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Abstract. Shape optimization typically involves geometries characterized by several dozen
design variables and a possibly high number of explicit/implicit constraints restricting the
design space to admissible shapes. In this work, instead of working with parametrized CAD
models, the idea is to interpolate between admissible instances of finite element/CFD meshes.
We show that a properly chosen surrogate model can replace the numerous geometry-based
design variables with a more compact set permitting a global understanding of the admissible
shapes spanning the design domain, thus reducing the size of the optimization problem. To this
end, we present a two-level mesh parametrization approach for the design domain geometry
based on Diffuse Approximation in a properly chosen locally linearized space, and replace the
geometry-based variables with the smallest set of variables needed to represent a manifold of
admissible shapes for a chosen precision. We demonstrate this approach in the problem of
designing the section of an A/C duct to maximize the permeability evaluated using CFD.

Keywords: Model reduction, CFD, Diffuse Approximation, rasterization.

1. Nomenclature

St it" geometric snapshot X vector of geometric parameters
®,¢; POD basis? mode vector Lz, Ug lower/upper bounds oA
Q@ vector of PCA coefficients  a°r optimal solution inn-space
m  number of modes retainedS(a®") Shape corresponding to”*
M Number of snapshots C, Covariance matrix of snapshots
N, size of pixel map S shape approximation with modes
Priow flow permeability S mean snapshot
h, density filter parameters  \; i'" eigenvalue of”,
t reduced design parameters p Number of reduced design parameters

2. INTRODUCTION

Shape optimization may be viewed as the task of combining a parameterized geometric
model with a numerical simulation code in order to predict the geometric state that minimizes



a given cost function while respecting a set of equalityfuedity constraints. In this paper
we consider the task of shape/mesh interpolation or hygating the structure, which occurs
between shape/mesh instances given by a sequence of paramlees. The need for this
arose during the development of multidisciplinary optiatian techniques, because CAD pa-
rameterized models involved in automatized computingrehsiiiffered from excessive design
space dimensionality eventually leading to crashes oéeitie mesh generator or the solver.
This phenomenon is due to the difficulties in expressinghaltechnological and common
sense constraints (needed to convert a set of geometrimptees to an admissible shape)
within existing parameterization methods.

Most current approaches to shape parameterization relgaivé-constructed CAD models.
We are interested in developing an alternative approachhichwthe interpolation system
builds up structural shapes automatically by learning fr@xsting examples. One of the
central components of this kind of learning is the abstreabiem of inducing a smooth non-
linear constraint manifold from a set of the examples, ddiManifold Learning” by Bregler
[2] who developed approaches closely related to neuralar&safor doing it. [8] proposed a
similar approach in the domain of Reduced Order ModelingNR@r complex flow prob-
lems. In this paper we apply manifold learning to the shaperpolation problem to develop
a parametrization scheme tailored to the structural ogétion problem (e.g. airplane wing,
A/C duct, engine inlet, etc)

Several techniques [5,26] have been used to replace a aatgainumerical model by a
lower-order meta-model, usually based on polynomial respsurface methodology (RSM),
kriging, least-squares regression and moving least sg{#teSurrogate functions and reduced-
order meta-models have also been used in the field of conystéms to reduce the order of
the overall transfer function [26]. A very popular physlzgased meta-modeling technique
consists of carrying out the approximation on the full vedields using PCA and Galerkin
projection [1] in CFD [21,27] as well as in structural anadyid 2] and has been successfully
applied to a number of areas such as flow modeling [23,13@pbflow control [21], aerody-
namics design optimization [18,11] or structural mechsafid]. In [7], a snapshot-weighting
scheme introduced using vector sensitivities as systepsbioés to compute a robust reduced
order model well-suited to optimization. [8] also demoat#d a goal-oriented local POD
approach that is computationally less expensive than wsgigbal POD approach.

