be carry out only for inner particles, it can be done just 

by adjusting the computation range, which is put into practice in process 7 and 8 of Figure 1 

saving computational time. 

Figure 5 shows a more detailed flowchart for the case of distributed memory systems. 

The exact attributes that are exchanged in each communication step are as follows: 

I. position, velocity, type and cell ranges; 

II. viscosity force; 

III. particle number density; 

IV. position. 

Notice that the cell ranges are communicated only once, as they are not subject for 

change inside one time step. At first, communication IV didn't seem to be necessary, since all 

the information required to perform the sorting process in already locally available. Neverthe-

less, slight fluctuations in computation between GPUs was affecting the detection of inflow 

and outflow particles. This step ensures that for a given particle every sub-domain has the 

same position value, and inflow/outflow detection will be handled consistently among them. 

3.5. Inflow and outflow 

Sub-domains must be capable to find out if a particle has left the sub-domain (outflow) 

or entering the sub-domain (inflow). Furthermore, particles must make the transition in a con-

sistent manner to avoid redundancy among sub-domains or disappearance while crossing 

boundaries. 

The fact that we already have the inbound particles attributes appended in the local con-

tainers worked in our favor as applying the sort algorithm, with a small modification in how 

cell indices are computed, can be sufficient to treat inflow/outflow particles. Cell indices are 

computed verifying if the particle is inside the inner grid. If not, a value of 𝜀 is given where 𝜀 

is much greater than the maximum cell index. After sorting was performed, all particles out-

side the inner grid will be gathered at the end of the container. We look for the first particle 

with cell index equal to 𝜀, and all particles that come before it are considered to belong to that 

sub-domain while all others are discarded. 

For instance, consider that particle 4 of sub-domain B in Figure 5 moved toward sub-

domain A and is making its transition to A’s cell 10. Since it is already present in Table V, 

sorting A will swap its data to cell 10 making it an inflow particle in sub-domain A. On the 

other hand, the same particle will be outside the inner grid of B, allowing it to be discarded 

after performing the sort process in B, distinguishing it as an outflow particle in sub-domain 

B. On the other hand, if the corrected position of particle 4 computed in A is slightly different 

from the one computed in B, an inconsistent state may be reached, since particle 4 may be 

seen as an inflow particle in A, but not as an outflow particle in B, for example. That would 

originate a duplicate particle in A after B communicated its particles (Communication I) in 

the following time step. As pointed out before, that is why Communication IV was needed, 

given the fact that slight differences in computation do occur between GPUs devices 



 

 

4. COMPUTING ON GPU 

GPU computing was implemented using NVIDIA’s CUDA framework and since the re-

lease of version 4.0 of the toolkit, it includes a library namely Thrust which is based on C++ 

Standard Template Library (STL) and Boost’s Iterators library. It features 2 special containers 

for different memory spaces, i.e. in host memory or device memory, and data transference 

between spaces. Algorithms can operate on containers through the use of iterators, and the 

library automatically executes on GPU or CPU depending on the data memory space. It is 

also possible to use an OpenMP backend and run parallel on CPU. 

Processes 2, 3, 5, 7, and 8 in Figure 1 are simple iterations over all particles which 

enables a straightforward utilization of the featured “transform” algorithm. Processes 1, 4, and 

6 required an implementation similar to Algorithm 1 for both CUDA and OpenMP backend. 

Coalesced global memory access was guaranteed by using separate containers for each 

particle attribute. 

Concurrent execution between host and device could be sought during communication. 

More specifically, processes 2, 3, 5, 7 and 8 could perform their computation for inner par-

ticles, while inbound particles are been communicated. Unfortunately this would require the 

use multiple CUDA streams, currently not supported by Thrust. 

Figure 6. Flowchart for distributed memory systems. 



 

 

Texture memory was used for cell range data that can optimize the cost of memory 

reads only on a cache hit in texture cache. 

5. COMPUTING ON DISTRIBUTED MEMORY SYSTEMS 

Message Passing Interface (MPI) was used for communication between cluster nodes. 

When computing using GPUs all data resides in device memory, but MPI requires data to be 

available in host memory. To avoid data transference overhead between device memory and 

host memory every time communication is needed we utilized a feature called page-locked 

memory, that maps host memory into the address space of the device. 

Kernel launches are considered asynchronous in CUDA applications, meaning that con-

trol is returned to the host thread before their completion. We must ensure that all device tasks 

are completed before communication calls. This can be accomplished by using the function 

“cudaStreamSyncronize” before MPI calls with parameter set to the default stream. 

MPI communication was implemented using non-blocking send and receive calls, 

MPI_Isend and MPI_Irevc respectively, followed by MPI_Waitall.  

