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Abstract. The First Order Reliability Method is well accepted as an efficient way to solving 
structural reliability problems with linear or moderately non-linear limit state functions. High 
non-linearity is introduced in reliability problems by non-linear mechanical responses, but 
also by correlation between the random variables and by highly non-Gaussian probability 
distribution functions. Correlation and non-Gaussian distributions introduce non-linearities 
in the mapping to the standard Gaussian space, hence making search for the design point 
more challenging. This article discusses computational issues in finding the design point in 
problems involving uniform and other bounded random variables. The discussion covers the 
Principle of Normal Tail Approximation, and the mapping to standard Gaussian space. It 
addresses three different techniques to impose the domain of bounded random variables, 
when mapping them back from standard Gaussian to original design space. A simple but 
challenging academic problem is presented, involving a simply-supported beam subject to a 
concentrated load of random intensity. The concentrated load can occupy a random position 
over the beam, following an uniform distribution. Although the underlying mechanical prob-
lem is very simple, the uniform distribution introduces severe non-linearities, which makes 
finding the design point a very demanding task. The article also addresses algorithms that 
can be used to find the design point in highly non-linear problems. It is shown that the 
Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm fails to converge. The performance of the 
improved HRFL (iHLRF) and of the Sequential Quadratic Programming algorithms are in-
vestigated with respect to two alternative mappings to standard Gaussian space and to three 
techniques to impose the bounds in the inverse probability mapping. 

Keywords: structural reliability, FORM, design point, probability mapping, normal tail ap-
proximation, standard Gaussian space. 

1. INTRODUCTION 

 The First Order Reliability Method is well accepted as an efficient way to solve struc-
tural reliability problems with linear or moderately non-linear limit state functions. High non-
linearity is introduced in reliability problems by non-linear mechanical responses [6], but also 
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by correlation between the random variables and by highly non-Gaussian probability distribu-
tions. Correlation, non-Gaussianity and generally bounded distributions introduce non-
linearities in the mapping to standard Gaussian space, making the search for the design point 
more demanding.  
 This article discusses challenges in finding the design point in problems involving uni-
form and other bounded random variables. The discussion covers the Principle of Normal Tail 
Approximation [2,3], and the mapping to the standard Gaussian space. It is observed that the 
conventional mapping becomes highly non-linear as, during interactive design point search, 
some variable is pushed against its lower or upper limit. An alternative mapping is proposed, 
in order to make computations more stable. As standard Gaussian space is unbounded, during 
design point search any bounded random variable could try to exceed its limits, causing 
breakdown of the computations. Hence, bounds have to be imposed when mapping random 
variables back to the original design space. Three different schemes are presented in this arti-
cle to impose the limits of bounded random variables: bisection, reflection and limit. The 
three schemes are tested in combination with the traditional and the alternative (proposed) 
probability mapping. A challenging academic problem is also presented in the article. It in-
volves a simply-supported beam subject to a concentrated load of random intensity. The load 
can occupy a random position over the beam, following an uniform distribution. Although the 
underlying mechanical problem is very simple, the uniform distribution introduces strong 
non-linearities, which makes finding the design point a challenging task. 
 It is shown that the Hasofer-Lind-Rackwitz-Fiessler (HLRF) algorithm fails to converge 
for most configurations of the proposed problems. Hence, the improved HRFL (iHLRF) and 
Sequential Quadratic Programming (SQP) algorithms are also employed in the solutions. The 
performance of these algorithms is investigated with respect to two mappings to standard 
Gaussian space and to the three schemes to impose the bounds in the reverse probability map-
ping. In total, twenty-four configurations of the proposed benchmark problem are investigat-
ed. The article is finished with relevant conclusions with respect to the several alternatives 
proposed herein for the solution of reliability problems involving uniform and other bounded 
random variables. 

2. FORM AND PROBABILITY MAPPING 

2.1. The First Order Reliability Method (FORM) 

Let X be a random variable vector describing the uncertainties in geometry, material proper-
ties and loading.  A limit state function ݃ܠሺX) is written in such a way as to divide the random 
variable domain in safety and failure domains: 

Ωୱ ൌ ሼܠ݃|ܠሺܠሻ ൐ 0ሽ is the safety domain 

Ω୤ ൌ ሼܠ݃|ܠሺܠሻ ൑ 0ሽ is the failure domain.                                    (1) 

The failure probability is given by:  



 
 