However, we have not observed much if any research into wsngmposition-based surro-
gate models to reducing dimensionality of the design dornmaghape optimization, and for
that matter, structural optimization of any type. This aveafeel is promising considering the
obvious advantages of having far fewer parameters desgrithie domain: easier visualiza-
tion, more flexibility in the choice of admissible shapedidreapplicability to gradient-based
solvers due to reduced dimensionality and thus a reductighe overall size of the opti-
mization, and of course a separation between the CAD andatiraiaation phases in system
design by giving the optimization group a protocol to repaetrize structural shapes for a
given set of admissible shapes/meshes that can be genleyetezl CAD group, and using the
presented algorithm (or a variant thereof) on these to genéw set of design variables.

In this paper, we present what can best be described as aohldedrning approach combin-
ing Diffuse Approximation and Principal Component Anag/sivhose performance is easily



compared to that of simple linear interpolation, classimatphing [25] and a posteriori mesh
parametrization [9].

We propose a four-step "a posteriori” reparametrizatiopragch to reduce the number of
design variables needed while describing the shape of etstas

- Pixellization: the protocol first uses the method of snapsho generateél/ admissible
shapes (or read a set of structural meshes) sweeping tlgndgsice. In order to obtain an in-
dicator function for the design domain, a step called "dization” is next performed by map-
ping the snapshot boundaries/edges onto a reference ghcwertain resolution, to be then
stored as a binary arra¥y of 0’s and 1's, as is typically done in image-storing/maitagion
[15].

- Decomposition of thé/ snapshots by Principal Components Analysis.

- Two-level dimensionality reduction: In the first reductiphase, the snapshot "pixel arrays”
(or "voxels” in 3D) are then reduced to obtain a small numbleda@minant basis vectors
(é1..0,,) Spanning the physical design domain, and the vector oficmaftsa € R™, m <<

M is then obtained by projecting a structural shape onto teesha

In the second reduction phase, the coefficientsa,, corresponding to the snapshots are
analyzed to understand the shape of the feasible regiowiaty us to deduce the true dimen-
sionality of the physical design domain. A Diffuse Approxdtion performed in ther-space
gives the final minimal set of parametéys.t,, p < m, thus our approach involves a two-level
model reduction. Since they have been obtained from an "&epos” sweep of the design
domain followed by decomposition, these new variables @ditectly used in an optimiza-
tion algorithm to obtain the optimal shape (pixel array)dagiven performance objective.

- Shape Interpolation to obtain a smooth structural shape fr

The methodology is described in the next section with thealvalgorithm, and the test-case
from the automotive field, the numerical model used to caleuthe objective function are
then described in section 4. The optimization problem isnfdly presented in section 5.
Section 6 presents some results with a discussion of therelift stages, and we close with a
discussion of possible future work.

3. APOSTERIORI GRID PARAMETRIZATION METHODOLOGY

3.1. Creation of snapshots

We build the parametrization scheme after studying thedmge of admissible shapes
(i.e. snapshots [10]) constituting the design domain. Foictural optimization problems for
a fixed topology, these admissible shapes could be obtamad agrangian description by a
sampling of the geometry-based design variables withiin teasible rangeX € [Lg, Up] C
RY, or simply from the finite set of points describing the edgeshdaries of a series of CFD
meshes/grid points for an initial random samplingléfdesigns.

3.2. Pixelization of snapshots

This step refers to mapping the edges/boundaries for eagfsbat onto a reference
grid and store it as a binary array [15]. This is typicallyfoemed by finding the cells (in
the reference grid) penetrated by the edges/boundary stitheture or mesh and assigning a



value 1 to these boundary cells as well as all the cells iniddoundary cells as shown in
figure 1, and O to the cells outside the boundary, thus allpwmto store the pixel maps as
arrays 0 ¢ RMe,i = 1..M) of 1s and 0s. It goes without saying that pixelization ceggu
the actual shape better with higher resolution compareddwer resolution.
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Figure 1. Reference grid mapping for pixel map: plate witlsuliar hole

3.3. Principal Components Analysis

This is the first phase of model reduction. We first calculb&gedeviation matrixDg
for the snapshots using:

D,=[S'-5 §2-5 .. SM_3] (1)

where M << N, = number of snapshots;’ = ith individual snapshot binary array (pixel
map)andS is the mean of all the snapshots. Next, the covariance matriz calculated

