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Abstract. Shape optimization typically involves geometries characterized by several dozen
design variables and a possibly high number of explicit/implicit constraints restricting the
design space to admissible shapes. In this work, instead of working with parametrized CAD
models, the idea is to interpolate between admissible instances of finite element/CFD meshes.
We show that a properly chosen surrogate model can replace the numerous geometry-based
design variables with a more compact set permitting a global understanding of the admissible
shapes spanning the design domain, thus reducing the size of the optimization problem. To this
end, we present a two-level mesh parametrization approach for the design domain geometry
based on Diffuse Approximation in a properly chosen locally linearized space, and replace the
geometry-based variables with the smallest set of variables needed to represent a manifold of
admissible shapes for a chosen precision. We demonstrate this approach in the problem of
designing the section of an A/C duct to maximize the permeability evaluated using CFD.

Keywords: Model reduction, CFD, Diffuse Approximation, rasterization.

1. Nomenclature

Si ith geometric snapshot X̄ vector of geometric parameters
Φ, φ̄i POD basis,ith mode vector L̄B, ŪB lower/upper bounds on̄X
ᾱ vector of PCA coefficients ᾱopt optimal solution inα-space
m number of modes retainedS̃(ᾱopt) Shape corresponding tōαopt

M Number of snapshots Cv Covariance matrix of snapshots
Nc size of pixel map S̃ shape approximation withm modes

Pflow flow permeability S̄ mean snapshot
h, b density filter parameters λi ith eigenvalue ofCv

t̄ reduced design parameters p Number of reduced design parameters

2. INTRODUCTION

Shape optimization may be viewed as the task of combining a parameterized geometric
model with a numerical simulation code in order to predict the geometric state that minimizes
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a given cost function while respecting a set of equality/inequality constraints. In this paper
we consider the task of shape/mesh interpolation or hypothesizing the structure, which occurs
between shape/mesh instances given by a sequence of parameter values. The need for this
arose during the development of multidisciplinary optimization techniques, because CAD pa-
rameterized models involved in automatized computing chains suffered from excessive design
space dimensionality eventually leading to crashes of either the mesh generator or the solver.
This phenomenon is due to the difficulties in expressing all the technological and common
sense constraints (needed to convert a set of geometric parameters to an admissible shape)
within existing parameterization methods.
Most current approaches to shape parameterization requirehand-constructed CAD models.
We are interested in developing an alternative approach in which the interpolation system
builds up structural shapes automatically by learning fromexisting examples. One of the
central components of this kind of learning is the abstract problem of inducing a smooth non-
linear constraint manifold from a set of the examples, called ”Manifold Learning” by Bregler
[2] who developed approaches closely related to neural networks for doing it. [8] proposed a
similar approach in the domain of Reduced Order Modeling (ROM) for complex flow prob-
lems. In this paper we apply manifold learning to the shape interpolation problem to develop
a parametrization scheme tailored to the structural optimization problem (e.g. airplane wing,
A/C duct, engine inlet, etc)
Several techniques [5,26] have been used to replace a complicated numerical model by a
lower-order meta-model, usually based on polynomial response surface methodology (RSM),
kriging, least-squares regression and moving least squares [4]. Surrogate functions and reduced-
order meta-models have also been used in the field of control systems to reduce the order of
the overall transfer function [26]. A very popular physics-based meta-modeling technique
consists of carrying out the approximation on the full vector fields using PCA and Galerkin
projection [1] in CFD [21,27] as well as in structural analysis [12] and has been successfully
applied to a number of areas such as flow modeling [23,13], optimal flow control [21], aerody-
namics design optimization [18,11] or structural mechanics [14]. In [7], a snapshot-weighting
scheme introduced using vector sensitivities as system snapshots to compute a robust reduced
order model well-suited to optimization. [8] also demonstrated a goal-oriented local POD
approach that is computationally less expensive than usinga global POD approach.
However, we have not observed much if any research into usingdecomposition-based surro-
gate models to reducing dimensionality of the design domainin shape optimization, and for
that matter, structural optimization of any type. This area, we feel is promising considering the
obvious advantages of having far fewer parameters describing the domain: easier visualiza-
tion, more flexibility in the choice of admissible shapes, better applicability to gradient-based
solvers due to reduced dimensionality and thus a reduction in the overall size of the opti-
mization, and of course a separation between the CAD and the optimization phases in system
design by giving the optimization group a protocol to reparametrize structural shapes for a
given set of admissible shapes/meshes that can be generatedby the CAD group, and using the
presented algorithm (or a variant thereof) on these to get the new set of design variables.
In this paper, we present what can best be described as a manifold learning approach combin-
ing Diffuse Approximation and Principal Component Analysis, whose performance is easily