 ௙ܲ ൌ ܲሾ܆ ∈ Ω୤ሿ ൌ ׬  ሻܠሺ܆݂ ஐ౜ܠ݀
. (2) 

where ݂܆ሺܠሻ denotes the joint probability density of random vector ܆. The First Order Relia-
bility Method (FORM) is generally accepted as an efficient way to solving Eq. (2), for low 
dimensions of vector X and for linear or moderately non-linear limit state functions ݃ܠሺX). In 
the FORM method, Eq. (2) is solved indirectly, by introducing a convenient mapping from 
the space of the original random vector ܆ (࢞-space) to the so-called standard Gaussian space 
(࢛-space) [3, 9, 10]: 

ܝ ൌ ॻሾܠሿ,     ݃ሺܝ, ሻݐ ൌ ሺॻܠ݃ 
ିଵሾܝሿ,  ሻ                                      (3)ݐ

where all components of vector ܝ are independent and identically distributed standard Gauss-
ian random variables. This mapping can be accomplished by means of the Principle of Nor-
mal Tail Approximation (to be described) and by the Nataf transformation. 
 In standard space, the joint probability density ݂܃ሺܝሻ is rotationally symmetric: hence, 
the point ܝ∗ on the limit state function ݃ሺܝሻ which is closest to the origin represents the most 
probable failure point, also known as design point. This feature allows search for the design 
point to be cast as a constrained optimization problem: 

∗ܝ ൌ argmin  
ଵ

ଶ
௧ܝ ∙                                  ܝ

subject to ݃ሺܝሻ ൌ 0                                                        (4) 

From Eq. (4), ߚ ൌ ‖∗ܝ‖ ൌ ሺܝ∗௧ ∙  ሻଵ/ଶ is the so-called Hasofer-Lind reliability index [5, 11]∗ܝ
which comes to be the distance between ܝ∗ and the origin of standard Gaussian space. The 
FORM method, therefore, consists in finding the design point ܝ∗ and approximating the orig-
inal limit state function ݃ሺܝሻ by a tangent hyper-surface at the design point. Hence, the first-
order approximation of the failure probability becomes:   

௙ܲ ൌ  ܲሾ݃ሺ܃ሻ ൑ 0ሿ ≃  Φሺെߚሻ     (5) 

where Φሺ. ሻ is the cumulative standard Gaussian probability distribution function.  
 For the highly non-linear problems to be considered herein, the first order approxima-
tion of the failure probability is unlikely to be accurate. However, it is still important to be 
able to find the design point, for instance, in order to perform Monte Carlo simulation with 
importance sampling using the design point [4] or to construct precise response surface ap-
proximations centered on the design points [7]. 
 It is important to point out that the concept of a design point as the most probable failure 
point is theoretical, and associated to the transformation to standard Gaussian space. For in-
stance, for problems involving only uniform random variables, all points in the failure domain 
are equally likely in ࢞-space… For problems involving a single uniform random variable, 
multiple equally likely failure points would exist in ࢞-space. However, the concept and the 
usual interpretations remain valid in ࢛-space. 



 
 

2.2 Traditional normal tail approximation 

The Principle of Normal Tail Approximation [3] allows a non-Gaussian variable ܺ to be 
transformed in an “equivalent” Gaussian variable ܻ by means of a point-wise probability 
mapping: 

ݔ௒ሺܨ 
∗ሻ ൌ ݔ௑ሺܨ

∗ሻ       (6) 

Eq. (6) is a probability-preserving equation, which makes the probability content to the “left” 
and “right” of point ݔ∗ to remain unaltered in the mapping. However, two parameters (ߤ௒ and 
 ௒ - mean and standard deviation) of the “equivalent” Gaussian variable ܻ have to beߪ
determined. Hence, an additional equation is required. The second equation that has been tra-
ditionally used to complete the mapping is: 

 ௒݂ሺݔ
∗ሻ ൌ ௑݂ሺݔ

∗ሻ       (7) 

This equation is completely arbitrary, and is not required for probability preservation. Other 
equations and rules for the probability mapping have also been presented elsewhere (Chen 
and Lind, 1983). 

Introducing the Hasofer-Lind transformation [5]: 

∗ݑ  ൌ
௫∗ିఓೊ

ఙೊ
        (8) 

the mapping can be accomplished directly to standard Gaussian space. Manipulating Eqs. (6) 
to (8), well-known equations are obtained for the desired parameters (ߤ௒ and ߪ௒) : 

∗ݑ ൌ Φିଵ൫ܨ௑ሺݔ
∗ሻ൯ 

௒ߪ ൌ
߶ሺݑ∗ሻ

௑݂ሺݔ
∗ሻ

 

௒ߤ ൌ ∗ݔ െ  ௒              (9)ߪ∗ݑ

Now, for illustration purposes, assume that random variable ܺ follows an uniform distribution 
with parameters : 

 ܺ~ܷሺݔ௔,  ௕ሻ      (10)ݔ

Figure 1 illustrates how the traditional mapping behaves as the point ݔ∗ approaches the upper 
limit (ݔ∗ ൌ ௕ݔ െ ߝ with ߝ → 0). It can be observed that ߪ௒ → 0, which could cause breakdown 
of the numerical computations. The observed behavior also introduces strong non-linearities 
in the probability mapping, which can make the design point search unstable, if any of the ݔ∗ 
points comes too close to a random variable limit. 
 