C, = Dg.DY (2)

allowing us to express any in terms of the eigenvectors of C,.
M
S =5+ aiéi,ay=¢ S 3
=1

for the jth pixel map.
In the first reduction phase, we limit the basis to the fitstk < M most "energetic” modes
. & - DY
ST =95+ Z&ijgbi ande(m) =1- ZM;l (4)
i=1 Zi:l Ai

3.4. Model reduction and design domain dimensionality

Equation (4) does not provide a sufficient basis for esthaivigsthe value oin as one
needs to specify the threshold value forAlso thea;; may not be taken as design variables
without taking into account the possible relationshipsiMeein them so as to render feasible
shapes.
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Figure 2. Feasible region for a plate with a circular holeafying radius

Let us consider the same system (plate with circular ig)g, < r < R,.... lgnoring
the fact that the dimensionality is we construct 50 random snapshots by varying the radius
r. The pixelization and PCA are then performed in successiingus a set ofx’s corre-
sponding to each snapshot. As illustrated in figure 2 asdform a set of one-dimensional
manifolds, clearly indicating that the design domain isgpagtrized by ONE single parame-
tert, which in this case happens to be the hole radius (in the gkoase we obtain a vector
t € RP,p < m), i.e. oy = ay(t),as = as(t).... These manifolds are easily obtained by
performing a Diffuse Approximation [4,20] over all theg...«,, obtained from snapshots
to Sy,. Furthermore, the curves af, a», ... vSt may be interpreted as possible "constraints”
(direct geometric constraints, technological consteatt that are difficult to express mathe-
matically) on the geometric paramete¥s(here simplyr) in the a-space, since points lying
outside the manifolds will produce inadmissible shapedaws. Thus, in the second reduc-
tion phase, we locally introduce the parametric expressidhe a-manifolds.

3.5. Manifold approximation and updating

We present here a formal approach to locally identify theéesysdimensionality from
the a-manifolds. Consider a system &f pixel snapshots converted to the PCA-space retain-
ing m < M coefficients thus giving us a set of points, ...a™ € R™. We would like to
implement an algorithm that:

1. Detects the "true” dimensionality (< m) from the local rank of thex--manifold in the
vicinity of the evaluation point, so that the feasible regimay (locally) be expressed as
ap = ai(t1.p), oy = i (t1..2)).

2. Constrains the evaluation poirnt“() to stay on the feasible region of admissible shapes,
during the course of the optimization.



3.5.1 Local Rank Detection ofx-manifold

To locally detect the dimensionality of the ..., hyper-surface in the neighborhood
of a“?, we first establish the local neighborhood, this may be dortee original geometric
space (if available) or, if the original parameters are anatle which is what this approach is
intended for, by using the values if the neighborhood is sufficiently dense. S& if. 3,,;; are
neighboring points im-space, we next use a polynomial basis centered arounddheéon
point

Lo fl-ap Bl-ag .. Bh—ay
P=|. . . . (5)
LB g By —agt L B - ol

with an appropriate weighting function, for example gaassi(d) = exp(—c * d*) and
assemble the moment mattik= PTW P, wherelV is the diagonal matrix whose elements
correspond to the weighted contributions of the na@less, ;.

Next, we detect the local rank of the manifold by calculatimgsingular values of the moment
matrix A, this gives us the dimensionality< m.

To demonstrate this, we consider again fliesnapshots for a plate with a circular hole of
varying radius. Considering the first three modes, the paintresponding to the snapshots
are shown to the left in figure 3. We assemble the moment matard calculate its rank ¥
(only one significant value as seen in the middle figure 3) And the dimensionality of the
plate with circular hole of varying radius js= 1, thus allowing us to parametrize the curve
with a single parameter; = «;(ty), ...ca,,, = a,,(t1) @s seen in the third diagram in the same
figure.
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Figure 3. Detecting dimensionality for a plate with a ciaxuhole of varying radius

3.5.2 Tangent plane construction and Diffuse "walking”

The idea is to bring the current design point given by therojtation algorithm in
subsequent iterations, down to the surface, which repteserally the manifold of admissi-
ble shapes. The local surface tangent to the manifold is etifivith respect to the tangent
plane iteratively updated. To achieve this, we use a Difiygproximation-based manifold
"walking” scheme consisting of the following steps showiiigure 4.