compared to that of simple linear interpolation, classicalmorphing [25] and a posteriori mesh
parametrization [9].
We propose a four-step ”a posteriori” reparametrization approach to reduce the number of
design variables needed while describing the shape of a structure:
- Pixellization: the protocol first uses the method of snapshots to generateM admissible
shapes (or read a set of structural meshes) sweeping the design space. In order to obtain an in-
dicator function for the design domain, a step called ”pixellization” is next performed by map-
ping the snapshot boundaries/edges onto a reference grid with a certain resolution, to be then
stored as a binary arraySi of 0’s and 1’s, as is typically done in image-storing/manipulation
[15].
- Decomposition of theM snapshots by Principal Components Analysis.
- Two-level dimensionality reduction: In the first reduction phase, the snapshot ”pixel arrays”
(or ”voxels” in 3D) are then reduced to obtain a small number of dominant basis vectors
(φ̄1..φ̄m) spanning the physical design domain, and the vector of coefficientsᾱ ∈ Rm, m <<

M is then obtained by projecting a structural shape onto the basisΦ.
In the second reduction phase, the coefficientsα1..αm corresponding to the snapshots are
analyzed to understand the shape of the feasible region, allowing us to deduce the true dimen-
sionality of the physical design domain. A Diffuse Approximation performed in theα-space
gives the final minimal set of parameterst1...tp, p ≤ m, thus our approach involves a two-level
model reduction. Since they have been obtained from an ”a posteriori” sweep of the design
domain followed by decomposition, these new variables can be directly used in an optimiza-
tion algorithm to obtain the optimal shape (pixel array) fora given performance objective.
- Shape Interpolation to obtain a smooth structural shape from t̄.
The methodology is described in the next section with the overall algorithm, and the test-case
from the automotive field, the numerical model used to calculate the objective function are
then described in section 4. The optimization problem is formally presented in section 5.
Section 6 presents some results with a discussion of the different stages, and we close with a
discussion of possible future work.

3. A POSTERIORI GRID PARAMETRIZATION METHODOLOGY

3.1. Creation of snapshots

We build the parametrization scheme after studying the fullrange of admissible shapes
(i.e. snapshots [10]) constituting the design domain. For structural optimization problems for
a fixed topology, these admissible shapes could be obtained in a Lagrangian description by a
sampling of the geometry-based design variables within their feasible rangēX ∈ [L̄B, ŪB] ⊂

RN , or simply from the finite set of points describing the edges/boundaries of a series of CFD
meshes/grid points for an initial random sampling ofM designs.

3.2. Pixelization of snapshots

This step refers to mapping the edges/boundaries for each snapshot onto a reference
grid and store it as a binary array [15]. This is typically performed by finding the cells (in
the reference grid) penetrated by the edges/boundary of thestructure or mesh and assigning a



value 1 to these boundary cells as well as all the cells insidethe boundary cells as shown in
figure 1, and 0 to the cells outside the boundary, thus allowing us to store the pixel maps as
arrays (Si ∈ RNc , i = 1..M) of 1s and 0s. It goes without saying that pixelization captures
the actual shape better with higher resolution compared to alower resolution.

Figure 1. Reference grid mapping for pixel map: plate with circular hole

3.3. Principal Components Analysis

This is the first phase of model reduction. We first calculate the deviation matrixDS

for the snapshots using:

Ds =
[

S1 − S̄ S2 − S̄ ... SM − S̄
]

(1)

whereM << Nc = number of snapshots,Si = ith individual snapshot binary array (pixel
map)andS̄ is the mean of all the snapshots. Next, the covariance matrixCv is calculated

Cv = DS.D
T
S (2)

allowing us to express anySj in terms of the eigenvectors̄φi of Cv.