 
 

 
Figure 1. Traditional (left) and alternative (right) standard Gaussian mapping as point ݔ∗  

approaches the upper limit of a bounded random variable (ݔ∗ ൌ ௕ݔ െ ߝ with ߝ → 0). 

2.3 Alternative normal tail approximation 

In an attempt to avoid potential problems with the traditional probability mapping, as ob-
served in Figure 1, an alternative mapping is proposed herein. As Eq. (7) is arbitrary, it is 
proposed to use the simple rule instead: 

௒ߤ  ൌ ௒ߤ   ௑   orߤ ൌ mode௑     (11) 

The standard deviation ߪ௒ is obtained directly from Eq. (8), using the relation ݑ∗ ൌ
Φିଵ൫ܨ௑ሺݔ

∗ሻ൯, which originates in the probability-preserving equation (Eq. 6). Figure 1 shows 
that the resulting mapping is more stable as a point ݔ∗ approaches the upper limit (ݔ∗ ൌ ௕ݔ െ

ߝ with ߝ → 0). When point ݔ∗ is equal to the mean or mode, the alternative mapping cannot be 
used, and the traditional mapping is used instead (only for one interation). The alternative 
mapping proposed herein is compared with the traditional mapping in connection to some 
example problems in the sequence. 

2.4 Imposing random variable bounds in the inverse mapping 

 With the mapping to standard Gaussian space, all variables become unbounded. Hence, 
when a new, trial point is evaluated during iterative design point search, in ࢛-space, it could 
become unfeasible for exceeding a limit of the original random variable in ࢞-space. Hence, 
when mapping a new point back to original design space, the random variable limits have to 
be imposed. Although this appears to be an obvious problem with the mapping to standard 
Gaussian space, it has not been explicitly addressed in the published literature. 



 
 

 In this section, three alternative schemes are presented for bounding limited random 
variables: bisection, reflection and limit. Assume that the lower and upper bounds of random 
variable ܺ are ݔ௔ and ݔ௕, respectively. The bisection bounding scheme is: 

   while ቂݔ௞ାଵ ൒ ,௕ݔ ௞ାଵݔ ൌ  
௫ೖశభା௫ೖ

ଶ
ቃ       

while ቂݔ௞ାଵ ൑ ,௔ݔ ௞ାଵݔ ൌ  
௫ೖశభା௫ೖ

ଶ
ቃ    (12) 

 The reflection scheme is obtained by: 

   ifሾݔ௞ାଵ ൒ ,௕ݔ ௞ାଵݔ ൌ ௕ݔ െ ሺݔ௞ାଵ െ      ௕ሻሿݔ

ifሾݔ௞ାଵ ൑ ,௔ݔ ௞ାଵݔ ൌ ௔ݔ ൅ ሺݔ௔ െ  ௞ାଵሻሿ   (13)ݔ

 As stated in Eq. (13), the reflection scheme is not guaranteed to generate feasible points. 
Hence, after performing the reflection, the point should be checked again using the limit 
scheme.  
 For the limit scheme, one should choose a limiting value ߝ which is compatible with the 
accuracy of the numerical representation of the standard Gaussian cumulative probability dis-
tribution function, Φሺ. ሻ, and its inverse Φିଵሺ. ሻ  - see first line of Eq. (9). In this article, 
ߝ ൌ 10ି଼ is considered. This corresponds to a reliability index of ߚ ൌ െΦିଵሺ10ି଼ሻ ൎ 5.6. 
This is still safely below the operational limit of the StRAnD software [1], beyond which the 
numerics used in the computations crumble (ߚ ൌ 8,Φሺെ8ሻ ൎ 10ିଵ଺). The limit bounding 
scheme is simply : 

ifሾݔ௞ାଵ ൒ ,௕ݔ ௞ାଵݔ ൌ ௕ݔ െ   ሿߝ 

ifሾݔ௞ାଵ ൑ ,௔ݔ ௞ାଵݔ ൌ ௔ݔ ൅  ሿ           (14)ߝ  

The three bounding schemes allow the computation to continue safely, and also allow the se-
quence of points to return naturally to the interior of the feasible domain, if the design point is 
located there.  