1. Let P, be the evaluation point (on themanifold), andP?,, be the new candidate point
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Figure 4. Walking the evaluation point along tlhenanifold using diffuse approximation and
tangent plane construction

(that needs to be brought back on to the manifold/feasibieng. We first establish the neigh-
borhood;... 3, Of PY,;.

2. Calculate the centroid,, = (31" 5;)/nbd.

3. Find the centroidal plane for the neighborhood from tlgeevectors of the covariance
matrix C',,4, the first eigenvector representing the plane normal:

nbd

Crpa = (1/nbd) Z(BZ — Bn)(Bi = Bt (01, 0y...) = eigenvectors(Cryg) (6)

=1

4. Project the evaluation point as well as the neighborhamdtp in the local coordinate
systemu,, v,... (origin at centroid3,,) to get the local co-ordinatés ty, t,.....t, whereh is
the height over the centroidal plane using the equatiomsa(éeneral poing).

h = @?<O_‘ - Bm>

ty = EQT@ , ete (7)

5. Perform a diffuse approximation for thébd points, to obtain the local surfade =
h(t;...t,) using a polynomial basi® centered around“’, with a weighting matrix1’.

h’<t§v7 ) hfl
('?Th(tiv’ ) T —1 pT h2
oh e, ) | = (PPWP)"P"W (8)
Dty \U1 5 oo ,
nbd

where[g—t’i(tﬁv, ), g—t’;(t‘f”, ...), ...|T is the local tangent hyper-planetin the neighborhood
BB,

6. We then project the poir?’, ; onto this tangent plane to get the adjusted evaluation point
P!, |, and then repeat the process by finding the new neighborhmbdew tangent plane and
new projection poini till the evaluation point stops changin}yfﬂ.

In other words, we "walk” along the surface of themanifold to ensure that we stay in the
domain of feasible solutions. To illustrate the approacmsider thex coefficients obtained
for a plate with two circular holes of varying raaii andr,, with A/ = 1000 snapshots, shown

in figure 5. We see clearly from the shape of the manifoldd,alidhe parameters;....a;,



Figure 5. a-manifolds for plate with two circular holes of fixed centensd independently
varying radii

are locally controlled by two parametens £ 2) and this is verified by the rank detection
explained earlier. We perform the diffuse approximatiorelty with m = 3 and project the
evaluation point onto the tangent plane, and the main stepsh@wn in figure 6.
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Figure 6. Diffusen-manifold walking for the plate with two circular holes expl®

3.6. Shape interpolation

In this step, performed at every single function call witthie optimization subroutine,
we recreate the structural shape for an arbitrary designt (19i
3.6.1 PCA reconstruction

In the first step, thex coefficients are obtained from the valuesi dfocation on the
a-manifold), and thus the pixel maps:

S() = S+ _ (D)o 9)



While we expect the interpolated map to contain value$ ahd 1 based on the previous
section which appears to guarantee an admissible solutagnas long as we stay on the
a-manifold, it is still possible for the processes of avenggnapshots, singular value decom-
position and truncation to deliver intermediate valuesygcale) around the boundaries as
intermediate values during the optimization. The next sliegls with this problem in case it
surfaces.

3.6.2 Density filtering

Due to the truncation of the basis vectors, it is possibléiththe course of the opti-
mization we may pass through certain points slightly owtsite feasible surfaces. A typical
example is presented in Figure 7 showing the conversion fioe map to boundary pixels.
In this simple example, we use a worst-case pixel map withesabf0, 0.5 and1. Here, there
is one single boundary/edge to be located, but in complegeshthe density filter needs to
allow the user to capture every possible edge. For the paspafsshape optimization, the au-
thors have found Canny'’s algorithm [6] to be an appropriatesdy filter, with a pretreatment
as presented below.