Sj = S̄ +
M
∑

i=1

αijφ̄i , αij = φ̄T
i S

j (3)

for thejth pixel map.
In the first reduction phase, we limit the basis to the firstm << M most ”energetic” modes

S̃j = S̄ +

m
∑

i=1

αijφ̄i andǫ(m) = 1−

∑m

i=1
λi

∑M

i=1
λi

(4)

3.4. Model reduction and design domain dimensionality

Equation (4) does not provide a sufficient basis for establishing the value ofm as one
needs to specify the threshold value forǫ. Also theαij may not be taken as design variables
without taking into account the possible relationships between them so as to render feasible
shapes.



Figure 2. Feasible region for a plate with a circular hole of varying radius

Let us consider the same system (plate with circular holeRmin ≤ r ≤ Rmax. Ignoring
the fact that the dimensionality is1, we construct 50 random snapshots by varying the radius
r. The pixelization and PCA are then performed in succession giving us a set ofα’s corre-
sponding to each snapshot. As illustrated in figure 2, theα’s form a set of one-dimensional
manifolds, clearly indicating that the design domain is parametrized by ONE single parame-
ter t, which in this case happens to be the hole radius (in the general case we obtain a vector
t̄ ∈ Rp, p ≤ m), i.e. α1 = α1(t), α2 = α2(t).... These manifolds are easily obtained by
performing a Diffuse Approximation [4,20] over all theα1...αM obtained from snapshotsS1

to SM . Furthermore, the curves ofα1, α2, ... vs t may be interpreted as possible ”constraints”
(direct geometric constraints, technological constraints etc that are difficult to express mathe-
matically) on the geometric parametersX̄ (here simplyr) in theα-space, since points lying
outside the manifolds will produce inadmissible shapes as shown. Thus, in the second reduc-
tion phase, we locally introduce the parametric expressionof theα-manifolds.

3.5. Manifold approximation and updating

We present here a formal approach to locally identify the system dimensionality from
theα-manifolds. Consider a system ofM pixel snapshots converted to the PCA-space retain-
ing m < M coefficients thus giving us a set of pointsᾱ1, ...ᾱM ∈ Rm. We would like to
implement an algorithm that:
1. Detects the ”true” dimensionality (p ≤ m) from the local rank of theα-manifold in the
vicinity of the evaluation point, so that the feasible region may (locally) be expressed as
α1 = α1(t1..tp), ....αm = αm(t1..tp).
2. Constrains the evaluation point (ᾱev) to stay on the feasible region of admissible shapes,
during the course of the optimization.



3.5.1 Local Rank Detection ofα-manifold

To locally detect the dimensionality of theα1...αm hyper-surface in the neighborhood
of ᾱev, we first establish the local neighborhood, this may be done in the original geometric
space (if available) or, if the original parameters are unavailable which is what this approach is
intended for, by using theα values if the neighborhood is sufficiently dense. So ifβ̄1...β̄nbd are
neighboring points inα-space, we next use a polynomial basis centered around the evaluation
point

P =





1 β1
1 − αev

1 β1
2 − αev

2 .... β1
m − αev

m

. . . .... .
1 βnbd

1 − αev
1 βnbd

2 − αev
2 .... βnbd

m − αev
m



 (5)

with an appropriate weighting function, for example gaussian w(d) = exp(−c ∗ d2) and
assemble the moment matrixA = P TWP , whereW is the diagonal matrix whose elements
correspond to the weighted contributions of the nodesβ̄1...β̄nbd.
Next, we detect the local rank of the manifold by calculatingthe singular values of the moment
matrixA, this gives us the dimensionalityp ≤ m.
To demonstrate this, we consider again theM snapshots for a plate with a circular hole of
varying radius. Considering the first three modes, the points corresponding to the snapshots
are shown to the left in figure 3. We assemble the moment matrixA and calculate its rank =1
(only one significant value as seen in the middle figure 3) and thus the dimensionality of the
plate with circular hole of varying radius isp = 1, thus allowing us to parametrize the curve
with a single parameterα1 = α1(t1), ...αm = αm(t1) as seen in the third diagram in the same
figure.