3. OPTIMIZATION ALGORITHMS 

3.1 The Hasofer, Lind, Rackwitz and Fiessler (HLRF) algorithm 

 The most popular algorithm used to solve the reliability problem stated in Eq. (4) is the 
Hasofer and Lind [5], Rackwitz and Fiessler [11] algorithm (HLRF). This algorithm is known 
to be very efficient when it converges, but is also known to fail to converge very often [8, 13]. 
The algorithm is based on finding the zero of successive linearizations of the limit state sur-
face, leading to the well-known sequence:   

௞ାଵܝ  ൌ  
ଵ

‖ೖሻܝ௚ሺ׏‖
మ  ൫݃׏ሺܝ௞ሻ ∙ ௞ܝ െ  ݃ሺܝ௞ሻ൯ ∙ ௞ሻܝሺ݃׏

்  (15) 

In Eq. (15), ݃׏ሺܝ௞ሻ is the gradient vector of the limit-state function with respect to ܝ evaluat-
ed at ܝ௞. 



 
 

3.2 The improved Hasofer, Lind, Rackwitz and Fiessler (iHLRF) algorithm 

 An improved Hasofer, Lind, Rackwitz and Fiessler (iHLRF) algorithm was presented 
by Zhang and Kiureghian [13]. In the iHLRF algorithm, a linear search is performed: 

௞ାଵܝ  ൌ ௞ܝ  ൅ α௞ ∙  ௞      (16)܌

in the direction given by the HLRF algorithm: 

௞܌  ൌ  
ଵ

‖ೖሻܝ௚ሺ׏‖
మ  ൫݃׏ሺܝ௞ሻ ∙ ௞ܝ െ  ݃ሺܝ௞ሻ൯ ∙ ௞ሻܝሺ݃׏

் െ ܝ௞   (17) 

In Eqs. (16) and (17), ܌௞ is a search direction and α௞ is a step size, selected from minimiza-
tion of an appropriate merit function. The following merit function is proposed in ref. [13]: 

 ݉ሺܝሻ ൌ  
ଵ

ଶ
‖ܝ‖ ൅ ܿ|݃ሺܝሻ|            (18) 

where ܿ is a penalty parameter. The linear search is defined as: 

 α௞ ൌ argmin݉ሺܝ௞ ൅ α௞ ∙  ௞ሻ      (19)܌

The linear search can be performed approximately using the popular Armijo rule [13]. An 
appropriate step α௞ is selected, such as to obtain a sufficient decrease in the merit function: 

 α௞ ൌ max୧∈Գൣܾ
௜|݉൫ܝ௞ ൅ ܾ

௜ ∙ ௞൯܌ െ ݉ሺܝ௞ሻ ൑ െܽ ܾ௜‖݉׏ሺܝ௞ሻ‖
ଶ൧ ,    ܽ, ܾ ൐ 0      (20) 

Following Zhang and Kiureghian [13], direction ܌௞ given in Eq. (17) is a descent di-
rection of the merit function in Eq. (18), for ∀ܝ ∈ Թ୬, as long as the following condition is 
satisfied: 

 ܿ ൐
‖ܝ‖

‖ሻܝ௚ሺ׏‖
        (21) 

This condition is used as a rule for updating the penalty parameter: 

     if |݃ሺܝ௞ሻ| ൏ 10ିଵ|݃ሺܝ଴ሻ| then 

 ܿ௞ ൌ max ߟ ቂ
‖ೖܝ‖

‖ೖሻܝ௚ሺ׏‖
,
ଵ

ଶ

‖ೖ܌ೖାܝ‖
మ

|௚ሺܝೖሻ|
ቃ 

else ܿ௞ ൌ  ߟ
‖ೖܝ‖

‖ೖሻܝ௚ሺ׏‖
      (22) 

Literature-suggested values [8, 13] for the algorithmic constants are ߟ ൌ 2, ܽ ൌ 0.1 
and ܾ ൌ 0.5. The value ߟ ൌ 2 is used throughout the article in the numerical examples. The 
recommend values ܽ ൌ 0.1 and ܾ ൌ 0.5 are also used for the Armijo line search in the 
numerical examples. However, is was found that the iHLRF does not converge for many of 
the tested problems using the recomended values. Hence, the iHLRF algorithm is also tested 
using ܽ ൌ 0.5 and ܾ ൌ 0.5. For convenience, the two resulting algorithms are refered to as 
iHLRF15 and iHLRF55, respectively, in the results section. 