Any density gradient-based filter can easily be thrown oftbytain situations, like the one
shown in figure 7 where the filter throws up two boundaries;esivoth edges (the real one as
well as the false one) represent a strong gradient, no ntagdilter threshold. One would
expect that a sufficiently diverse family of snapshots, d gfisufficient resolution and a good
optimization algorithm would limit the occurrence of sudtuations, but we might need to
deal with situations of this sort during intermediate staigethe optimization.

In order to be able to distinguish between two gradients efslime strength based on the
actual density values, we recommend pretreating each ateshthe snapshat,;; according

to (10) in order to attenuate the stronger gradients fudthery from values of (since the true
boundary should be close to the front corresponding to aewallii for the approach presented
in this paper).

Srew — §old 4 (1 — Sedyb (10)

whereh, b are constants that can be adjusted according to the typ@bligon being reduced.
This is a simple but effective pretreatment somewhat iesility grayscale suppression meth-
ods in topology optimization [24,19].

3.6.3 Pixel map boundary and Moving least squares smoothing

The next step is to locate the co-ordinates of the cornetfwertices of the boundary
pixels using one of various possible methods [3], as seengur€& 8 for a part of the pixel
map.

Next, a local moving least square approximation using tédisis weighting functions [20,4]
is performed to construct the boundaries/edges from thiecesrof the (reconstructed) pixel
map.
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The boundary curve of the shape may be represented pareatigthy =(1), y(I)
2(1) % Tapp (1) = b (Date (1) Ay (1) 2 yapp(l) = b (D)t (1) (11)
wherel = parameter representing the curve.
by=[1 10 8 .1 (12)

The coefficients:, (!) anda, (/) are not constant over the domain but depend on the values of
the design variables, and are chosen to minimize the fumaisd, (a) and.J,(a) defined by:

Tua) = 3 D wnlly D () — (1)

1(0) = 53w D 1)a, — (1) 13)

where V,, = number of vertices in the local neighborhood of each evalngioint used to
describe the reconstructed pixel map, located by the magahibes approach [3].
A typical radial basis form for the weighting functionis(l;, 1) = exp(—(I; — 1)?), but one

could also choose an interpolating polynomial form to retggpture a somewhat irregular
shape due to local effects.



3.7. Objective function evaluation

The reconstructed shape is meshed and the numerical anaysrformed using a
method chosen based on the disciplines involved in the sisalyg. CFD/Navier-Stokes for
incompressible flows [17,16], FEA for structural analys2g]| etc. The only difference is
that instead of obtaining?”* we attempt to find the final governing parametérsand thus
the coefficientsy(¢°") that optimize the performance objective. An important jghlasre is
remeshing the surfaces obtained in section 2.4. Chappwubk[8f developed an approach
of calculating principal curvatures from an existing mestsioape using a secondary local
model with Diffuse Interpolation, and then using these atuxes to identify shape primitives
such as cylinders, torus, etc for the purpose of meshindisrpaper, we have calculated the
curvature energy for the reconstructed edges and usedotipissition the nodes/blocks for

meshing the newer shape.

3.8. Algorithm for overall procedure

The complete algorithm is shown in figure 9.
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Figure 9. Schematic diagram for the overall algorithm

4. OPTIMIZATION TEST-CASE: AIR-CONDITIONING DUCT

4.1. Duct geometry

The inlet and outlet portions of the air-conditioning duavé fixed geometries, while
the middle portion allows for modification of the shape andstiperformance of the duct.
The duct geometry as shown in Figure 10 is completely desdrily the relative positions
of points P1 to P11. P1 to P4 and P9 to P11 are assumed fixed epdsitions of P5,P6,
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Figure 10. Duct geometry showing four different regions