6. RESULTS 

Results for 3D dam break simulations were obtained using two different clusters, with 

specifications shown in Table 1 and Table 2. The first goal was to compare the computing 

performance of a single multicore CPU with a single GPU device. We accomplished that by 

creating two different applications, namely MPS_OMP and MPS_CUDA, for parallelization 

using OpenMP and CUDA respectively. Since we used Thrust algorithms in the implementa-

tion of the MPS method, the source code for the two versions could be the same. Another goal 

was to check the performance improvements that could be reached by splitting the domain 

among different MPI processes, each one using one GPU device for the computation of the 

method. In summary, we built 3 different executables namely MPS_CUDA, MPS_OMP and 

MPS_CUDA_MPI, featuring single-node GPU, single-node multi-threaded CPU, and multi-

node GPU execution schemes, respectively. 

Table 1. GPU cluster configuration. 

Processor AMD Opteron 8384 2.7GHz 

Cores per node 16 

Memory 32GB 

CUDA capable device NVIDIA’s Tesla S1070 

Interconnection Infiniband QDR 4x 

Table 2. CPU cluster configuration 

Processor Intel Xeon X5560 2.8GHz 

Cores per node 8 

Memory 24GB 

Interconnection Infiniband QDR 4x 



 

 

Table 3 presents the mean of the measured times, in seconds, of one time step of simu-

lation for three 3D dam break cases, with different number of particles. The first three col-

umns corresponds to the measurements of MPS_OMP running with 1, 4, and 8 threads in a 

multicore CPU. The forth column presents the times for MPS_CUDA running with a single 

GPU device. The fifth and sixth column are the times for MPS_CUDA_MPI using 4 and 9 

processes respectively, with individual GPU devices. Figure 7 exhibits the obtained speedup 

rates for the case of approximately 700,000 particles if compared to MPS_OMP running with 

a single thread. We must be aware of the fact that the correct speedups would only be ob-

tained by making the comparison against a pure serial implementation but we can assume that 

the overheads introduced by OpenMP parallelism are not significant and the numbers would 

be just slightly smaller. 

Table 3. Mean computation time of one time step (seconds). 

Particles 
CPU 

1 thread 

CPU 

4 threads 

CPU 

8 threads 
GPU 

GPU 

4 processes 

GPU 

9 processes 

141,168 1.097 0.389 0.206 0.101 - - 

452,528 3.973 1.671 0.888 0.282 - - 

698,578 7.467 2.628 1.389 0.513 0.163 0.092 

MPS_CUDA is only 2.7 times faster than MPS_OMP with 8 threads for 698,578 par-

ticles. Profiling MPS_CUDA with Compute Visual Profiler, a profiling tool provided with 

CUDA Toolkit, reveled that around 95% of the computation time is spent in processes 1, 4, 

and 6 of Figure 1. Moreover it showed that they are compute bound, reaching a low occupan-

cy of 41.6%. One way to overcome this would be to further divide the computation in simpler 

processes. That would require storing intermediate calculation values that lies inside the 

summation of the kernel weighting operators. However a great amount of additional memory 
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Figure 7. Speedup rates. 



 

 

would be necessary since we would be storing one or more quantities for each pair of interact-

ing particles. In addition, some extra computation would be required to allow data parallelism 

for interacting pair of particles. 

We should also take into consideration that the GPU devices used to obtain the results 

are quite old, and given the fact that the implementation is currently compute bound, we 

should see some significant improvement if we execute in newer devices. 

In this way, instead of trying to further optimize MPS_CUDA, we decided to concen-

trate our effort implementing MPS_CUDA_MPI, which seemed to have more immediate 

speedup opportunities. 

Comparing the speedups rates achieved by MPS_CUDA_MPI with 4 and 9 processes 

reveals a good scalability. That means that communication is not the current bottleneck and 

the proposed algorithm introduced a very small overhead. However, we should remember that 

the partitioning scheme (Figure 4) minimizes communication since each sub-domain has only 

2 neighbors. A different partitioning scheme, with more neighbors per sub-domain, would 

likely not scale that well. 

In addition to reducing computation time, the domain decomposition allows the simula-

tion of a great number of particles in a feasible time. A case with 1,190,678 particles was si-

mulated in 4.5 hours using 8 processes and another with 7,329,376 particles in 17.5 hours 

using 14 processes. 

7. CONCLUSION 

We presented an algorithm to allow MPS simulations in distributed memory systems 

that greatly reduces the communication overhead. We also showed that MPS simulations can 

benefit from GPU computing, although speedup rates are not as high as achieved by other 

applications. To achieve higher speedup rates, optimized ways to perform the operations 

comprising the smoothing kernel operator need to be found. Possible alternatives include 

splitting the computation into simpler steps to reach higher device occupancy, or cleverly us-

ing the available resources of the GPU device that can impact performance such as shared 

memory. 

Being able to compute in a GPU cluster further improved performance and allowed the 

simulation of a large number of particles. 
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