 
 

3.3 Sequential Quadratic Programming (SQP) 

The constrained optimization problem stated in Eq. (4) can be converted in an unconstrained 
problem by introducing the associated Lagrangian problem [8, 12]: 

 ࣦሺܝ, λሻ ൌ
ଵ

ଶ
௧ܝ ∙ ܝ ൅ λ ݃(u)     (23)  

If ܝ∗ is a solution to Eq. (4), then there exists a Lagrangian multiplier λ∗ such that [8, 12]:  

,∗ܝሺࣦ׏  λ∗ሻ ൌ ௧∗ܝ ൅ λ∗ ݃׏ሺܝ∗ሻ ൌ 0    (24) 

This can be used to cast the optimization problem in terms of the following set of simultane-
ous equations: 

௧ܝ ൅  λ݃׏ሺܝሻ ൌ 0 

 ݃ሺܝሻ ൌ 0       (25) 

The Newton method can be used to solve the above system of non-linear equations iteratively: 

 ቄ
௞ାଵܝ
 λ௞ାଵ

ቅ ൌ ቄ
௞ܝ
 λ௞
ቅ ൅ ௞ߙ ൜

௞܌
 κ௞
ൠ     (26) 

The solution to this problem is given by : 

 ൜
௞܌
 κ௞
ൠ ൌ െ ൤

,௞ܝଶࣦሺ׏ λ௞ሻ ௞ሻܝሺ݃׏
௧

௞ሻܝሺ݃׏ 0
൨ ∙ ቄ

௞ܝ
 ݃ሺܝ௞ሻ

ቅ   (27) 

This result happens to be the solution and the Lagrangian multiplier for the following 
quadratic optimization problem:  

ሺܝ∗, λ∗ሻ ൌ argmin
1

2
,ܝଶࣦሺ׏௧܌ λሻܝ ൅  ܌௧ܝ

 subject to ݃ሺܝሻ ൅  (28)      ܌ሻ௧ܝሺ݃׏

Therefore, this algorithm is called Sequential Quadratic Programming algorithm (SQP). The 
present implementation of SQP follows the guidelines set up by Schittkowski [12], as detailed 
in [8]. The step ߙ௞ in Eq. (26) is computed using the augmented Lagrangian function : 

 ࣦାሺܝ, λሻ ൌ
ଵ

ଶ
௧ܝ ∙ ܝ ൅ λ ݃ሺܝሻ  ൅ c ݃ሺܝሻଶ     (29) 

where c is a penalty parameter, also updated iteratively. 
The solution in Eq. (27) requires the Hessian of the Lagrangian function 

,௞ܝଶࣦሺ׏) λ௞ሻ), which is generally not known. In this implementation, the Hessian is replaced 
by an approximate matrix, which is updated iteratively, following the BFGS scheme. 
However, due to our annoiance with non-convergence of SQP for some problems, the exact 
Hessian was also used. The computations using the exact Hessian are identified as SQPeH in 
the numerical results session. 



 
 

4. A SIMPLE BUT CHALLENGING BENCHMARK PROBLEM 

Consider a simply-supported beam subject to a concentrated load, as illustrated in Figure 2. 
The load of intensity P can occupy any position over the beam spam L. Both load position and 
intensity are assumed to follow uniform distributions: 

,ሺ݀௔ܷ~ܦ ݀௕ሻ,    ܲ~ܷሺ݌௔, ௕ሻ݌ ൌ ܷሺ0.6,1.0ሻ     (30) 

The load position limits are ݀௔ ൌ 0 for all problems, and ݀௕ varies following Table 1. The 
different values of ݀௕ change the problem considerably, as can be observed in the design 
points and reliability index results presented in Table 1. Three different cases of correlation 
are also considered: no correlation, positive (ρ=0.5) and negative (ρ=-0.5) correlation between 
variables ܦ and ܲ. Also, variants of the two-dimensional problem are obtained for the load 
intensity ܲ following Normal and Log-normal distributions, following Table 1. In total, 24 
two-dimensional problems (variants) are considered.  
 

Table 1. Variable data and design point results for two-dimensional problems. 

2D 
Problem 

 ߚ ߝ ρ ܲ ܦ
Design Point 
 ∗݌ ∗݀

1 U(0.0,1.0) 

U(0.6,1.0) 0.0 0.05 

1.15 0.50 0.95 

2 U(0.0,0.6) 1.41 0.46 0.95 

3 U(0.0,0.5) 1.78 0.43 0.97 

4 U(0.0,1.0) 

U(0.6,1.0) 0.5 0.05 

1.30 0.51 0.95 

5 U(0.0,0.6) 1.19 0.48 0.95 

6 U(0.0,0.5) 1.46 0.44 0.96 

7 U(0.0,1.0) 

U(0.6,1.0) -0.5 0.05 

1.29 0.48 0.95 

8 U(0.0,0.6) 1.94 0.45 0.95 

9 U(0.0,0.5) 2.46 0.42 0.97 

10 

U(0.0,0.5) U(0.6,1.0) 

0.0 
10-8  

corner probs.