P7 and P8 are required to determine the geometry of the pastithe duct critical to perfor-
mance. The parameters that determine the locations of PSaosRobtained by the geometric
constructions shown. Parameters X1 to X5 allow us to locateoRP8, while parameters al
to a4 and bl to b4 allow us to draw Bezier curves passing thrdligse points tracing out
the whole geometry of the curved portion of the duct. The getoynof the curved portion
of the duct in 2D (the only part of the duct that is variable)yniaus be characterized by 13
parameters in all: x1 to x5, al to a4 and b1 to b4, and the desidithus performance can be
changed by altering these parameters. In order to retaimada flow and for other design
considerations, there are upper and lower bounds on thgsarafheters and thus on the pos-
sible designs for the duct. The design variables are thusX,, X3, X4, X5 (forP;..Fs) and
Xo = a1, X7 = b, Xg = ag, Xg = by, X19 = a3, X11 = b3, X12 = a4, X13 = bs.

4.2. CFD model and mesh

Since the Reynolds number for the situation is typically,ltve air flow is modeled
using OpenFoam CFD for incompressible 2D laminar flow. Farmgypossible design re-
sulting from particular choices of the 13 parameters dbsdriearlier in section 4.1, we set
up a CFD grid with 39000 grid points and 17250 hexahedrakcdlhe physical domain is
split into 23 different blocks for the purpose of meshing.uBdary conditions enforced for
the CFD set the pressure at the duct outlet = 0 (atmosphergspre) and flow speed along
the walls (straight as well as curved portions) = 0. The CFRlyasis is run for 500 iter-
ations to ensure convergence, and the converged pressiikelacity fields in the duct are
obtained for each hexahedral cell, and are assumed to heagsdlat the midpoint of each cell
for post-processing and surrogate function calls. Theopernce-related objective function
(permeability) may be directly evaluated from the presswtecity fields (both CFD as well
as surrogate) for each design.

5. Optimization problem
The optimization problem in the geometric space may be evridts:

Find X" = Argmax Py, (X1, ..., X13) s.t.Lp < X < Up (14)



where Py,,,= flow permeability = 1/(pressure loss from inlet to outtet) /(Piee — Poutiet)
andUgz and Lz are the upper and lower bounds on the 13 design variablese @aswitch
over to the reduced space, we can express the objectivadnorag a function of the PCA
coefficients {;) and hence the new design variablethus the optimization problem may be
written as:

Find t?" = Argmax Prjoy (a(t;...t,))
St Gmin < gi(@(t)) < Gmaz andh(a(t)) =0 (15)

So the optimization problem is now one of finding the pixaizlapeS(a(t°?*)). The con-
straintsg;, i € [1, N| are obtained by transferring the bouridsandL ; on thea-space, while
h represents the feasible region (set of manifolda4ispace). Bothy; andh are taken into
account implicitly with the Diffuse Approximation-basedmoach outlined earlier allowing
thea’s to be expressed locally as functions of the final pararaeter.t,.

6. Results and discussion

Since the mapping to the new space is highly non-linear, e t@ensure we stay in
the feasible region during the course of the optimizatidea@y there will be a loss of accu-
racy due to the pixelization and PCA phases [10] that gavéntieemediate design variables
(a1...a,,,) and the reconstruction that allows us to capture the dunrnhgéry from they'’s, but
the author’s contention is that the error will be consistarmughout and not seriously affect
the results of the optimization, and this has been obse@¢dourse the effect of the error
can be estimated very easily using a reconstruction of tiggnat snapshot geometries after
pixelization and decomposition, using the truncated balsighe problem solved, we have
used onlyM = 102 snapshots as mentioned previouslyMfwas chosen to be higher, i.e.
1000 or more snapshots using a Latin Hypercube Sampling ef 1000 designs between the
bounds, the quality of the truncation with say= 5 modes would improve. In this paper, we
have focused more on the approach of two-level model resluctsing the basis truncation
and then-space Diffuse Approximation.