Figure 3. Detecting dimensionality for a plate with a circular hole of varying radius

3.5.2 Tangent plane construction and Diffuse ”walking”

The idea is to bring the current design point given by the optimization algorithm in
subsequent iterations, down to the surface, which represents locally the manifold of admissi-
ble shapes. The local surface tangent to the manifold is defined with respect to the tangent
plane iteratively updated. To achieve this, we use a DiffuseApproximation-based manifold
”walking” scheme consisting of the following steps shown infigure 4.
1. LetPi be the evaluation point (on theα-manifold), andP 0

i+1 be the new candidate point
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Figure 4. Walking the evaluation point along theα-manifold using diffuse approximation and
tangent plane construction

(that needs to be brought back on to the manifold/feasible region). We first establish the neigh-
borhoodβ̄1...β̄nbd of P 0

i+1.
2. Calculate the centroid̄βm = (

∑nbd

i=1
β̄i)/nbd.

3. Find the centroidal plane for the neighborhood from the eigenvectors of the covariance
matrixCnbd, the first eigenvector representing the plane normal:

Cnbd = (1/nbd)

nbd
∑

i=1

(β̄i − β̄m)(β̄i − β̄m)
T , (v̄1, v̄2...) = eigenvectors(Cnbd) (6)

4. Project the evaluation point as well as the neighborhood points in the local coordinate
systemv̄1, v̄2... (origin at centroidβ̄m) to get the local co-ordinatesh, t1, t2.....tp whereh is
the height over the centroidal plane using the equations (for a general point̄α).

h = v̄T1 (ᾱ− β̄m)

t1 = v̄T2 ᾱ , etc (7)

5. Perform a diffuse approximation for thenbd points, to obtain the local surfaceh =

h(t1...tp) using a polynomial basisP centered around̄αev, with a weighting matrixW .









h(tev1 , ...)
∂h
∂t1

(tev1 , ...)
∂h
∂t2

(tev1 , ...)

....









= (P TWP )−1P TW









h1

h2

...
hnbd









(8)

where[ ∂h
∂t1

(tev1 , ...), ∂h
∂t2

(tev1 , ...), ...]T is the local tangent hyper-plane atP0 in the neighborhood
β̄1...β̄nbd.
6. We then project the pointP 0

i+1 onto this tangent plane to get the adjusted evaluation point
P 1
i+1, and then repeat the process by finding the new neighborhood and new tangent plane and

new projection pointP2 till the evaluation point stops changingP f
i+1.

In other words, we ”walk” along the surface of theα-manifold to ensure that we stay in the
domain of feasible solutions. To illustrate the approach, consider theα coefficients obtained
for a plate with two circular holes of varying radiir1 andr2, withM = 1000 snapshots, shown
in figure 5. We see clearly from the shape of the manifolds, that all the parametersα1....αM



Figure 5. α-manifolds for plate with two circular holes of fixed centersand independently
varying radii

are locally controlled by two parameters (p = 2) and this is verified by the rank detection
explained earlier. We perform the diffuse approximation locally with m = 3 and project the
evaluation point onto the tangent plane, and the main steps are shown in figure 6.

Figure 6. Diffuseα-manifold walking for the plate with two circular holes example

3.6. Shape interpolation

In this step, performed at every single function call withinthe optimization subroutine,
we recreate the structural shape for an arbitrary design point (t̄).

3.6.1 PCA reconstruction

In the first step, theα coefficients are obtained from the values oft̄ (location on the
α-manifold), and thus the pixel maps:

S̃(t̄) = S̄ +

m
∑

i=1

αi(t̄)φ̄i (9)



While we expect the interpolated map to contain values of0 and 1 based on the previous
section which appears to guarantee an admissible solution map as long as we stay on the
α-manifold, it is still possible for the processes of averaging snapshots, singular value decom-
position and truncation to deliver intermediate values (grayscale) around the boundaries as
intermediate values during the optimization. The next stepdeals with this problem in case it
surfaces.