- 0.50 1.00 

11 0.5 - 0.50 1.00 

12 -0.5 - 0.50 1.00 

13 U(0.0,1.0) 

N(0.8,0.04) 0.0 0.05 

3.75 0.50 0.95 

14 U(0.0,0.6) 3.87 0.49 0.95 

15 U(0.0,0.5) 4.14 0.47 0.95 

16 U(0.0,1.0) 

N(0.8,0.16) 0.0 0.05 

0.94 0.50 0.95 

17 U(0.0,0.6) 1.20 0.44 0.96 

18 U(0.0,0.5) 1.45 0.40 0.99 

19 U(0.0,1.0) 

LN(0.8,0.04) 0.0 0.05 

3.46 0.50 0.95 

20 U(0.0,0.6) 3.59 0.49 0.95 

21 U(0.0,0.5) 3.87 0.47 0.96 

22 U(0.0,1.0) 

LN(0.8,0.16) 0.0 0.05 

0.97 0.50 0.95 

23 U(0.0,0.6) 1.21 0.43 0.97 

24 U(0.0,0.5) 1.44 0.39 1.00 



 
 

 

Figure 2. Simply-supported beam subject to a randomly-located  
concentrated load of random intensity. 

 
The limit state function for the two-dimensional problems is: 

ሻ܆ሺܠ݃ ൌ ܴ  െ  ܲ ቀܦ െ
஽మ

௅
ቁ     (31) 

where the resistance ܴ is given by ܴ ൌ ܮ௕݌ 4⁄ െ  controls the size of the failure ߝ Parameter .ߝ
domain and hence the magnitude of the failure probability. For most (conventional) problems, 
 is considered (Table 1). A problem similar to the one-dimensional problem above 0.05= ߝ
(called “corner” problem herein), is obtained for ߝ ൌ 10ି଼ . For the corner problems, the ٣୲୭୪ 
convergence criterion is not used. Variables ܮ, ,௔݌ ,௕݌  ݀௔, ݀௕ and ܴ are treated as non-
dimensional. For all problems, ܮ ൌ 1. 

5. RESULTS 

 Results are presented in this section for a combination of four optimization algorithms 
(HLRF, iHLRF with two sets of parameters, SQP), three schemes for imposing random varia-
ble bounds (bisection, reflection and limit) and for two probability mappings (traditional and 
alternative normal tail approximation). The combination results in 24 algorithms, which are 
employed in the solution of 24 two-dimensional problems and four 8 and 16-dimensional 
problems. Due to strong problem non-linearities, several initial points have to be considered 
for each problem and algorithm. Six different starting points are considered for each problem, 
totaling 6048 problem solutions. Initial points considered for the two-dimensional problems 
are: 

ଵܠ ൌ ሼߤ஽, ;௉ሽߤ ଶܠ  ൌ ሼ0.03,0.62ሽ; ܠଷ ൌ ሼ0.05,0.62ሽ; 

ସܠ  ൌ ሼ0.05,0.61ሽ; ܠହ ൌ ሼ0.05,0.80ሽ; ܠ଺ ൌ ሼ0.05,0.99ሽ;     (32) 

 In the problem solutions, it is observed that the alternative mapping leads to similar tra-
jectories for close-by initial points, whereas the traditional mapping leads to more irregular 
trajectories. Difficulties were observed in reaching the prescribed tolerance (‖ܠ‖௧௢௟ ൌ 10ିଷ), 
as towards the end of the convergence history several (successive) points remain clogged.  
 Figure 3 illustrates the convergence trajectories for one initial point but different opti-
mization algorithms, also for problem 1 (Table 1). In this figure, it can be observed that the 
HLRF algorithm gets trapped in a circle, bouncing from one side of the mid-spam to the oth-
er, hence failing to converge. This happens for most of the 24 2D problems, when the HLRF 
algorithm is used. The iHLRF15, iHLRF55 and SQP algorithms do converge for this problem, 
as shown. 



 
 

 

Figure 3. Converge trajectories for different algorithms with traditional mapping; Problem 1. 