6.1. Dimensionality and model reduction

Figure 11 shows the dimensionality deduction approachpissented in section 3.
After analyzing the individual snapshots in—-space, it is clear from the set of 2D sur-
faces obtained that the behavior of the varieus is governed by just TWO parameters
(sayt; andt, that can be easily found by a Diffuse Approximation [20,4¢othe retained
«’s. The feasible regions are represented by dh@anifolds, and as explained in section
3, staying on the manifold ensures an admissible solutivan éhough we may need to
invoke the density filter from time to time during the optimion. This also means that
a = [aq(ty, ta), as(ty, ta)...anm(t1, to2)] if using a truncated basis of size.
Soat = a(t?, ") transferring the problem into tHespace where are the final parame-
ters that control the overall design domain.
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Figure 11. Dimensionality=£ 2) and model reduction for A/C duct

6.2. Interpolation of duct shape

This is an important step consisting of first using theoefficients to determine the
pixel mapS representing the shape of the duct, followed by passingabenstructed pixel
maps (if grayscale is present for whatever reason) through a €dansity filter as explained
previously to get the boundary/edge pixels, followed by afching cubes” to extract the
vertices of the boundary/edge pixels, and finally obtainiregactual smooth geometric shape
(reconstructed) of the duct using the moving least squameaimation described in section
3. The weighting function needs to be carefully chosen winsieg a global (or local) Mov-
ing Least Squares (Diffuse Approximation) since a delitat@nce between smoothness and
precision is required and the duct geometry is composedfefreit types of sections. Since
the boundary curves will next be used to create a CFD meshuthers feel it is better to err
somewhat in favor of smoothness and try to control preciBipimcreasing resolution. Figure
12 shows an enlarged view of the MLS smoothing in the two alipertions of the duct.
Figure 13 shows the quality of reconstruction with increiasember of modes retained after
truncation. As expected, the accuracy increases with thgiadal modes retained, but the
increase in precision drops off quickly with added modesxgdagned in section 3. Finally,
even the small loss of accuracy will be consistent for alldbsigns so by building a response
surface betweeX; anda; or simply by inspection of the optimal shape obtained, onddcco
easily extract the optimal design variables in the geometgsign spaceX,,;) from the op-
timal variablesy,,;. Of course, regardless of the numberof modes retained, these are all
expressed as functions of the true design variablesyj@;, t2)...c.,, (t1, t2) with the diffuse
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approximation.

6.3. Optimization in the reduced-space

The goal is to first perform the optimization in the reducpde getting,,:, and then
calculatinga(Z,,:), and next to estimat&,,,, (original geometric parameters) from the values
of a(t.,) either by inspection of the optimized shafigx(t,,:)) or using an RSM between
the X; and ;. The permeabilityP;,,,, for every possible design was calculated using the
inverse of the total pressure drop across the duct lenglét o outlet). The next step was
to obtain the optimal shape using 5-8 modes, followed bytifleation by response surface
methodology over the values of the original 13 geometridgiegarameters for each,,,, i.e.
gettingX (a,,:). The optimal solution obtained has been added to figure 1@sedpected, it
lies on the edge of the constraint/feasible region. Thisllswed by "reverse look-up” (Table
1) by projecting the pixel array obtained by shape generatieeshing and then pixelization,
on to the truncated basis of modes.

Brea(S@) = (543 a6 — )85 = (3 a'65)as 16)
1 1

wherea??t= optimal coefficients using: modes andy,.,= coefficients obtained by reverse
identification fromX (a?!).

This reverse look-up of: coefficients from the identified geometric paramet&isy,,;) is
needed to account for the error introduced by the moving ksasares approximation needed
to map the,,; (m coefficients) to theX (a, ).

The velocity fields for the optimal shapes obtained usingrbeles are shown in figure 14
and the values aof°, X (a°?") anda,..,are shown in Table 2, where the pressure drop needs
to be minimized for optimal performance. The velocity fieletgyincreasingly more regular
with additional modes retained. We also note thatthg(S(a®?")) anda*" are fairly close

to each other, the slight discrepancy being due to the emtovduced by the moving least
squares for the response surface betweenthand the geometric parameters. This error can
be completely or mostly avoided by one of two approaches:

1. Using direct identification to extract the geometric dasparameters directly from the
structural shape/mesh created usingahg with m modes.

2. Thea,, can be used to directly plot the structural shape and thisveatirectly used for
design purposes instead of trying to first extract the genmeesign parameters. This can
and should be the method of choice, but the RSM between thedtsmf design variables is
directly programmable in most cases and always an optiothédesign engineer.