3.6.2 Density filtering

Due to the truncation of the basis vectors, it is possible that in the course of the opti-
mization we may pass through certain points slightly outside the feasible surfaces. A typical
example is presented in Figure 7 showing the conversion frompixel map to boundary pixels.
In this simple example, we use a worst-case pixel map with values of0, 0.5 and1. Here, there
is one single boundary/edge to be located, but in complex shapes the density filter needs to
allow the user to capture every possible edge. For the purposes of shape optimization, the au-
thors have found Canny’s algorithm [6] to be an appropriate density filter, with a pretreatment
as presented below.
Any density gradient-based filter can easily be thrown off bycertain situations, like the one
shown in figure 7 where the filter throws up two boundaries, since both edges (the real one as
well as the false one) represent a strong gradient, no matterthe filter threshold. One would
expect that a sufficiently diverse family of snapshots, a grid of sufficient resolution and a good
optimization algorithm would limit the occurrence of such situations, but we might need to
deal with situations of this sort during intermediate stages in the optimization.
In order to be able to distinguish between two gradients of the same strength based on the
actual density values, we recommend pretreating each element of the snapshotSold according
to (10) in order to attenuate the stronger gradients furtheraway from values of1 (since the true
boundary should be close to the front corresponding to a value of1 for the approach presented
in this paper).

Snew
i = Sold

i + h(1− Sold
i )b (10)

whereh, b are constants that can be adjusted according to the type of problem being reduced.
This is a simple but effective pretreatment somewhat inspired by grayscale suppression meth-
ods in topology optimization [24,19].

3.6.3 Pixel map boundary and Moving least squares smoothing

The next step is to locate the co-ordinates of the corner points/vertices of the boundary
pixels using one of various possible methods [3], as seen in Figure 8 for a part of the pixel
map.
Next, a local moving least square approximation using radial basis weighting functions [20,4]

is performed to construct the boundaries/edges from the vertices of the (reconstructed) pixel
map.



Figure 7. Canny filter for 2D case with and without proposed pretreatment

Figure 8. Finding the pixel map boundary

The boundary curve of the shape may be represented parametrically byx(l), y(l)

x(l) ≈ xapp(l) = bT (l)ax(l) andy(l) ≈ yapp(l) = bT (l)ay(l) (11)

wherel = parameter representing the curve.

b(l) =
[

1 l l2 l3 ...
]T

(12)

The coefficientsax(l) anday(l) are not constant over the domain but depend on the values of
the design variables, and are chosen to minimize the functionalsJx(a) andJy(a) defined by:

Jx(a) =
1

2

Nn
∑

1

wi(li, l)(b
T (li)ax − x(li))

2

Jy(a) =
1

2

Nn
∑

1

wi(li, l)(b
T (li)ay − y(li))

2 (13)

whereNn = number of vertices in the local neighborhood of each evaluation point used to
describe the reconstructed pixel map, located by the marching cubes approach [3].
A typical radial basis form for the weighting function iswi(li, l) = exp(−(li − l)2), but one
could also choose an interpolating polynomial form to better capture a somewhat irregular
shape due to local effects.



3.7. Objective function evaluation

The reconstructed shape is meshed and the numerical analysis is performed using a
method chosen based on the disciplines involved in the analysis i.e. CFD/Navier-Stokes for
incompressible flows [17,16], FEA for structural analysis [22], etc. The only difference is
that instead of obtainingXopt

i we attempt to find the final governing parameterst̄opt and thus
the coefficients̄α(t̄opt) that optimize the performance objective. An important phase here is
remeshing the surfaces obtained in section 2.4. Chappuis etal [9] developed an approach
of calculating principal curvatures from an existing mesh or shape using a secondary local
model with Diffuse Interpolation, and then using these curvatures to identify shape primitives
such as cylinders, torus, etc for the purpose of meshing. In this paper, we have calculated the
curvature energy for the reconstructed edges and used this to position the nodes/blocks for
meshing the newer shape.

3.8. Algorithm for overall procedure

The complete algorithm is shown in figure 9.
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Figure 9. Schematic diagram for the overall algorithm

4. OPTIMIZATION TEST-CASE: AIR-CONDITIONING DUCT

4.1. Duct geometry

The inlet and outlet portions of the air-conditioning duct have fixed geometries, while
the middle portion allows for modification of the shape and thus performance of the duct.
The duct geometry as shown in Figure 10 is completely described by the relative positions
of points P1 to P11. P1 to P4 and P9 to P11 are assumed fixed and the positions of P5,P6,