 
 The performance of different algorithms can be evaluated from Table 2, which summa-
rizes results for the 12 2D problems with uniform probability distributions for load ܲ. As the 
particular starting points for which convergence was achieved are of no general interest, re-
sults are summarized for each algorithm and mapping. Details of starting point and bounding 
schemes are omitted. In Table 2, a number indicates that convergence was achieved for the six 
starting points and for the three bounding schemes (18 runs); in this case the number is the 
average number of limit state function calls required for convergence. Keywords are as indi-
cated in the footnote to Table 2.  
 For the problems with ݀௕ ൌ 1.0, both positive and negative correlations lead to greater 
convergence difficulties. For the other problems, correlations actually speeded up 
convergence, leading to smaller number of limit state function calls. 
 In the solution of the 12 problems summarized in Table 2, the iHLRF55 was the most 
efficient algorithm. It converged for all problems using the traditional mapping, and for most 
problems using the alternative mapping. The iHLRF15 algorithm converged for fewer prob-
lems, and when it converged, it took on average 13% more limit state function calls then the 
iHLRF55 algorithm. The SQP algorithm also converged for all problems using the traditional 
mapping, but in general required from 30 to 42% more limit state function calls than the 
iHLRF55 algorithm.  



 
 

 In Table 2 it can also be observed that the proposed alternative mapping leads to con-
vergence difficulties for the so-called corner problems. For all other problems, however, the 
alternative mapping leaded to an average reduction of around 10% in the required number of 
limit state function calls.  
 

Table 2. Summary of results for 2D Problems 1 to 12. 
    ݀௕ ൌ 1.0 ݀௕ ൌ 0.6 ݀௕ ൌ  ݎ݁݊ݎ݋ܿ 0.5

ߩ   → 0.0 +0.5 -0.5 0.0 +0.5 -0.5 0.0 +0.5 -0.5 0.0 +0.5 -0.5 

Alter. 

HLRF none some few none few few none none one none few none

iHLRF15 86 107 116 52 56 96 some 46 few none few none

iHLRF55 85 149 99 46 40 71 58 45 73 some some few

SQP 140 242 203 46 47 81 44 45 97 96 50 some

SQPeH 47 64 62 44 45 44 44 44 43 most 45 few

Trad. 

HLRF none none none none some few none 31 none 22* 22 16

iHLRF15 82 143 119 62 44 some some 68 one 55* 54 51*

iHLRF55 97 111 111 57 38 86 64 46 75 68* 53 106

SQP 260 283 223 44 some most 50 44 most 57 45 77

SQPeH 67 92 81 45 47 44 45 45 44 47 46 74
Keywords none and some are obvious; few means that convergence was obtained for up to three starting points (for 
one or more bounding schemes); most means that convergence was obtained for all but up to three starting points; 
mean means that convergence was obtained only for the mean starting point; an * indicates that convergence was only 
obtained for the limit bounding scheme. 

 
Table 3. Summary of results for 2D Problems 12 to 24. 

    ܲ~N(0.8,0.04) ܲ~N(0.8,0.16) ܲ~LN(0.8,0.04) ܲ~LN(0.8,0.16) 

   ݀௕ → 1.0 0.6 0.5 1.0 0.6 0.5 1.0 0.6 0.5 1.0 0.6 0.5 

Alter. 

HLRF none none some none none none none none one none none some

iHLRF15 492 349 some 167 33 53 700 290 some 99 60 29

iHLRF55 some 218 145 71 37 55 some 315 147 65 52 31

SQP some some some some 27 27 some some 78 124 28 27

SQPeH some none none 27 27 27 mean none some 27 27 27

Trad. 

HLRF none none none none none none none none some none none none

iHLRF15 449 162 85 153 61 44 712 190 most 110 42 29

iHLRF55 some 159 93 75 41 60 none 198 82 57 48 42

SQP some some some some 30 27 some some 52 97 27 27

SQPeH some none 28 28 27 27 mean none 28 28 27 27
Keywords following footnote to Table 2. 

 
 For 2D Problems with ݀௕ ൌ 1.0 or ݀௕ ൌ 0.6, the convergence sequences never tried to 
leave the random variable limits, for the four tested algorithms. Hence, bounding schemes 
were not activated. For the conventional problem with ݀௕ ൌ 0.5 (problems 3, 6 and 9), 
bounding schemes were requested occasionally, for some of the starting points.  

As expected, for the corner problems the bounding schemes were more active, as the 
convergence sequence leaded to more frequent boundary hits. Figure 4 illustrates convergence 



 
 

difficulties using the alternative mapping and the limit bounding scheme. For the HLRF and 
iHLRF15 algorithms, the sequence remains trapped between the limits ݀௕ and ݌௕. For the 
traditional mapping (Figure 5), the convergence is much smoother: the sequence “sticks” at 
the upper limit ݌௕ and follows on until the “design point” is found. For the traditional 
mapping, even the HLRF algorithm converges to the design point of the corner problem. This 
failure of the alternative mapping in allowing the design point of corner problems to be found 
is a little surprising. However, the sucess of the traditional mapping is certainly a consequence 
of the robust computational scheme implemented herein. 