Conclusions

In this paper, the authors have introduced an "a postersmfieme with a two-level
model reduction to replace the geometry-based variablissavhore compact and normalized
set of variables and replace the higher-dimensional degigoe with a newer design space of
lower-dimension.

The overall interpolation technique is nonlinear, and isstined to produce only shapes
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modes (m)| a’* Qren (S (@PY))

5 -22.6226,13.4301,5.8149,- | -21.8192,13.7669,6.6731,-
9.4755,3.1751 8.8569,3.2854

6 -22.4873,14.2647,6.2187,- | -22.0924,13.274,5.8194,-
9.3431,3.0856,3.7891 9.2671,3.0162,4.2320

7 -22.7028,14.4708,5.6493,- | -22.1531,13.8087,5.2442 -
9.5091,3.1863,3.9603,5.22719.1170,2.8065,4.2241,4.6515

8 -22.3745,14.7165,5.1094,- | -22.0974,13.8794,5.6017 ,-
9.7710,3.2653,3.9784,5.252'9-4491,2.4682,5.2825,4.7886 -
4.2108 2.3602

Table 1. Reverse look-up: comparison betweé&t anda,.,, for differentm

from an abstract manifold in shape space induced by leardihg non-varying zones used
for boundary conditions are naturally preserved and amfthii constraints may by imposed
using constrained versions of Proper Orthogonal Decortiposi Since the approach is "a
posteriori”, it is clearly dependent on the information tained in the snapshot database, and
thus the initial sampling used to create the database. Whdelear that the analysis of the
« manifolds using a diffuse approximation is the main reducphase, the truncation to
modes is also important to reduce computational effort. rfékalts showed how the geometry
could be very closely described even with 5 modes (ultijadejpending on 2 parameters)
even with a modest snapshot database with a sampling siZ#&2ofhd it is obvious that the
accuracy of the truncation can be directly influenced byaasing the sampling size. One
could also combine this approach with using a surrogate friodéhe numerical analysis to
greatly increase the performance as well as reduce overalbatation time.

The presented methodology has a few possible areas of imxment. The first is in resolving
the difficulty in setting upper and lower bounds on thased design variables. The second
area is in the treatment of possible degenerate cases fstrtlotural shape. The third area is
studying the efficacy of the Canny and pretreatment filtebiouhding” 3D pixel maps.



modes (m) 5 6 7 8 Lg Ug
X1(a?) 7.8528 | 8.2695 | 8.4067 | 8.0782 | 6.1096 | 9.1644
X2(acP) 25.7555| 28.9527| 30.1149| 28.7854| 21.3080| 31.962
X3(aP) 13.3979| 14.1076| 13.8989| 13.8898| 10.1464| 15.2196
X4(aP) 7.8255 | 8.3505 | 8.4015| 8.6217 | 6.0832 | 9.1248
X5(aP) 64.2028| 65.4544| 65.4339| 64.5703| 43.6 65.4
X6(aP) 1.9279 | 2.2016 | 2.2544 | 2.3511 1.6 2.4
X7(aP) 2.0009 | 2.0609 | 2.0628 | 1.9503 1.6 2.4
X8(aPt) 35.6519| 29.3352| 30.7665| 33.2524| 24 36
X9(acP) 35.9963| 33.4178| 34.0429| 35.0498| 24 36
X10(acP) 37.1714| 36.7973| 37.8723| 36.76 24 36
X11(aP) 26.4866| 30.8812| 30.5599| 33.0657| 24 36
X12(acP) 49232 | 5.5084 | 5.4175| 5.7500 4 6
X13(aP?) 5.4837 | 5.0370 | 5.3058 | 5.4318 4 6
J1(aP?) 1.9684 | 1.9754 | 1.9626 | 1.9580

J2(X (aPh)) 2.1344 | 2.1335| 2.1389 | 2.1312

Shape error (%) 0.847 0.33 0.248 | 0.163

Table 2. optimization imv-space and identification of geometric parameférs
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