Figure 10. Duct geometry showing four different regions

P7 and P8 are required to determine the geometry of the portion of the duct critical to perfor-
mance. The parameters that determine the locations of P5 to P8 are obtained by the geometric
constructions shown. Parameters X1 to X5 allow us to locate P5 to P8, while parameters a1
to a4 and b1 to b4 allow us to draw Bezier curves passing through these points tracing out
the whole geometry of the curved portion of the duct. The geometry of the curved portion
of the duct in 2D (the only part of the duct that is variable) may thus be characterized by 13
parameters in all: x1 to x5, a1 to a4 and b1 to b4, and the designand thus performance can be
changed by altering these parameters. In order to retain a laminar flow and for other design
considerations, there are upper and lower bounds on these 13parameters and thus on the pos-
sible designs for the duct. The design variables are thus:X1, X2, X3, X4, X5 (forP1..P8) and
X6 = a1, X7 = b1, X8 = a2, X9 = b2, X10 = a3, X11 = b3, X12 = a4, X13 = b4.

4.2. CFD model and mesh

Since the Reynolds number for the situation is typically low, the air flow is modeled
using OpenFoam CFD for incompressible 2D laminar flow. For every possible design re-
sulting from particular choices of the 13 parameters described earlier in section 4.1, we set
up a CFD grid with 39000 grid points and 17250 hexahedral cells. The physical domain is
split into 23 different blocks for the purpose of meshing. Boundary conditions enforced for
the CFD set the pressure at the duct outlet = 0 (atmospheric pressure) and flow speed along
the walls (straight as well as curved portions) = 0. The CFD analysis is run for 500 iter-
ations to ensure convergence, and the converged pressure and velocity fields in the duct are
obtained for each hexahedral cell, and are assumed to be evaluated at the midpoint of each cell
for post-processing and surrogate function calls. The performance-related objective function
(permeability) may be directly evaluated from the pressure/velocity fields (both CFD as well
as surrogate) for each design.

5. Optimization problem

The optimization problem in the geometric space may be written as:

Find X̄opt = ArgmaxPflow(X1, ..., X13) s.t. L̄B ≤ X̄ ≤ ŪB (14)



wherePflow= flow permeability = 1/(pressure loss from inlet to outlet)= 1/(Pinlet − Poutlet),
andŪB andL̄B are the upper and lower bounds on the 13 design variables. Once we switch
over to the reduced space, we can express the objective function as a function of the PCA
coefficients (αi) and hence the new design variablest̄, thus the optimization problem may be
written as:

Find t̄opt = ArgmaxPflow(ᾱ(t1...tp))

s.tgmin ≤ gi(ᾱ(t̄)) ≤ gmax andh(ᾱ(t̄)) = 0 (15)

So the optimization problem is now one of finding the pixelized shapeS(ᾱ(t̄opt)). The con-
straintsgi, i ∈ [1, N ] are obtained by transferring the boundsŪB andL̄B on theα-space, while
h represents the feasible region (set of manifolds inᾱ-space). Bothgi andh are taken into
account implicitly with the Diffuse Approximation-based approach outlined earlier allowing
theα’s to be expressed locally as functions of the final parameters t1, ..tp.

6. Results and discussion

Since the mapping to the new space is highly non-linear, we need to ensure we stay in
the feasible region during the course of the optimization. Clearly there will be a loss of accu-
racy due to the pixelization and PCA phases [10] that gave theintermediate design variables
(α1...αm) and the reconstruction that allows us to capture the duct geometry from theα’s, but
the author’s contention is that the error will be consistentthroughout and not seriously affect
the results of the optimization, and this has been observed.Of course the effect of the error
can be estimated very easily using a reconstruction of the original snapshot geometries after
pixelization and decomposition, using the truncated basis. In the problem solved, we have
used onlyM = 102 snapshots as mentioned previously. IfM was chosen to be higher, i.e.
1000 or more snapshots using a Latin Hypercube Sampling ofM = 1000 designs between the
bounds, the quality of the truncation with saym = 5 modes would improve. In this paper, we
have focused more on the approach of two-level model reduction using the basis truncation
and theα-space Diffuse Approximation.