Convergence difficulties were encountered using the bissection and reflection 
bounding schemes, even when the traditional mapping is used. For the HLRF and iHLRF15 
algorithms, the sequences also remain trapped near the design point, but are not able to get 
there. Only the SQP algorithm was able to find the design point using the bissection and 
reflection schemes. For all other algorithms, only the limit scheme allowed the design point to 
be found.  Clearly, this is a particularity of the corner problems considered here, as the design 
point was arbitrarily located at the upper limits of the two random variables. This would not 
occur very often in practical problems. 
 

 

Figure 4. Converge trajectories for different algorithms with alternative  
mapping and limit bounding; 2D Problem 12. 



 
 

 

Figure 5. Converge trajectories for different algorithms with traditional 
mapping and limit bounding; 2D Problem 12. 

 
 In general, it was also observed that the alternative mapping leads to more frequent 
boundary hits, in comparison to the traditional mapping. This justifies the observed conver-
gence difficulties for the corner problem and the alternative mapping. Moreover, both iHLRF 
algorithms tested herein lead to more frequent boundary hits than the SQP algorithm, with 
appears to lead to more well-behaved convergence sequences. 
 Results obtained for problems 12 to 24, with Normal or Log-normal distribution of load 
intensity ܲ are presented in Table 3. None of the studied algorithms was able to identify the 
design point for all the starting points of all problems. The SQP algorithm failed to converge 
for most problems involving small coefficients of variation of the load ܲ (c. o. v. ൌ 0.05 for 
problems 13 to 15 and 19 to 21). Figure 6 illustrates convergence difficulties for SQP algo-
rithm and problem 13. The SQP algorithm remains trapped in a circle, bouncing from one 
side of the mid-spam to the other. This behavior also happened for the computation using the 
exact Hessian (SQPeH). 
 The iHLRF15 and iHLRF55 algorithms solved most problems, but failed to converge 
for some of them. For those problems were both algorithms converged, the iHLRF55 algo-
rithm required between 20 to 30% less limit state function calls than the iHLRF15 algorithm.  
 



 
 

 

Figure 6: Converge trajectories for different algorithms  
with traditional mapping; 2D Problem 13. 

6. CONCLUSIONS 

 This article presented and discussed strategies for finding the design point in problems 
involving uniform and other bounded random variables. The article introduced a challenging 
benchmark problem, involving one concentrated load acting on a simply supported beam. 
Although mechanically simple, finding the design point was shown to be quite challenging, 
due to the uniform distribution of load positions and due to random load intensities. Several 
topics were discussed and illustrated with respect to results obtained for this benchmark prob-
lem. 
 In particular, the article discussed alternatives to be considered when random variables 
approach their upper or lower limits during design point search. An alternative transformation 
was suggested, in order to smoothen the mapping to standard Gaussian space: the mean of the 
equivalent normal distribution is simply given by the mean, or the mode, of the original dis-
tribution. This alternative procedure has indeed smoothened some of the studied problems, 
leading to convergence for some cases where the traditional normal tail approximation failed, 
but also reducing in around 10% the required number of limit state function calls. However, 
the suggested alternative mapping failed when the design point was located very close to a 
random variable limit. 
 Three schemes were presented herein to impose the bounds of the random variables in 
the inverse probability mapping: bisection, reflection and limit. The bisection and reflection 



 
 

schemes resulted in similar behavior for most problems, with the reflection scheme leading to 
convergence failure in a few cases. The limit scheme was shown to perform better in the (un-
likely) case of a design point lying very close to a random variable limit. Indeed, for some of 
the presented “corner” problems, the limit scheme was the only scheme leading to conver-
gence.  
 Four algorithms were studied with respect to their robustness and efficiency in finding 
the design point, in combination with the alternative and traditional normal tail approxima-
tion, and with the three bounding schemes tested herein. The HLRF algorithm converged for 
only a few cases, remaining trapped in some sort of circle for most of the problems studied. 
The Sequential Quadratic Programming (SQP) algorithm converged for most of the problems 
studied, but failed to converge for the 2D problems involving Normal and Log-normal load 
intensities and small c.o.v.. The improved HLRF (iHLRF) algorithm converged for some of 
the problems studied, using the Armijo line search with the literature-recommended values of 
a=0.1, b=0.5. However, using the parameters a=0.5, b=0.5, the algorithm converged for a 
larger number of problems with a significant reduction in the mean number of limit state 
function calls. 
 Results were also obtained for multi-dimensional versions of the 2D problems presented 
herein. These results will be presented at the conference.  
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