6.1. Dimensionality and model reduction

Figure 11 shows the dimensionality deduction approach firstpresented in section 3.
After analyzing the individual snapshots inα−space, it is clear from the set of 2D sur-
faces obtained that the behavior of the variousα’s is governed by just TWO parameters
(sayt1 andt2 that can be easily found by a Diffuse Approximation [20,4] over the retained
α’s. The feasible regions are represented by theα-manifolds, and as explained in section
3, staying on the manifold ensures an admissible solution, even though we may need to
invoke the density filter from time to time during the optimization. This also means that
ᾱ = [α1(t1, t2), α2(t1, t2)...αm(t1, t2)] if using a truncated basis of sizem.
So ᾱopt = ᾱ(topt1 , topt2 ) transferring the problem into thēt-space wherēt are the final parame-
ters that control the overall design domain.



Figure 11. Dimensionality (= 2) and model reduction for A/C duct

6.2. Interpolation of duct shape

This is an important step consisting of first using theα coefficients to determine the
pixel mapS̃ representing the shape of the duct, followed by passing the reconstructed pixel
mapS̃ (if grayscale is present for whatever reason) through a Canny density filter as explained
previously to get the boundary/edge pixels, followed by a ”marching cubes” to extract the
vertices of the boundary/edge pixels, and finally obtainingthe actual smooth geometric shape
(reconstructed) of the duct using the moving least squares approximation described in section
3. The weighting function needs to be carefully chosen whileusing a global (or local) Mov-
ing Least Squares (Diffuse Approximation) since a delicatebalance between smoothness and
precision is required and the duct geometry is composed of different types of sections. Since
the boundary curves will next be used to create a CFD mesh the authors feel it is better to err
somewhat in favor of smoothness and try to control precisionby increasing resolution. Figure
12 shows an enlarged view of the MLS smoothing in the two curved portions of the duct.
Figure 13 shows the quality of reconstruction with increased number of modes retained after
truncation. As expected, the accuracy increases with the additional modes retained, but the
increase in precision drops off quickly with added modes as explained in section 3. Finally,
even the small loss of accuracy will be consistent for all thedesigns so by building a response
surface betweenXi andαi or simply by inspection of the optimal shape obtained, one could
easily extract the optimal design variables in the geometric design space (̄Xopt) from the op-
timal variablesᾱopt. Of course, regardless of the numberm of modes retained, these are all
expressed as functions of the true design variables, i.e.α1(t1, t2)...αm(t1, t2) with the diffuse



Figure 12. vertices and moving least square curve (enlarged)

Figure 13. Reconstruction precision with increasing modesand truncation error



approximation.

6.3. Optimization in the reduced-space

The goal is to first perform the optimization in the reduced-space gettinḡtopt, and then
calculatingᾱ(t̄opt), and next to estimatēXopt (original geometric parameters) from the values
of ᾱ(t̄opt) either by inspection of the optimized shapeS(ᾱ(t̄opt)) or using an RSM between
the X̄i andαi. The permeabilityPflow for every possible design was calculated using the
inverse of the total pressure drop across the duct length (inlet to outlet). The next step was
to obtain the optimal shape using 5-8 modes, followed by identification by response surface
methodology over the values of the original 13 geometric design parameters for each̄αopt, i.e.
gettingX̄(ᾱopt). The optimal solution obtained has been added to figure 10 andas expected, it
lies on the edge of the constraint/feasible region. This is followed by ”reverse look-up” (Table
1) by projecting the pixel array obtained by shape generation, meshing and then pixelization,
on to the truncated basis ofm modes.

ᾱrev(S(ᾱ
opt)) = (S̄ +

m
∑

1

αopt
i φS

i − S̄)ΦS = (

m
∑

1

αopt
i φS

i )Φ
S (16)

whereᾱopt= optimal coefficients usingm modes and̄αrev= coefficients obtained by reverse
identification fromX̄(ᾱopt).
This reverse look-up ofα coefficients from the identified geometric parametersX̄(ᾱopt) is
needed to account for the error introduced by the moving least squares approximation needed
to map thēαopt (m coefficients) to thēX(ᾱopt).
The velocity fields for the optimal shapes obtained using 5-8modes are shown in figure 14
and the values of̄αopt, X̄(ᾱopt) andᾱrevare shown in Table 2, where the pressure drop needs
to be minimized for optimal performance. The velocity field gets increasingly more regular
with additional modes retained. We also note that theᾱrev(S(ᾱ

opt)) andᾱopt are fairly close
to each other, the slight discrepancy being due to the error introduced by the moving least
squares for the response surface between theα’s and the geometric parameters. This error can
be completely or mostly avoided by one of two approaches:
1. Using direct identification to extract the geometric design parameters directly from the
structural shape/mesh created using theᾱopt with m modes.
2. Theᾱopt can be used to directly plot the structural shape and this canbe directly used for
design purposes instead of trying to first extract the geometric design parameters. This can
and should be the method of choice, but the RSM between the twosets of design variables is
directly programmable in most cases and always an option forthe design engineer.

Conclusions

In this paper, the authors have introduced an ”a posteriori”scheme with a two-level
model reduction to replace the geometry-based variables with a more compact and normalized
set of variables and replace the higher-dimensional designspace with a newer design space of
lower-dimension.
The overall interpolation technique is nonlinear, and is constrained to produce only shapes



Figure 14. Velocity field (m=5, m=6, m=7 and m=8)

modes (m) ᾱopt ᾱrev(S(ᾱ
opt))

5 -22.6226,13.4301,5.8149,-
9.4755,3.1751

-21.8192,13.7669,6.6731,-
8.8569,3.2854

6 -22.4873,14.2647,6.2187,-
9.3431,3.0856,3.7891

-22.0924,13.274,5.8194,-
9.2671,3.0162,4.2320

7 -22.7028,14.4708,5.6493,-
9.5091,3.1863,3.9603,5.2279

-22.1531,13.8087,5.2442,-
9.1170,2.8065,4.2241,4.6575

8 -22.3745,14.7165,5.1094,-
9.7710,3.2653,3.9784,5.2527,-
4.2108

-22.0974,13.8794,5.6017,-
9.4491,2.4682,5.2825,4.7886,-
2.3602

Table 1. Reverse look-up: comparison betweenαopt andαrev for differentm

from an abstract manifold in shape space induced by learning. The non-varying zones used
for boundary conditions are naturally preserved and additional constraints may by imposed
using constrained versions of Proper Orthogonal Decomposition. Since the approach is ”a
posteriori”, it is clearly dependent on the information contained in the snapshot database, and
thus the initial sampling used to create the database. Whileit is clear that the analysis of the
α manifolds using a diffuse approximation is the main reduction phase, the truncation tom
modes is also important to reduce computational effort. Theresults showed how the geometry
could be very closely described even with 5 modes (ultimately depending on 2 parameters)
even with a modest snapshot database with a sampling size of 102, and it is obvious that the
accuracy of the truncation can be directly influenced by increasing the sampling size. One
could also combine this approach with using a surrogate model for the numerical analysis to
greatly increase the performance as well as reduce overall computation time.
The presented methodology has a few possible areas of improvement. The first is in resolving
the difficulty in setting upper and lower bounds on theα-based design variables. The second
area is in the treatment of possible degenerate cases for thestructural shape. The third area is
studying the efficacy of the Canny and pretreatment filter in ”bounding” 3D pixel maps.



modes (m) 5 6 7 8 L̄B ŪB

X1(αopt) 7.8528 8.2695 8.4067 8.0782 6.1096 9.1644
X2(αopt) 25.7555 28.9527 30.1149 28.7854 21.3080 31.962
X3(αopt) 13.3979 14.1076 13.8989 13.8898 10.1464 15.2196
X4(αopt) 7.8255 8.3505 8.4015 8.6217 6.0832 9.1248
X5(αopt) 64.2028 65.4544 65.4339 64.5703 43.6 65.4
X6(αopt) 1.9279 2.2016 2.2544 2.3511 1.6 2.4
X7(αopt) 2.0009 2.0609 2.0628 1.9503 1.6 2.4
X8(αopt) 35.6519 29.3352 30.7665 33.2524 24 36
X9(αopt) 35.9963 33.4178 34.0429 35.0498 24 36
X10(αopt) 37.1714 36.7973 37.8723 36.76 24 36
X11(αopt) 26.4866 30.8812 30.5599 33.0657 24 36
X12(αopt) 4.9232 5.5084 5.4175 5.7500 4 6
X13(αopt) 5.4837 5.0370 5.3058 5.4318 4 6
J1(αopt) 1.9684 1.9754 1.9626 1.9580

J2(X(αopt)) 2.1344 2.1335 2.1389 2.1312
Shape error (%) 0.847 0.33 0.248 0.163

Table 2. optimization inα-space and identification of geometric parametersX̄
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